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The identification of plant diseases is one of the most essential and difficult concerns in 

agriculture, necessitating solutions with a brighter light. With the onset of artificial 

intelligence (AI), machine learning (ML) and deep learning (DL) algorithms have aided 

farmers in identifying and classifying plant features with a high degree of intellectual 

precision. However, accurate disease classification in plants is essential for empowering 

farmers to cultivate more and produce more. This study therefore presents a unique assembly 

of attention, capsule, and feedforward classification layers for reaching the maximum 

classification accuracy for plant diseases. The proposed system uses user-defined 

customized Convolutional Transfer Learning networks (CTLN) to extract features and the 

attention networks exclude unnecessary features and highlight only critical features for 

classification. Finally, the selected characteristics are sent to the Feedforward Capsule 

networks to improve performance. This paper proposes a paradigm that overcomes the 

constraints of existing deep learning networks and drastically decreases the computing 

burden. The suggested network is thoroughly evaluated utilizing Plant Village databases 

containing over 50,000 photos of healthy and diseased plants. The performance metrics of 

the proposed method are evaluated and compared to those of other learning networks. 

Compared to previous models, experimental results indicate that the proposed model has a 

99.8 percent accuracy rate, lending support to the new categorization method that benefits 

farmer well-being. 
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1. INTRODUCTION

Agriculture is the true foundation of economic progress in 

every nation. In the past, numerous agronomists and 

researchers were drawn to identify the various agricultural 

challenges due to the predicted exponential demand for food 

and the scarcity of basic agricultural resources. Plant diseases 

and crop losses are considered complexities that have an 

impact on yields and may subsequently lead to economic 

losses as well [1-5]. Recently, applications of the machine and 

deep learning have skyrocketed after successful 

implementation in agricultural applications such as crop 

detection, plant disease identification, crop plant monitoring, 

and management. Convolutional Neural Networks (CNN) 

have gained the momentum in agricultural domain specifically 

applied the plant disease classification. Additionally, pre-

trained models such as Alexnet [6], GoogleNet [7], VGG- l9 

[8], and Resnets-50 [9] are also tested on plant disease datasets 

to produce the best performance of detection. However, these 

existing models still lack robustness across a large number of 

datasets. 

In recent years, Capsule networks [10] have gained more 

popularity than CNN in different applications such as plant 

disease detection, text classification, tumor classification, 

bioinformatics, and simple classification problems. In contrast 

to CNN, which encodes information in a scalar manner, 

capsule networks are groups of neurons that encode and store 

spatial information in vector form. Though the Capsule 

networks are used for various applications, these networks do 

not learn the important local features from multiple scale plant 

images that may increase the false rate of detection. To 

advance agriculture, particularly in the classification of plant 

diseases, a new design that will assist in overcoming the 

restrictions is urgently sought. 

Motivated by this problem, this paper presents the 

significant improvisation in Capsule Networks to achieve the 

better classification of plant diseases. The paper's primary 

contribution is as follows: 

Concern with the novelty of Capsule networks, this paper 

presents a novel architecture that embeds the attention layers 

between the convolutional and primary capsule layers. The 

attention networks solve the aforementioned problem by 

learning the local features while capsule networks learn from 

the spatial correlation between the features. Moreover, the 

inclusion of attention layers in Capsule networks has reduced 

the computational complexity when compared with other 

existing learning algorithms.  

• This paper also presents the novel idea of replacing

the conventional backpropagation training network

with powerful feedforward layers that work based on

the theory of Extreme Learning Machines (ELM).

ELM is used as the final layer of classification with

high learning speed and low false rate detection.

Additionally, the usage of ELM also keeps

computational efficiency while having a large

receptive field of plant datasets.

• The paper presents the extensive experiments carried

out to evaluate the proposed framework and
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demonstrate that the proposed model was able to 

supply better performance and robust and stable 

classification across larger datasets. In general, the 

proposed framework has outperformed the other 

existing deep learning and capsule networks in the 

detection of plant diseases. 

The remaining sections are organized as follows: 

In Section 2, various papers on intelligent techniques for 

plant disease diagnostics are discussed briefly. In Section 3, it 

is detailed how the suggested model functions and how 

datasets are gathered. Sections 4, 5, and 6 present respectively, 

the implementation details, experiments, and outcomes. The 

article is finally ended in Section 7, along with suggestions for 

improvement. 

 

 

2. RELATED WORKS 

 

Azadbakht et al. [11] examined the display to determine 

how to recognize wheat leaf rust at high, medium, and low 

levels of leaf area index (LAI), as well as at the shadow scale. 

The exhibition was broken down using four different 

approaches, including Support Vector regression, Random 

Forest (RF) regression, vs. Gaussian process regression, and 

an improved regression tree. This also accounts for the illness's 

level of severity. The study used to analyze the presentation 

focused on 7000 hectares of wheat development in the 

northwestern part of Iran. It makes use of hyperspectral 

reflectance data collected under varied natural conditions. 

Hyperspectral images can be used to identify wheat rust based 

on the results of the experiment. According to a correlation 

between spectral vegetation indices (SVIs) and machine 

learning (ML), ML outperforms SVIs [11]. 

Park et al. [12] recommended a component selection 

method known as "minimal redundancy and maximum 

relevance" (mRMR). Since PCA reduces dimensionality 

without revealing the most important spectral band. This 

method enables the selection of a rough band within an odd 

image. Along with convolutional brain organization and an 

associated network, a deep brain network was also suggested. 

The apple leaf is classified using FCN based on its state, 

namely common, late, youthful, early, and malnutrition. This 

method lessens the issue that arises in the hyperspectral picture, 

resulting in a disease forecast. The framework reduces the 519 

groups in the hyperspectral image to 5 using automated feature 

selection (mRMR), and the leaf state arrangement is done 

using a deep neural network (VGG net + FCN) [12]. 

The method suggested by Karadağ et al. [13] for dealing 

with peppering fusarium disease helps. Using a phantom 

radiometer, plant light reflection aids in obtaining information 

about the plant. Mycorrhizal parasite, fusarium ailing, sound, 

and mycorrhizal leaves are the four types of leaves used for it. 

Between 350 and 2500 nm is where the frequency should fall. 

Two degrees of handling are involved. Highlight of a vector, 

and a collection of vectors. Three techniques, KNN, and NB 

are used with the end objective of order. It is established that 

KNN achieves a typical success rate of 100 percent, compared 

to ANN's success rate of 97.5 percent and Nave Bayes' success 

rate of 90 percent. The execution of grouping is slowed down 

by a lot of information. Using Wavelet Transformation (WT), 

the aspect can be lessened. Inteligencia Artificial 63(2017) 9 

employs Sym5, db2, and Haar for this purpose. In ANN, 

backpropagation calculations are set up with order in mind. 

Ten field cross-approvals are used to test its appearance. To do 

the arrangement computation, Mat lab R2015b is used. When 

K=2, the db2, Haar, and sym5 accomplished better results. The 

typical achievement rates are 92.5%, 91.5%, and 85% for K=5. 

KNN produces better outcomes in comparison to other 

calculations. The elements are reduced via wavelet 

degradation from 2150 to 75 [13]. 

Iqbal et al. [14] mainly focus on the many illnesses that 

affect citrus plants and how they are grouped. Additionally, it 

provides a comprehensive description of the many methods 

utilized for the division cycle, highlights extraction, and 

includes selection, picture processing, and order methodology. 

Additionally, it discusses the electronic tools used for 

identification and characterization. Sicknesses that affect 

citrus plants include ulcers, black spots, citrus scabs, 

melanosis, and equipping. The methods used for the various 

stages of the inquiry are compared, and the K-mean 

computation is used in the current study to extract the illnesses. 

The Gray Level Co-Occurrences Matrix (GLCM) and the 

Back Propagation Neural Network were utilized to perform 

computations on and arrange various highlights (BPNN). 

Preprocessing, variety-based change, picture upgrading, sound 

reduction, sound resizing, and division techniques are 

investigated. Various methods of element extraction depend 

on the surface, variety, and form. It provides an overview of 

several classifier strategies along with examples of how they 

are used. According to the analysis, the pre-handling technique 

enhances division accuracy [14]. 

Considering extensive learning, Barbedo devised a method 

for picture grouping. When a data set is not available, an 

information expansion technique helps the plant with imaging. 

This essay focuses mostly on identifying a single sore or area 

rather than considering the full leaf in search of recognized 

evidence. The accuracy is 12% higher when using simply pain 

and spot than when utilizing full leaf. The full explanation of 

the innovative design utilized for plant disease diagnosis, the 

location of the data collection for differentiating the plant 

infection, and its accuracy after ID are all referred to. It also 

rattles off in a clear manner the list of complexities present in 

the plant example. Various kinds of images were used in the 

analysis and they are, 1. Image without any alteration 2. A 

picture without basis 3. A larger dataset Exactness is 

established for both original and expanded images [15]. 

Tavakoli and Gebbers presented a camera-based evaluation 

of water in the field and nitrogen analysis of winter wheat. This 

evaluation was conducted over three years (2012, 2013, and 

2014). In the field, nitrogen treatment and various water 

concentrations are used to conduct the analysis. To conduct 

research, two AI calculations—specifically, RF and Partial 

Least Square Regression were created. The outspread estimate 

was performed using a phantom radiometer. Additionally, the 

Vegetation Index (VI) is computed independently. The R2 

(RMSE) model is used to separately calculate the nitrogen 

content for the two types of information. Consolidated data 

information works better using arbitrary woods computation. 

Utilizing the computerized camera improves the performance 

of the calculation for nitrogen evaluation. It may also be 

synced with a mobile device. Only three unearthly groups can 

be reached, hence the scope of the analysis of plant state is also 

constrained [16]. 

Zhang et al. [17] developed a new DL-based system for 

tomato crop disease classification. Scientists developed a 

custom-tailored Faster-RCNN methodology in which the 

profound remaining system was utilized to automatically 

extract rather than the VGG16 model. Furthermore, the edge 
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pixels were grouped using the k-means clustering method. 

This approach produces improved disease diagnosis findings 

for tomato crops, albeit at the cost of increased financial 

impact [17]. 

Verma et al. [18] studied the capsule networks to identify 

the disinfected plants. The author adopted the standard capsule 

network which plays a crucial part in the agriculture field in 

terms of “texture, orientation, and pose” more accurately than 

deep learning algorithms. Capsule network architecture 

collects every feature into a similar capsule group to frame the 

entire network. Though the capsule network achieved better 

accuracy than the CNN model, the model is not validated with 

segmented or real-time datasets [18].  

Peker [19] proposed the ensemble capsule network with five 

channels for plant disease detection. Gabor, PCA, filters were 

combined with the capsule network to achieve the best 

performance in detecting the texture, shape, or leaf-affected 

area more accurately. The limitation of this network is high 

training complexity and overfitting problems arise at the pre-

processing level [19].  

Altan [20] reduced capsules on leaf images, and the 

CapsNET architecture was given to test the algorithm's 

usefulness in detecting plant leaf diseases. Plant leaf diseases 

are widespread, wreaking havoc on agricultural harvests and 

yields. Even tiny stains can alter seed dressing time and length, 

and Caps NET can do in-depth analysis on them. 

 

Table 1. Quick summary of the literature survey 

 
Authors Proposed Method The dataset used and Experimental 

Setup details 

Results Achieved and 

Advantages  

Demerits 

Azadbakht 

et al. [11] 

Boosted Regression 

Trees (BRT), RF 

Regression (RFR), 

Gaussian Process 

Regression (GPR), 

and Support Vector 

Regression (v-

SVR) 

Wheat leaf rust disease inversion based 

on canopy hyperspectral data were 

utilized. 

The Moghan fertilized plain, in the 

northwestern part of Iran, is where field 

tests were carried out. This plain 

typically sees the yearly cultivation of 

wheat over an area of around 7000 

hectares. 

Exhibited improved LAI 

= 0.91 for high, medium, 

and low and RMSE 

(8.5%) findings. 

Since the training and test 

sets were derived from the 

same dataset, the results 

might not have been as 

impressive if the sources 

were different. 

Park et al. 

[12] 

minimum 

redundancy and 

maximum 

relevance (mRMR) 

for  feature 

selection and CNN 

for classification 

The indoor hyper-spectral dataset is 

used. The Python Theano library on the 

‘GeForce GTX TITAN X’ Graphic 

Processing Unit for experimentation. 

Excellent classification 

for both RGB and hyper-

spectral images and also 

reduced the complexity. 

Special attention is required 

in this framework for 

memory requirements 

Karadağ et 

al. [13]  

KNN is used for 

the classification 

The pepper plants (Capsicum annuum) 

utilized in this study were cultivated in 

a climatic chamber at the plant 

protection lab of the Sanlurfa provincial 

GAP Agricultural Research Institute 

(GAPTEAM), Sanlurfa, Turkey. 

With 91% classification 

accuracy, the KNN 

approach produced the 

best estimate results. 

The trials only used clipped 

leaves; they did not use 

pictures of leaves in real 

settings. 

Iqbal et al. 

[14] 

discussed 

difficulties in 

identifying and 

classifying citrus 

plants 

The review covers the different feature 

extraction techniques under different 

plants and experimental scenarios. 

Almost all methods and 

instruments for 

identifying and 

categorizing plant 

diseases were covered by 

this framework. 

According to this 

assessment, it is still difficult 

to simultaneously identify 

plant problems and take 

pictures under every 

conceivable circumstance. 

The research does point out 

that it is unreasonable to 

anticipate that an 

autonomous illness detection 

system will operate with 100 

percent accuracy in real-

world settings. 

Bhyrapuneni 

and 

Rajendran 

[15] 

Deep Neural 

Network and 

Transfer Learning 

are utilized 

The images in the database were 

captured using several different sensors 

(smartphones, compact cameras, DSLR 

cameras) then Matlab was utilized for 

the experimentation.  

Accuracy is improved by 

12% and no crop had 

accuracy below 75% even 

though the framework is 

tested under 10 diseases. 

the database does not cover 

the entire range of practical 

possibilities 

Kumar and 

Anandan 

[16] 

PLSR and RF are 

utilized 

Leibniz Institute for Agricultural 

Engineering and Bioeconomy e.V. 

(ATB), Potsdam, Germany, served as 

the site for this study. A HP Z840 

Workstation running 64-bit Windows 

10 and outfitted with two Intel® Xeon® 

CPU E5-2667 v4 (3.2 GHz, 25 MB 

cache, 8 cores, Intel® vProTM), 256 

GB of RAM, and two graphic cards 

(NVIDIA Quadro P5000) was utilized 

to process the images. 

Provided better results in 

terms of RMSE 

Nitrogen content = 0.25–

0.14 

Water content = 0.75–

0.36 

Single date data = 0.24–

0.15 

Combined date data = 

1.49–1.66 

The training and testing were 

conducted using the same 

dataset, and all photos 

included leaves that were 

facing up on a uniform 

backdrop. 
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Zhang et al. 

[17] 

RCNN and VGG16 

architecture are 

integrated 

The training dataset is from 

AIChallenger (https://challenger. 

ai/competition/pdr2018), which is 

laboratory data. An NVIDIA GeForce 

GTX 1060 GPU with 12 GB of RAM 

has been used to test the Faster RCNN 

model, which is based on TensorFlow. 

It uses Ubuntu as its operating system. 

Compared to the original 

Quicker RCNN, the crop 

leaf disease detection 

exhibited a faster 

detection speed and 

2.71% greater 

identification accuracy. 

The authors underlined that 

segmentation and 

background removal had a 

significant influence on the 

findings and should be 

included in the model despite 

the low accuracy for some 

classes. 

Verma et al. 

[18] 

Capsule network 

modules 

PlantVillage dataset is used. Python 3.7 

was used to carry out the 

implementation on a workstation with a 

GTX 1060 6GB GPU. 

Achieved 91.83% 

accuracy when compared 

to the traditional CNN 

model. 

This framework leads to low 

accuracy when it is tested 

under real scenarios. 

Peker [19] An ensemble of 

capsule networks 

has been 

developed. 

The tests are carried out in Python on a 

high-performance computer with an 

NVIDIA GeForce RTX 2070 Graphics 

Processing Unit (GPU), and the data set 

utilized in this study comprises pictures 

of nine distinct infected and healthy 

tomato crops. 

Better accuracy is 

achieved (92.5%). 

The main limitation is that 

the data sets consist of a 

small number of images and 

if the data set size increases 

the results are not maintained 

as the same. 

Altan [20] Capsule Networks A plant village dataset is used. An 

NVIDIA GeForce GTX 1060 GPU with 

12 GB of RAM has been used 

Accuracy = 95.76%, 

Sensitivity = 96.37%, and 

specificity = 97.49%  

The plant images are tested 

under both shadow and sun 

shining. But if the 

heterogeneity in the plant 

image increases the 

performance is degraded.  

Waweru et 

al. [21]  

CapsNet-SVM A plant village dataset is used. Python 

3.7 was used to carry out the 

implementation on a workstation with a 

GTX 1060 6GB GPU. 

Achieved classification 

accuracy of 93.41% 

This framework increased 

the time complexity for 

large-scale datasets. 

The suggested CapsNET model sought to evaluate the 

applicability of different feature learning techniques for bell 

pepper crops and to improve the learning capacity of DL 

models. The CapsNET was fed the healthy and sick leaf 

pictures [20]. 

Waweru et al. [21] adopted the capsule network for 

classifying plant diseases. A new model based on the merging 

of CapsNet and support vector machine (CapsNet-SVM) was 

studied to classify illnesses in tomato leaves. The SVM model 

was utilized as a robust classifier, while the capsule network 

was optimized for feature extraction. The major goal was to 

improve SVM classification by employing artificial features 

retrieved by the capsule network model. The CapsNet-SVM 

model was found to be capable of autonomously extracting 

and classifying features from raw images. When compared to 

CNN, capsule networks, and CapNet-SVM, both frameworks 

are better in terms of accuracy but have poor performance in 

terms of spatial capture relationships [21]. Table 1 presents the 

summary of the literature survey. 

From the related works, the research gap is found that the 

existing frameworks lack accurate identification of plant 

disease and those frameworks have high computational 

complexity. This motivates us to develop an intelligent 

framework for plant disease classification. 

 

 

3. PROPOSED METHODOLOGY 

 

A highly effective hybrid model is suggested to forecast 

plant diseases from the supplied images. Figure 1 shows the 

hybrid model's entire process flow. The proposed hybrid 

framework combines three layers such as convolutional 

attention layers, capsule networks, and finally feedforward 

classification layers.  

The lightweight bi-layered self-attention network is 

sandwiched between the convolutional layers and capsule 

layers. To improve the classification of plant diseases, the 

features collected from the attention layers are then sent to the 

capsule layers, followed by the potent ELM layers. End-to-end 

learning eliminates the requirement for pre-processing or 

involved feature extraction processes by substituting a single 

ensemble deep neural network for a pipeline of learning 

components. The following sub-section explains the datasets, 

a general overview of Capsule networks, Feedforward 

classification layers, and proposed architecture.  
 

3.1 Materials and methods 
 

To facilitate the development of mobile disease diagnoses, 

Plant Village, an open-access photo database on plant health, 

was used for training and testing in this study. The 54,306 

images included in the Plant Village dataset depict 14 distinct 

plant species. There are 38 classes in all, of which 26 show 

diverse plant diseases and 12 show classes of different plants 

with healthy leaves. Table 2 Contains information about the 

entire dataset. 
 

3.2 Data augmentation 
 

Figure 2 presents the visual representation of healthy and 

diseased sample plants. The image augmentation approach is 

implemented in the suggested design for efficient training and 

resolving the overfitting and class imbalance issues. The use 

of data augmentation is the most effective and efficient 

solution to this issue. Each image goes through a sequence of 

changes throughout the data augmentation step, creating a vast 

number of newly corrected training image examples. An affine 

transformation is used for effective data augmentation, as 

mentioned in study of Pei and Hsiao [22]. Translation, scaling, 

and rotation are examples of affine transformation techniques. 

This step is advised to avoid overfitting issues because most 

training picture samples obtained through the Augmentation 

procedure correlate. The proposed algorithm is then fed the 

enhanced data for an accurate categorization of various plant 

diseases. 
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Figure 1. Proposed architecture for the multiple class plant diseases 

 

Table 2. Complete descriptions of plant village datasets used in the proposed research 

 
Plant Name Types of the Plants Class Label No. of Samples  

Tomato Bacterial spot 1 28,226 

Early blight 2 

Healthy 3 

Late Blight 4 

Leaf Mold 5 

Septoria leaf spot 6 

Spider Mites 7 

Target spot 8 

Mosaic virus 9 

Yellow leaf curl virus 10 

Apple Apple scab 11 3173 

Black rot 12 

Cedar Apple rust 13 

Blueberry Healthy 14 1502 

Cherry Healthy 15 7029 

Healthy 16 

powdery mildew 17 

Corn Gray leaf spot 18 4089 

Common rust 19 

Healthy 20 

Northern leaf blight 21 

Grape black rot 22 12890 

Esca black measles 23 26782 

Healthy 24 

Leaf blight 25 

Orange Huanglongbing 26 1201 

Peach Bacterial spot 27 902 

Healthy 28 

Pepperell Bacterial Spot 29 2503 

 Healthy 30 

Potato Early blight 31 12901 

Healthy 32 

Late blight 33 

Raspberry Healthy 34 1290 

Soybeans Healthy 35 890 

Squash Powdery Mildew 36 5690 

 Healthy 37 

Leaf scorch 38 

PLANT DISEASE 

PLANT DISEASE 

PLANT DISEASE 

PLANT DISEASE 
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(a)                                 (b)                                (c) 

 
(d) 

 

Figure 2. Visual representation of healthy and disease sample plant a) Healthy apple b) Pepper bell-bacterial spot c) Apple black 

rot d) Tomato diseases 

 

The suggested architecture uses an image augmentation 

approach for efficient training and to address the overfitting 

and class imbalance issues. The use of data augmentation is 

the most effective and efficient solution to this issue. During 

the data augmentation step, each image is subjected to a 

variety of changes that generate a vast number of newly 

corrected training image examples. According to study of Pei 

and Hsiao [22], an affine transformation is utilized to 

effectively supplement data. Translation, scaling, and rotation 

affine transformation strategies are used. This step is 

recommended to avoid overfitting issues, as most training 

image samples acquired by the Augmentation method exhibit 

a correlation. The additional information is then loaded into 

the suggested algorithm for an accurate classification of 

various plant diseases. 

 

3.3 Capsule network overview 

 

Modern Capsule networks provide several advantages over 

traditional CNN. Convolutional layers, basic capsule layers, 

and classification layers make up the three layers of the 

capsule network. Squashing, where vector capsules are used in 

place of scalar outputs, and dynamic routing, which replaces 

max-pooling layers, are the two main characteristics of capsule 

networks that outperform conventional CNNs. Routing-by-

agreement refers to the ability to pick and choose which parent 

in the layer above the capsule will receive the message. The 

capsule network can alter the connection strength for each 

optional parent. In squashing, capsule networks' output is 

compressed into a single ‘sector' rather than being routed 

through non-linearity individually as in CNNs. The capsule 

networks can capture spatial relationships. Without using any 

max-pooling layers, the squashing function improves the 

visualization of the likelihood that an object is present in the 

input image. The matrix of input vectors is multiplied by the 

weight matrix. The necessary spatial relationship between the 

image's low-level and high-level properties can be encoded. 

 

𝑌(𝑖. 𝑗) = 𝑊𝑖,𝑗 𝑈(𝑖, 𝑗) ∗ 𝑆𝑗  (1) 

 

To determine which capsule of a higher level the current 

capsule will forward its output to the weighted input vectors 

are summed. 

 

𝑆(𝑗) = ∑ 𝑌(𝑖, 𝑗) ∗ 𝐷(𝑗)𝑗   (2) 

 

The squash function is then used to implement non-linearity. 

The squashing function preserves a vector's direction while 

mapping it to a minimum length between 0 and 1 and a 

maximum length of 1. 

 

𝐺(𝑗) = 𝑠𝑞𝑢𝑎𝑠ℎ(𝑆(𝑗)) (3) 

 

3.4 Feedforward layer 

 

Traditional training networks are replaced in the proposed 

design by feedforward networks based on the ELM principle. 

Domathoti et al. [23] proposed the ELM classification of 

neural networks. This form of neural network employs a single 

hidden layer that does not require tuning. ELM performs better, 

is faster, and has less computational cost than other learning 

algorithms like SVM and RF. ELM makes use of the kernel 

function to provide results with higher accuracy and 

performance. Minimal training error and improved 

approximation are the primary advantages of the ELM. Since 

ELM employs non-zero activation functions and the auto-

tuning of weight biases, it finds application in classification 

and classification values. While the activation function of the 

output layer in this type of system is linear, the "L" neurons in 

the hidden layer must operate with a highly differentiable 
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activation function (for example, the sigmoid function). The 

tuning of hidden layers in ELM is not required. The hidden 

layer in ELM does not necessarily need to be modified. It has 

a high training speed.  Loads of the concealed layer are chosen 

at random (counting the bias loads). Hidden nodes are not 

insignificant, but they do not need to be tweaked, and the 

parameters of the hidden neurons may be produced randomly 

even before dealing with the training set data, which is 

advantageous. The formula for the system yield for a single-

hidden layer ELM is:  

 

𝑓𝐿(𝑥) =  ∑ 𝛽𝑖ℎ𝑖(𝑥) = ℎ(𝑥)𝛽𝐿
𝑖=1   (4) 

 

where, x → input  

𝛽 → Output weight vector and it is mathematically 

expressed as follows: 

 

𝛽 = [𝛽1, 𝛽2, … … … … . 𝛽𝐿]𝑇 (5) 

 

H(x)→ the mathematical expression for the output hidden 

layer looks like this: 

 

ℎ(𝑥) = [ℎ1(𝑥), ℎ2(𝑥), … … … … . . ℎ𝐿(𝑥) (6) 

 

To find "Output vector O," also known as the "target 

vector," the mathematical expressions for the hidden layers are 

as follows:  

 

𝐻 = [

ℎ(𝑥1)
ℎ(𝑥2)

⋮
ℎ(𝑥𝑁)

]  (7) 

 

The minimal non-linear least square approaches 

significantly employed for the simple application of the ELM 

are represented in the following manner: 

 

𝛽′ =  𝐻∗𝑂 = 𝐻𝑇(𝐻𝐻𝑇)−1𝑂 (8) 

 

where, the H∗→ inverse of H is known as the Moore−Penrose 

generalized inverse.  

The expression can alternatively be written as follows: 

 

𝛽′ =  𝐻𝑇(
1

𝐶
𝐻𝐻𝑇)−1𝑂  (9) 

 

Using the preceding formulation, the output function is as 

follows: 

 

𝑓𝐿(𝑥) =  ℎ(𝑥)𝛽 = ℎ(𝑥)𝐻𝑇(
1

𝐶
𝐻𝐻𝑇)−1𝑂  (10) 

 

3.5 Proposed architecture 

 

A lightweight self-attention-based ensembled 

Convolutional Capsule network was designed using VGG- 1 6 

topology. It consists of 1 6 layers and attention modules were 

embedded after the 14th layer.  

Inspired by the suggested approach, the Bi-layered 

Attention layers (BL- SAL) are implemented for the efficient 

extraction of multidimensional features. In the first layer, 

pipelined convolutional and ReLU activation functions are 

employed to extract intermediate features from the VGG-19 

dataset. This significantly selects the relevant features. The 

initial convolutional layers employ element-wise 

multiplication, which is subsequently forwarded to the 

SoftMax layer to generate an attention map. To generate the 

first layered self-attention maps, the attention maps were 

multiplied by the transposition of the third layer's feature maps. 

The second layer, which comprises channel attention layers, 

receives the obtained self-attention maps and refines them. 

This approach reduces the total number of boundaries to make 

it lighter and portable by using kernel filters that are eight 

times lower for each base network layer than for standard 

CNN architectures or VGG-19. The suggested training 

network's block design is depicted in Figure 3, and Table 3 

lists the training parameters that were utilized to build the 

proposed model.  

 

B(F) = B′(F1) ∗ B"(F2) (11) 

 

Where B′(F1) = S(F1). V(F1) (12) 

 

S(F1) = Soft(UF). M(F) (13) 

 

B"(F2) = B′(F1) ∗ C(F2) (14) 

 

 
(a) 

 
(b) 

 

Figure 3. a) Bi-layered attention networks integrated in the 

proposed architecture b) Generation of Bi-layered attention 

maps 

 

Eq. (11) represents the refined attention features after 

passing to the bi-1ayered Attention maps. Eqs. (12), (13), and 

Eq. (14) presents the mathematical expressions performed 

using the bi-layered attention maps. Each value in the 

proposed attention maps represents the degree of attention 

paid to the corresponding feature vectors obtained in the phase. 

The low-level and high-level features are extracted using the 

BL-SAL maps. These features are then used to construct the 

complete capsule networks. As the features consist of both 

high and level attention maps, intermediate capsules are 

constructed, and then use all intermediate capsules to construct 

the primary capsules. The intermediate capsules are 

formulated using Eq. (l1) in which the spatial information is 

extracted between the high and low-level attention maps. 

These maps are then summed up using Eq. (12) to form the 

higher primary capsules. Additionally, a linear combination 

between the capsules is introduced to reduce the number of 

Relu 

Relu 
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capsules at the same pixel location. Finally, the squashing 

function is applied using Eq. (13) on the linearly combined 

capsules so that the length is reduced to [0,1]. The positive side 

of the linear combination is that it reduces the redundant 

information present in the same pixel thus increasing the 

performance of classification. Finally, these capsules are used 

to train the feedforward layers which works on the principle of 

ELM using Eq. (10) to classify the multiple class diseases in 

plants. 
 

Table 3. Parameters used for the modelling of the proposed 

architecture 
 

Specifications Parameters 

VGG- 1 6 Networks 

Input Image Size 224×224×3 

Conv layers 64×2 

Pooling layer Max-pooling layer 

Conv layers 1 28×4 

Pooling layers Max-layers 

Conv layers 256×4 

Pooling layers Max-pooling layers 

Conv layers 5 1 2×4 

Pooling layers Max-pooling layers 

Bi- Layered Attention layers 

Conv layers 5 12×3 

Activation for 1 layer Relu 

Activation for 11-layer Softmax 

Classification layers 

Optimizer used Adam 

Activation Function Rely 

Normalization Batch 

 

 

4. SYSTEM SETUP 
 

The proposed architecture has been implemented in the PC 

workstation with 17 CPUs with NVIDIA Tesla GPU, I TB 

SSD, and 3.2 GHZ operating system. Tensorflow 2.9.0 with 

Keras 2.9.0 is used for deploying the proposed network. 
 

 

5. EVALUATION METRICS 
 

The mathematical formulas used to evaluate the suggested 

approach are shown in Table 4. The metrics are examined and 

contrasted with those of other existing algorithms in terms of 

their accuracy, precision, recall, specificity, and F1 score such 

as CAPSNET [24], CAPS –SV [25], LWACNN [26] and 

transfer learning algorithms [27]. It is worth highlighting that 

the experiment’s performance measures are based on the 

average of 5 simulated runs, with each consisting of different 

plant images. The training parameters used for 

experimentation are presented in Table 5. 
 

Table 4. Mathematical expression for the performance 

metrics used for evaluation 
 

Performance Metrics Mathematical Expression 

Accuracy 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Recall 
TP

T P+FN
 x100 

Specificity 
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Precision 
𝑇𝑁

𝑇𝑃 + 𝐹𝑃
 

F1-Score 2.
𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Table 5. Training hyper-parameters used for the proposed 

model 

 
Hyperparameters Values 

Batch Sizes 35 

No of Epochs 200 

Learning Rate 0.0001 

Loss Function Employed Cross-Entropy 

Momentum for ADAM optimizer 0.1 

Drop-out 0.2 

 

 

6. RESULTS AND DISCUSSION 

 

Table 6 demonstrates the normalized confusion metrics 

generated for the proposed model using different image 

datasets. The diagonal value shows the proportion of 

successfully identified plant disease images to all applied plant 

disease photos. Figure 4 shows the learning curves for the 

proposed architecture. 

 

Table 6. Confusion matrix provided for proposed model in 

detecting the multiple diseases in a) Apple b) Blueberry c) 

Cherry d) Crape e) Orange O Peach g) Pepper bell h) Tomato 

 

(a) 
LABEL Healthy Apple 

scab 

Black 

rot 

Cedar 

Apple rust 

Healthy 98.8 0 0 1 

Apple Scab 0 99.45 0 1 

Blackrot 1 0 99.4 0 

Ceder Apple 

xrust 

0 1 0 99.56 

 

(b) 
LABEL Healthy Powdery mildew 

Healthy 99.8 0 

Powdery mildew 0 99.7 

(c) 
LABEL Healthy Powdery mildew 

Healthy 99.78 0 

Powdery mildew 0 99.7 

 

(d) 
LABEL Healthy Black 

Rot 

Esca Black 

Measles 

Healthy 98.8 0 1.1 

Black Rot 0 98.86 1.1 

Esca black 

measles 

1.1  0 98.86 

 

(e) 
LABEL Healthy Powdery mildew 

Healthy 99.78 0 

Powdery mildew 0 99.7 

 

(f) 
LABEL Healthy Powdery mildew 

Healthy 99.7 0 

Powdery mildew 0 99.78 

 

(g) 

LABEL Healthy Early blight Late blight 

Healthy 99.92 0 0 

Early blight 0 99.96 0 

Late blight 1 0 99.92 
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Tables 7-14 present the proposed algorithm’s performance 

in detecting multiple-scale diseases from multiple plants. The 

proposed model was evaluated using testing data with 14 

samples and 15000 distant and multiple image datasets. The 

chart indicates that the proposed framework has provided an 

average performance of 99.8 percent accuracy, 99.75 percent 

precision, 99.65 percent recall, and 99.75 percent F I score. 

The model with the Capsule and Attention model has produced 

the maximum performance in detecting the multiple scales of 

diseases from multiple plants. 

 

 
(a)                                                                                 (b) 

 

Figure 4. Learning curves for the proposed model a) Performance learning curves b) Loss learning curves 

 

Table 7. Proposed model’s validation metrics for detecting the diseases in apple plant 

 

Plant and Disease Type 
Performance Metrics 

Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-Score (%) 

Healthy Apple 99.6 99.5 99.35 0.011 99.4 

Apple Scab 99.56 99.45 99.5 0.015 99.5 

Blackrot 99.62 99.5 99.35 0.011 99.4 

Ceder Apple xrust 99.9 99.8 100 0.01 99.89 

Average Performance 99.67 99.6 99.7 0.011 99.78 

 

Table 8. Proposed model’s validation metrics model for detecting the diseases in strawberry plant 

 

Plant and Disease Type 
Performance Metrics 

Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-Score (%) 

Healthy Strawberry 99.9 99.7 99.5 0.011 99.4 

Unhealthy Scab 100 99.8 100 0.01 99.89 

Average Performance 99.9 99.75 99.0 0.011 99.6 

 

Table 9. Proposed model’s validation metrics for detecting the diseases in corn plant 

 

Plant and Disease Type 
Performance Metrics 

Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-Score (%) 

Healthy Corn 99.9 99.7 99.5 0.011 99.4 

Unhealthy Scab 100 99.8 100 0.01 99.89 

Average Performance 99.9 99.75 99.0 0.011 99.6 

 

Table 10. Proposed model’s validation metrics for detecting the diseases in squash plant 

 

Plant and Disease Type 
Performance Metrics 

Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-Score (%) 

Healthy Squash 99.9 99.7 99.5 0.011 99.4 

Unhealthy Scab 100 99.8 100 0.01 99.89 

Average Performance 99.9 99.75 99.0 0.011 99.6 

 

Table 11. Proposed model’s validation metrics for detecting the diseases in raspberry plant 

 

Plant and Disease Type 
Performance Metrics 

Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-Score (%) 

Healthy Raspberry 99.9 99.7 99.5 0.011 99.4 

Unhealthy Scab 100 99.8 100 0.01 99.89 

Average Performance 99.9 99.75 99.0 0.011 99.6 
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Table 12. Proposed model’s validation metrics for detecting the diseases in soyabean plant 

 

Plant and Disease Type 
Performance Metrics 

Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-Score (%) 

Healthy Soyabean 99.9 99.7 99.5 0.011 99.4 

Unhealthy Scab 100 99.8 100 0.01 99.89 

Average Performance 99.9 99.75 99.0 0.011 99.6 

 

Table 13. Proposed model’s validation metrics for detecting the diseases in potato plant 

 

Plant and Disease Type 
Performance Metrics 

Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-Score (%) 

Healthy Potato 99.84 99.76 99.63 0.012 99.7 

Light Blight 100 99.8 100 0.01 99.89 

Early Blight 100 99.75 99.78 0.01 99.77 

Average Performance 99.4 99.77 99.80 0.01 99.78 

 

Table 14. Proposed model’s validation metrics for detecting the diseases in tomato plant 

 

Plant and Disease Type 
Performance Metrics 

Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-Score (%) 

Healthy Tomato 99.6 99.5 99.35 0.011 99.4 

Light Blight 99.56 99.45 99.5 0.015 99.5 

Early Blight 99.62 99.5 99.35 0.011 99.4 

Bacterial Spot 99.9 99.8 100 0.015 99.89 

Leaf Spot 99.9 99.8 99.76 0.023 99.78 

Target Spot 99.8 99.7 99.8 0.02 99.76 

Yellow Leaf Virus 99.87 99.83 99.75 0.012 99.78 

Mosoic Virus 99.0 99.8 100 0.01 99.89 

Spider Mates 100 99.56 99.74 0.011 99.67 

Average Performance 99.86 99.75 99.7 0.0112 99.78 

6.1 Comparative analysis 

 

To demonstrate the superiority of the proposed framework, 

the performance of its deep transfer learning and capsule 

network counterparts is compared. 

 

 
 

Figure 5. Comparison of the average efficacy of various 

algorithms for spotting illnesses in healthy plants 

 

Figure 5 and Figure 6 represent the average performance of 

the various models in recognizing healthy and unhealthy plant 

diseases from multiple-scale plant images. From Figures 5 and 

6, the traditional CNN learning techniques have produced the 

lowest performance in detecting multiple plant diseases. The 

CAPSNET and hybrid CAPSNET have considerably 

produced better performance than the traditional learning 

techniques. Notably, the inclusion of attention networks in the 

LWATTENTION Model and the proposed model has 

produced significantly better performance than the other 

algorithms. In the same scenario, other frameworks degrade in 

their performance because they do not support the large-scale 

datasets have high computational complexities, and require 

more time for training. However, the integration of capsule 

networks along with bi-layered attention maps has 

outperformed lightweight attention networks in detecting the 

multiple scales of diseases from different plants due to its 

novel architecture. From the results, it is observed that the 

proposed framework has produced a better average 

performance in multiple scales of plant diseases and can be 

utilized by the farmers to achieve better yield and cultivation.  
 

 
 

Figure 6. Comparative evaluation of the average 

effectiveness of various algorithms for identifying plant 

diseases 
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7. CONCLUSION 

 

The unique ensembling of Capsule networks with bi-

layered attention maps was tested in this study to find a way to 

identify many scale plant illnesses. The bi-layered attention 

network and capsule networks are proposed to separate the 

fundamental distinguishing characteristics of the various 

plants. Additionally, ELM-based Feedforward layers are 

coupled to the discriminant capsules to achieve better 

performance of classification. The proposed network 

architecture and performance were analyzed in terms of 

accuracy, precision, recall, specificity, and F1 score and 

compared with the other learning frameworks. Experimental 

results show that the proposed framework effectively extracts 

essential features from the multiple scale of plants in turn 

achieving better performances than the other prevailing deep 

and attention models. The results reveal that the proposed 

architecture has achieved 99.8 percent accuracy, 99.75 percent 

precision, 99.65 percent recall, and 99.75 percent F1- score. 

Hence the proposed framework achieved better classification 

performance in plant disease identification. As for future scope, 

the proposed model should be refined in terms of 

implementation in real-time loT (Internet of Things) devices. 

Also, the analysis can be performed at the cloud platforms. 
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