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The early detection of viral infections in grapevines is crucial to implement timely 

countermeasures and prevent the spread of disease across vineyards. This study leverages 

remote sensing via hyper spectral imaging to non-invasively identify and quantify infections 

caused by the recently discovered grapevine vein-clearing virus (GVCV), primarily during 

the initial asymptomatic phase. Post-calibration and preprocessing of hyper spectral images, 

only pixels associated with grapevines were retained. To discern between reflectance spectra 

profiles of healthy and GVCV-infected vines, an advanced statistical technique was 

employed. Subsequent to data preprocessing, an artificial hummingbird optimization 

technique was utilized for feature extraction, ensuring the selection of the most relevant 

features for enhancing the overall model classification. Furthermore, a non-invasive method 

was adopted to estimate the total chlorophyll (Chl) content of grape leaves. The study found 

a correlation between Chl concentration and the red-edge chlorophyll index, with reflectance 

measurements in the near-infrared (755-765 nm) and red-edge (710-720 nm) spectral ranges. 

For both pixel-wise and image-wise classification of disease severity, a hybrid of 

ZfNet+VGG19 was deployed. The proposed method, termed the Artificial Humming Bird 

Optimized ZfNet+VGG19 neural network (AHB_ZfNet+VGG19), demonstrated a 

considerable acceleration and an increase in accuracy, primarily attributed to the 

incorporation of prior training and model deepening. When contrasted with established 

methodologies, the proposed approach achieved a superior performance with an accuracy 

of 98.27%, precision of 97.67%, recall of 97.41% and F1-score of 97.74% for the Salinas 

dataset, and an accuracy of 98.45%, precision of 97.1%, recall of 97.41%, and F1-score of 

97.6% for the Indian pine dataset. 
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1. INTRODUCTION

Plant diseases have a significant negative economic impact 

on the worldwide agricultural industry. To avoid the spread of 

infection and make effective management methods possible, 

precision agriculture relies heavily on plant health monitoring 

and pathogen detection [1]. Early detection of plant pathogens 

and other agricultural disturbances may be a useful source of 

information for improving crop management strategies and 

disease control approaches to prevent the establishment and 

spreading of diseases. There are two primary categories for 

automated plant disease detection techniques: direct and 

indirect (proxy) techniques. Examples of direct detection 

techniques include molecular and serological techniques, 

which encourage high-throughput examination of several 

samples [2]. By identifying the disease-causing pathogens 

directly, these techniques accurately identify the disease-

pathogen relationship [3]. Viruses, fungi, and bacteria are 

typical pathogens. The collection, preparation, and analysis of 

samples using these techniques takes at least a few days. 

Indirect (proxy) techniques may identify plant diseases using 

a range of factors, such as morphological changes, temperature 

change, evaporation rate reduction, and volatile compounds 

released by affected crops [4]. These approaches mostly 

depend on optical imaging technologies. The optical imaging 

sensors give in-depth data based on several electromagnetic 

spectra, allowing for the prediction of the health of the plant. 

Among the most popular indirect techniques for identifying 

plant diseases include thermography, fluorescence, and hyper 

spectral imaging. The characterization, detection, modelling, 

and categorization of plant diseases have all been 

accomplished with the use of hyper-spectral imaging [5]. 

Through the use of a hypercube, hyper-spectral imaging 

analyses the specular reflections from crops over the 

electromagnetic spectrum in thousands of small groups. The 

interaction of a plant with various electromagnetic spectrum 

regions is influenced by the biochemical elements and 

anatomical composition of its leaves. Due to the 
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photosynthetic pigments in their leaves, healthy plants 

normally absorb light in the visible spectrum (VIS 400-700 

nm). Near-infrared light scattering in the 700-1000 nm region 

is very sensitive to leaf cell structure [6]. Leaf water and 

chemical contents are the main determinants of leaf 

reflectance in the short-wave infrared range about SWIR 

1000-2500 nm. Plants respond to diverse pressures by 

changing biophysically and biochemically, such as by 

depleting the amount of chlorophyll in the leaves or altering 

the cell structures of the leaves. The benefit of hyper-spectral 

imaging is that it can detect these minute variations in plant 

spectral reflectance [7]. Based on these spectral reflectance 

values, a variety of machine learning techniques have been 

created for the automated categorization of plant diseases. 

Typically, the process for predicting sick leaves involves 

extracting characteristics from spectral reflectance, building a 

classifier model using images of sick and normal plants, and 

then applying the model to new data. A common feature 

extraction method is the estimation of spectral Vegetation 

Indices (VIs) linked to specific physiological parameters. 

These VIs, however, often aren't made to distinguish between 

healthy and ill plants [8]. The amount of data in real-world 

scenarios makes analysis difficult. Attributes and 

characteristics exist in datasets. Not all features are necessary 

for data extraction. A model's efficiency could suffer from 

redundant features. Each dataset's size is decreased by feature 

reduction while retaining accuracy. Feature selection is a 

component of feature reduction. While feature selection 

chooses necessary features, feature extraction adds additional 

features from already-existing datasets. As a result, AHB is a 

cutting-edge meta-heuristic method that enhances accuracy. It 

mimics the extraordinary flight prowess and cunning feeding 

strategies of wild hummingbird [9]. A flexible adversarial 

approach is provided to enable the first strategy to generate 

more precise responses with greater obstacles involving two 

employees. 

This research makes the following contributions: To 

achieve this, a comparative analysis is conducted between the 

reflectance spectra of GVCV-infected vines and normal vines, 

considering the datasets from each collection date. To enhance 

the reliability and performance of the analysis, the artificial 

hummingbird (AHB) feature extraction method is employed. 

This method strikes an improved balance between exploration 

and exploitation, making the newly designed algorithm more 

robust and efficient compared to its predecessor. 

The remainder of the paper is organized as follows: The 

related efforts for the categorization of plant diseases using 

hyper spectral images are included in Section 2. The proposed 

neural network with classification layer is described in Section 

3. The experimental analysis is presented with graphs and a 

comparison with two state-of-the-art techniques in Section 4. 

Section 5 is the conclusion and recommendations for further 

research conclude the essay. 

 

 

2. RELATED WORK 

 

Rapid viral detecting techniques based on distant and 

nearby optical sensors have been developed more quickly as a 

result of recent advancements in image and data processing 

technology. Thus, it is appropriate and relevant to analyse 

recent events. This section examines interdisciplinary 

approaches to hyper spectral imaging techniques, data 

processing, and disease classification models. According to 

Narayanan et al. [10], a hybrid convolution neural network 

(HCNN) allows the identification of banana illness, and the 

classification is suggested to get around these problems and 

help the farmers by allowing the use of fertilisers necessary for 

preventing the disease in its early stages. As a result, it 

provides better accuracy with more computational time. The 

held-out dataset used by Yakkundimath et al. [11], it was 

analysed through a threefold cross-validation procedure 

employing pretrained VGG-16 as well as Google Net 

convolutional neural network models. The average 

categorization accuracy for the tested VGG-16 and Google 

Net convolutional neural networks was 92.24% and 91.28%, 

accordingly. 

The sensitivity of various wavelengths was explained by 

Cao et al. [12] using a Spectral Dilated Convolution three-

dimensional Convolutional Neural Network (SDC-3DCNN) 

with thresholding display. The results revealed that the SDC-

3DCNN model's accuracy is 95.4427% when the cumulative 

number of inputs is 50 characteristic wavelengths and the 

dilation ratio is fixed at 5. Convolutional neural networks 

(CNNs) and other learning frameworks, according to Nalini et 

al. [13], have made substantial strides in the fine-tuning of 

image processing to meet a database of a plant's leaves that 

was separately produced for various plant illnesses. It provides 

around 78.9% of accuracy. 

A combined convolutional neural network and support 

vector machine (CNN-SVM) technique is suggested by Gui et 

al. [14] for identification of SMV. According to the 

experimental findings, the CNN-SVM model's training set 

accuracy rate was 96.67% and its training and testing accuracy 

rate was 94.17%. Deep convolutional neural network (DCNN) 

is a method suggested by Kukreja and Kumar [15] that can 

quickly diagnose wheat rust infections automatically without 

human inspection. Furthermore, our DCNN training and 

testing procedure yields accurate diagnosis and classification 

results for wheat rust illnesses. This method achieves 89.4% 

of accuracy with less computational time. According to Jiang 

et al. [16], six machine learning-assisted techniques were 

created based on the chosen spectral fingerprint characteristics 

for the early detection of anthracnose and grey mould in 

strawberries. According to Wang et al. [17], a novel deep 

learning architecture called outliers removal auxiliary 

classifier generative adversarial network (OR-AC-GAN) is 

presented. In addition to incorporating the classification 

function into the model, it can also uncover the inherent data 

characteristics and lessen the consequences of data outlier side 

effects. 

The experiment uses the Tomato Spotted Wilt Virus 

(TSWV), a widespread pathogen, to validate the concept. In 

study of Alharbi et al. [18] employed hyperspectral remote 

sensing to identify grapevine viral infections early. During 

asymptomatic phases, it effectively recognised and 

categorised grapevines infected with the newly found DNA 

virus GVCV. Specific vegetation indicators demonstrated 

strong discriminating power. SVM and RF classifiers 

performed well in classification, while the 3D-CNN feature 

extractor outperformed the 2D-CNN. This method achieves 

78.4% of accuracy. In study of Nguyen et al. [19] employed 

hyperspectral imaging to identify grapevine leafroll disease 

(GLD) in white and red grapevines. In greenhouse and outdoor 

conditions, models distinguished between sick, asymptomatic, 

and healthy plants with great accuracy. Here, the complexity 

is more. 

Govender et al. [20] used Random Forest (RF) and 3D-
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Convolutional Neural Network (CNN) models outperformed 

ocular evaluation of symptoms in distinguishing infected vs. 

non-infected leaves. While differentiating co-infected plants 

was more difficult, both models demonstrated good results 

across all infection categories. In study [21] four machine 

learning algorithms were used. In 10-fold cross-validation, the 

boosted regression tree (BRT) model with SPA-selected 

wavelengths produced the best results, with 85.2% accuracy 

and an AUC of 0.932. The approach effectively identified 

TSWV at the presymptomatic stage prior to molecular 

identification, suggesting its potential for early detection of the 

virus in tobacco plants. In study [22] use of methodologies 

based on machine learning and modelling has shown to be 

beneficial in reducing the complexity of data analysis. 

The training of a high number of spectral inputs and 

establishing their subjects is the fundamental difficulty faced 

by neural networks while processing hyper spectral data [23]. 

The use of NN classifiers for the categorization of VIs and 

SDIs makes this even more difficult. Overall, the Hughes 

effect, sometimes known as "the curse of dimensionality" is a 

significant challenging issue with hyper-spectral data since it 

involves spectral band variety and distortions. The NN 

modelling may be impacted by the Hughes phenomenon. It 

often occurs when the ratio of training pixels is higher than the 

required minimal to determining the quantitative fit. 

 

 

3. PROPOSED METHODOLOGY 

 

The Artificial Humming Bird Optimized ZfNet+VGG19 

neural networks (AHB_ ZfNet+VGG19) used in this research 

are developed as seen in Figure 1. The hyper spectral photos 

of grapes are first captured using a wireless sensor network, 

then preprocessed. In order to determine the reflectance 

spectra of healthy and diseased leaves, the preprocessed data 

were subjected to a spectral signal discrimination approach. To 

get the best results, the artificial hummingbird (AHB) 

optimization approach for dimensionality reduction is used, 

followed by ZfNet+VGG19-based classification. 

 

 
 

Figure 1. Block diagram of disease classification model 

 

3.1 Network model 

 

In this research, assume N low-altitude nodes, each with an 

indexing set of X = {1,2, … x}. Nodes are used in the sensing 

of a planar area for surveillance tasks fitted with GPS, inertial 

measurement (IMU), webcams, detectors, and a wireless 

transmission interface. It is assumed that all nodes are 

randomly dispersed in a 3D space. With a standard constant 

communication range R at each place, each node may perceive 

a specific region. Using GPS, each node is conscious of its 

precise position(a, b, c). 

The BS, which is regarded as the target of the data packets, 

receives the data from UAVs that monitor the region and 

collect photos and video from the surveillance area. The values 

of tj = (aj
uav, bj

uav, cj
uav)  and Qi , accordingly, provide the 

positional data and transmitting power of node i ∈ X. 

To specify the network model as G = (X, R),where X is the 

node set and R = {r1, r2, … rn} is the set of node locations, 

taking into account all node’s placements and transmission 

strengths. 

To take into account the forwarding route of N number of 

nodes for collision-free pathways. Assume that the ri(t) =
(aj

uav(t), bj
uav(t), cj

uav(t) location coordinates of node i at time 

t, incorporate the forwarding route of N number of nodes for 

collision-free pathways. Assume that the position coordinates 

of node i at time tare ri(t) = (aj
uav(t), bj

uav(t), cj
uav(t), with 

∀i ∈ {1, 2, … , N}, t≥0. 

 

3.2 Hyper spectral image preprocessing 

 

The computational complexity brought on by processing the 

enormous volume of data is one of the difficult issues in 

processing high dimensional data with improved spectral and 

temporal resolution. In particular, this is valid for 

hyperspectral photographs with a wide range of spectral bands. 

Hyperspectral photography must be preprocessed in order to 

decrease the dimensions and computing complexities of the 

data, as well as for display and optimal band picking [24]. 

When compared to pixels that are far apart from one another, 

those with comparable spatial placements are more likely to 

be part of the same sort of thing. The distance between 

comparable pixels is nearer and more probable to convergence 

in the feature space. The pixels are no longer separate data 

points when viewed from a location within the data field. 

Instead, they stand for a variety of radioactive particles. Any 

given spot emits energy into the whole region that the picture 

covers. With greater distance, the energy's intensity 

diminishes. Every pixel collects energy from the points around 

it and radiates energy outward to other points. In Eq. (1), the 

potential energy function is determined. 

 

φ = m × e
(

x−y
n

)
k

 (1) 

 

where, k , which in this case is set to two, indicates the 

Euclidean distance, k ∈ N  signifies the distance index, and 

m ≥ 0 indicates the grey value of a pixel. 

The impact factor n, is a constant in the data packet that 

expresses the possible interaction between the pixels. 

Insufficient effect between the pixels results in low clustering 

when this factor is minimal. 

In these conditions, separate pixel-centric energy zones are 

also described by the lines of equal potential. The interactions 

among individual data pixels rise as the impact factor rises, 

and the line features become closer together. 

 

3.3 Spectral signal discrimination 

 

In preprocessed hyperspectral images spatial and spectral 

information are available which has to be separate. Because, 

need only spectral signals for analysis these can be done by t-. 

Each independent band sample t-tests were used to analyse 
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spectral alterations specifically attributable to that infection 

phase in every dataset matching to every collection date, as 

well as in the aggregated dataset, to determine the distinction 

between the reflectance spectra of normal and GVCV 

pathogen vines. Three t-test statistical presumptions were 

examined. The two groups were once thought to be 

independent of each other. The reflectance values of every 

band, which made up the dependent variable, were assumed to 

have a normal distribution, which was supported by evaluating 

the distribution's skewness (symmetry) and kurtosis 

(peakness). The second presumption was that the dependent 

variable's variance was about equal between the two groups. 

As a result of Levene's test returning no significant results for 

all bands, pooled or equal variance t-tests were employed, as 

shown in Eq. (2): 

 

SDp
2 =

(n1 − 1)SD1
2 + (n2 − 1)SD2

2

(n1 − 1) + (n2 − 1)
 (2) 

 

The t values were determined by substituting Eq. (1) into 

Eq. (2): 
 

M1 − M2

SE(M1−M2)

 where, SE(M1−M2) = √
SDp

2

n1

+
SDp

2

n2

 (3) 

 

where, n1  is the number of specimens taken from healthy 

vines, M1 is the mean reflectance of band i of normal vines, 

M2 is the meanreflectance of band i of pathogens vines, and 
SDp

2

n2
 is the number of specimens taken from diseased vines is 

n2, and the pooled variance is SDp
2  in Eq. (3). 

 

3.4 Artificial hummingbird optimization based feature 

extraction 

 

The Artificial Hummingbird (AHB) optimization 

algorithm's feature extraction procedure is described. The 

AHB replicates the remarkable flying prowess and cunning 

feeding strategies of hummingbirds in the wild. Axial, 

diagonal, and omnidirectional foraging methods are used in 

this method. The goal is to simulate the hummingbird's ability 

to remember where food is located, directed, territorial, and 

migratory foraging methods are also used, along with a 

visiting table. The method is simple and has just a few fixed 

parameters that may be changed [25]. Each hummingbird in 

the AHB is given a distinct food source from which to feed. 

Hummingbirds are able to retain the location and frequency of 

nectar replenishment for this specific food source. It can 

remember the intervals between trips to each food source. The 

AHB has an amazing capacity to find the best solutions with 

these remarkable abilities. The modelling description of the 

AHB is demonstrated by establishing the initial population of 

X hummingbirds from N individuals, as seen in Eq. (4): 
 

Xi = L + r × (U − L), i = 1,2,3 … N (4) 

 

where, 𝐿 and 𝑈 denote for a D dimension's upper and lower 

limits, correspondingly, r is a random vector with a [0, 1] 

range. Eq. (5) is also used to produce a visited table of food 

sources: 
 

VTij = {
0 if i ≠ j

null if i = j
, i = 1, … . N, j = 1, … . N (5) 

where, 𝑉𝑇𝑖𝑗  represents the food consumed by a hummingbird 

at a particular food source and becomes null if 𝑖 = 𝑗. Moreover, 

they represent a hummingbird visiting a food source when i ≠
j and VTij reach zero. 

Guided Foraging-During foraging at this stage, three flying 

capabilities-omnidirectional, diagonal, and axial flight-are 

used. Eq. (6) is used to describe the axial flight: 

 

D(i) = {
1, if i = randi([1, d]} i = 1,2, … . d

0, else
 (6) 

 

Eq. (7) may be used to represent the diagonal flight: 

 

D(i) = {

1, if i = Pp(j), jϵ[1, k]

, Pp = randperm(Kp)

, Kp ∈ [2, [r1. (d − 2)] + 1]
0, else i = 1, … . d

 (7) 

 

Eq. (8) represents the omni-directional flying. 

 

D(i) = 1 i = 1,2, … d (8) 

 

where, rand i ([1, d]) stands for a randomly generated integer 

between 1 and d , randperm (k)  for a randomly generated 

permutations of the values between 1 and k, and r1 ∈ [0, 1] 
for a random number between 0 and 1. Eq. (9) is used to 

generate the directed foraging behavior. 

 

Vi(t + 1) = Xi,t(t) + a × D × (Xi(t) − Xi,t(t), a

∈ N(0,1) 
(9) 

 

where, Xi,t(t) indicates the food source i for t iteration. The 

hummingbirds' preferred food source is Xi,t(t). 

Territorial Foraging-A hummingbird is highly possible to 

look for a new food source rather than to visit other existing 

food sources when flower nectar runs out. A hummingbird 

may therefore effortlessly fly to a nearby location inside its 

region where it can discover a potentially superior food source. 

Eq. (10) is used to represent the situation. 

 

Vi(t + 1) = Xi,t(t) + b × D × Xi(t), bϵN(0,1) (10) 

 

Migration Foraging-A hummingbird will travel to a 

different eating area if its favorite spot runs out of food. The 

visit table will change when this hummingbird switches from 

its prior food source to the new one. The migratory of a 

hummingbird from a nectar source with the fewest nectar 

replenishments to the one with a randomized rate of nectar 

generation is described Eq. (11). 

 

Xw(t + 1) = L + r × (U − L) (11) 

 

The food supply with the least fitness value is represented 

by Xw in this case. The visiting table is a key part of the AHA 

technique. Eq. (12) used to update the visiting table for every 

hummingbird. 

 

VTi,k = VTi,k + 1, if k ≠ i and k ≠ target, k

= 1,2 … . hn 
(12) 

 

The time that the same hummingbirds visited each food 

source is shown in this visiting table. A high number of visits 

is indicated by a lengthy time between visits. 

2114



 

3.5 Chlorophyll estimation 

 

A conceptual approach was created to quantify the 

concentration of plant pigments such total chlorophyll, 

anthocyanins, and carotenoids using three distinct spectral 

bands. In three spectral bands τi , the model establishes a 

relationship between the target pigment and leaf 

reflectance ρτi in Eq. (13): 

 

pigment contnet ∝  apigment

= (ρτin
−1 − ρτ2n

−1) × ρτ3n
−1 

(13) 

 

where,  apigment  is the relevant pigment's absorption 

coefficient. In the τiband of the spectrum, reflectance is most 

sensitive to the absorption of the color of interest; however, 

other pigments' absorbing and leaf scatters also have an impact. 

Depending on which λ1 was chosen, there were two 

different approaches to estimate Chl using the three-band 

model of Eq. (14). As a result, the following types of 

chlorophyll indices (CI) have been proposed. 

 

CIgreen =
PNIR

Pgreen

− 1 (14) 

 

CIred edge =
PNIR

Pr4ed edge

− 1 (15) 

 

It was discovered that CIgreen is only a reliable indicator of 

chlorophyll concentration in leaves lacking of anthocyanin IN 

Eq. (15). Anthocyanin consumes in situ at around 550nm; as a 

result, if ρλ1 is near 550nm in the green band, the index will 

be significantly impacted by the absorption of both 

anthocyanin and Chl. The amount of Chl was overestimated. 

In order to estimate Chl in leaves that contain anthocyanins, it 

was recommended to utilize the CIred edge. 

 

3.6 ZfNet+VGG19 based classification 

 

 
 

Figure 2. Architecture of ZfNet+VGG19 

 

This section introduces the categorization procedure 

utilizing a pretrained CNN. Three layers make up a CNN: a 

convolutional layer, a pooling layer, and a fully connected 

layer. Computer vision activities including picture creation, 

image classification, image captioning, and many more may 

be performed using four pretrained networks. VGG19 and 

ZfNet were two of these pretrained networks utilized in this 

research. For layer-by-layer convolutional network 

visualization and comprehension, ZfNet+VGG19 is utilized. 

The network used batch stochastic gradient descent for 

training and ReLUs for activation. ZfNet+VGG19 architecture 

considerably outperforms AlexNet by dissecting the 

convolutional network layer by layer, changing the layer 

hyper-parameters like filter size or stride, and successfully 

reducing the error rates. The model architecture of a deep 

convolutional neural network is shown in Figure 2. The depth 

of the network depends on the number of hidden layers. 

Hidden layers are those layers that exist between the input and 

output layers. It has 3 completely connected layers, max-

pooling layers, and 5 shared convolutional layers. 

The dataset was separated into a training and testing dataset 

for every class after just a feature extraction process. It 

comprises of training and testing pictures for DS1, DS2, DS3, 

and DS4 of 2452, 4238, 4011, and 10292 photos and 584, 1971, 

1357, and 3912 images, accordingly. The complete dataset that 

serves as the input for the model was downsized to 224×224 

pixels. Based on the number of categories, the output of the 

final completely linked layer was divided into 5 groups. It 

calculated and recorded the average value that had 

exponentially depreciated in the two instances before it and 

calculated the averaged of the prior gradients that had 

depreciated exponentially. 

Pooling layer: This is employed to reduce the spatial 

domain and hence the network's calculation after the 

convolution layer. Typically, the kernel size in ZfNet+VGG19 

is 2×2 with stride 2. In this case, the pooling layer executes the 

maximum operation across the restricted spatial area R, 

yielding a feature map in Eq. (16): 

 

pl = maxi∈Rαi
l (16) 

 

Fully connected (FC) layer: In ZfNet+VGG19, FC are 

emulated employing a convolution with a size of n1, n2, where 

n1×n2 are the sizes of the input and output tensors, accordingly. 

In most cases, n1 is an integer and n2 is a triplet (7×7×512). 

Dropout: This layer, which is also known as "Drop," is often 

used to reduce the input fit and enhance the DL algorithm's 

hypothesis. Typically, it gives the network nodes weights (in 

PDCNN the percentage of 0.5 is assigned to the two drop 

layers). 

Softmax: A ReLU layer accompanies the DL model with 

several layers and a convolution layer, establishing the 

nonlinearity in the ZfNet+VGG19 model, and is often 

represented as “σ”. 

The categorization of the grape picture to 3-D groups has 

been performed along with the borders. The grape image has 

been coupled in groups with size b and then sent to the In 

ZfNet+VGG19.The d × d × n groups are then fed into the 

first layer of convolution (c1), which is composed of kc1 filters 

of the form lc1 × lc1 × qc1 , where qc1 = n , the stride is 

constant at 1, and padding is not present. 

After applying the ReLU function, the feature maps for kc1 

were generated using c1, and these were then directed to 

MaxPool's first layer (mp1) using a lmp1 × lmp1kernel, stride 

of 2, and padding. 

The volume of the simulation analysis for pmp1 = dmp1 ×
dmp1 × kc1 has been targeted for the subsequent convolution 

layer (c2) with kc2 filters of size lc2 × lc2 × qc2, where qc2 =
kc1and that has a comparable beginning convolution stride in 

addition to without padding. 

 

3.7 Performance analysis 

 

The effectiveness of our proposed Artificial Humming Bird 
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Optimized ZfNet+VGG19 neural network (AHB_ 

ZfNet+VGG19), utilising metrics including accuracy, 

precision, recall and F1-score. Two baseline methods such as 

Spectral Dilated Convolution 3-Dimensional Convolutional 

Neural Network (SDC-3DCNN), VGG-16+GoogleNetare 

evaluated. 

• Accuracy describes how closely a specific value 

matches cases that have been categorized. Accuracy is the 

representation of systematic mistakes and statistical bias. 

Additionally, it is the recognition (combined TP and TN 

values) among the count of the assessed classes as well as the 

estimation's adequacy to the genuine value. It's calculated as: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑇𝑁)

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

• Precision is a performance metric commonly used in 

statistics and machine learning to evaluate the accuracy of a 

classification model. It measures the proportion of correctly 

predicted positive instances out of the total instances predicted 

as positive. Precision can be defined as: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠/(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
+ 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠) 

 

• Recall, also known as sensitivity or true positive rate, 

is another performance metric used in statistics and machine 

learning to assess the effectiveness of a classification model. 

Recall measures the proportion of correctly predicted positive 

instances out of the total actual positive instances. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠/(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
+ 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠) 

 

• F1-Score of the classification algorithm is the 

weighted measure whose value ranges between 0 and 1, where 

value 1 denotes the better performance of the classification 

algorithm and the value 0 denotes the poor performance of the 

classification algorithm. 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦)/(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
+ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) 

 

3.8 Data collection 

 

A total of 200 hyperspectral images were collected during 

the trial period in summer 2019. The data collection spanned 

over several days, with images captured at different time 

points to account for variations in environmental conditions 

and disease progression. The rationale behind choosing the 

University of Missouri South Farm Research Center in 

Columbia, Missouri (38.92N, 92.28W) as the data collection 

location was based on its known high vulnerability to 

Grapevine Vein Clearing Virus (GVCV). This location 

provided an ideal setting to study the early detection of GVCV 

in the Chardonel cultivar, as it is known to be affected by the 

virus. To ensure robust data collection and experimental 

control, the grapevines were divided into two groups: one with 

normal vines and the other with vines infected with GVCV 

pathogens. This division allowed for a comparative study 

under comparable circumstances, minimizing potential 

confounding factors. The hyperspectral imaging system used 

for data collection had a fixed image size of 512×512 pixels, 

capturing information across 204 bands ranging from 397 to 

1004 nm with a spectral resolution of 3nm. The viewing area 

was 0.55×0.55 m, and the system claimed to provide a spatial 

resolution of 1.07mm at a distance of 1 meter from the object. 

For this investigation, the grapevines were photographed at the 

canopy level from a distance of 1-2 meters, ensuring that the 

imaging system captured detailed and representative 

information from the vines. Overall, the careful data collection 

process and the choice of location and grapevine cultivar 

ensured a comprehensive dataset for studying the early 

detection of GVCV using hyperspectral imaging and 

optimized neural networks Table 1 shows the performance 

analysis of accuracy for different methods. 

Figures 3 and 4 depict the accuracy evaluation for Salinas 

and Indian pine dataset. The comparison is done between 

existing SDC-3DCNN, VGG-16+GoogleNet with the 

proposed AHB_ZfNet+VGG19. X axis and Y axis show that 

various class labels and the values obtained in percentage, 

respectively. When contrasted with existing SDC-3DCNN and 

v-gg-16+GoogleNet methods achieve 85.2% and 86.4% of 

accuracy, respectively, while the proposed 

AHB_ZfNet+VGG19method achieves 98.27% of accuracy for 

Salinas datasets, which is13.07% and 12.27% better than 

SDC-3DCNN and VGG-16+GoogleNet. While analyzing 

Indian pine dataset, SDC-3DCNN and VGG-16+GoogleNet 

method achieves 86.5% and 87%, while the proposed 

AHB_ZfNet+VGG19 achieves 98.45% of accuracy, which is 

12.15% and 11.45% better than existing methods. Table 2 

shows the performance analysis of precision for different 

methods. 

 

 
 

Figure 3. Analysis of accuracy for Salinas’s dataset 

 

 
 

Figure 4. Analysis of accuracy for Indian pine dataset 
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Table 1. Performance analysis of accuracy for different methods 

 
 Salinas Dataset Indian Pine Dataset 

Class label 
SDC-

3DCNN 

VGG 

16+GoogleNet 

AHB_ 

ZfNet+VGG19 
Class label 

SDC-

3DCNN 

VGG-

16+GoogleNet 

AHB_ 

ZfNet+VGG19 

Sable Seedless 85.6 83.6 94.6 Autumn Royal 84.6 85.3 94.3 

Alphonse 

Lavallée 
83.7 86.4 97.3 Crimson 82.6 84.6 97.8 

Lival 84.9 84.6 95.7 Itum4 87.1 85.4 96.3 

Black Magic 83.6 89.6 94.6 Itum5 85.6 86.4 98.5 

Sugarone 

Superior 

Seedless 

81.6 84.3 92.8 Itum9 87.3 86.2 92.6 

Thompson 

Seedless 
82.6 87.6 95.8 Vinyard_untrained 82.4 86.7 94.7 

Victoria 83.4 84.9 92.6 Vinyard_vertical_trellis 87.3 87.9 96.8 

 

Table 2. Performance analysis of precision for different methods 

 
 Salinas Dataset Indian Pine Dataset 

Class label 
SDC-

3DCNN 

VGG-

16+GoogleNet 
AHB_ZfNet+VGG19 Class label 

SDC-

3DCNN 

VGG-

16+GoogleNet 
AHB_ZfNet+VGG19 

Sable 

Seedless 
82.6 87.4 98.3 Autumn Royal 84.6 86.5 98.6 

Alphonse 

Lavallée 
84.9 86.5 97.4 Crimson 87.5 89.7 98.7 

Lival 87.3 87.2 98.5 Itum4 83.5 83.4 96.6 

Black 

Magic 
82.5 86.3 97.8 Itum5 84.6 87.5 97.9 

Sugarone 

Superior 

Seedless 

84.6 87.9 94.7 Itum9 87.4 84.9 97.5 

Thompson 

Seedless 
87.3 85.3 96.3 Vinyard_untrained 84.2 82.6 97.8 

Victoria 85.9 84.6 94.8 Vinyard_vertical_trellis 86.7 84.9 98.4 

 

 
 

Figure 5. Analysis of precision for Salinas’s dataset 

 

Figures 5 and 6 depict the precision evaluation for Salinas 

and Indian pine dataset. The comparison is done between 

existing SDC-3DCNN, VGG-16+GoogleNet with the 

proposed AHB_ZfNet+VGG19. X axis and Y axis show that 

various class labels and the values obtained in percentage, 

respectively. When contrasted with existing SDC-3DCNN and 

v-gg-16+GoogleNet methods achieve 82.1% and 84.3% of 

precision, respectively, while the proposed 

AHB_ZfNet+VGG19method achieves 97.67% of precision 

for Salinas dataset, which is 15.57% and 13.37% better than 

SDC-3DCNN and VGG-16+GoogleNet. While analyzing 

Indian pine dataset, SDC-3DCNN and VGG-16+GoogleNet 

method achieves 84% and 82%, while the proposed 

AHB_ZfNet+VGG19 achieves 97.1% of precision, which is 

13.1% and 15% better than the existing methods. Table 3 

shows the performance analysis of recall for different methods. 

 

 
 

Figure 6. Analysis of precision for Indian pine dataset 

 

The recall assessment for the Salinas and Indian Pine 

datasets is shown in Figures 7 and 8. The suggested 

AHB_ZfNet+VGG19 is compared with the already existing 

SDC-3DCNN VGG-16+GoogleNet. Different class names 

and percentage values are shown on the X and Y axes, 

correspondingly. When contrasted with existing SDC-3DCNN 

and VGG-16+GoogleNet methods achieve 87.3% and 85.2% 

of recall, respectively, while the proposed 

AHB_ZfNet+VGG19 method achieves 97.41% of recall for 

Salinas datasets, which is 20.11% and 12.21% better than 

SDC-3DCNN and VGG-16+GoogleNet. While analyzing 
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Indian pine dataset, SDC-3DCNN and VGG-16 

16+GoogleNet methods achieves 89% and 86% while the 

proposed AHB_ZfNet+VGG19 achieves 97.41% of recall, 

which is 6.5% and 11% better than the existing methods. Table 

4 shows the performance analysis of F1_score for different 

methods. 

 

 
 

Figure 7. Analysis of recall for Salinas dataset 

 

The F1-score analysis for the Salinas and Indian Pine 

datasets is shown in Figures 9 and 10. The suggested 

AHB_ZfNet+VGG19 is compared with the already existing 

SDC-3DCNN VGG-16+GoogleNet. Different class names 

and percentage values are shown on the X and Y axes, 

accordingly. When contrasted, existing SDC-3DCNN and 

VGG-16+GoogleNet methods achieve 83.4% and 83% of F1-

scorerespectively, while the proposed AHB_ZfNet+VGG19 

method achieves 97.74% of F1-score for Salinas dataset, 

which is 14.31% and 14.3% better than SDC-3DCNN and 

VGG-16+GoogleNet. While analyzing Indian pine dataset, 

SDC-3DCNN and VGG-16+GoogleNet methods achieved 

86.4% and 82.4%, while the proposed AHB_ZfNet+VGG19 

achieves 97.6% of F1-score, which is 11.2% and 15.2% better 

than existing methods. 

Tables 5 and 6 show the analysis of Salinas’s dataset and 

Indian pine dataset for the proposed AHB_ZfNet+VGG19. 

 

 
 

Figure 8. Analysis of recall for Indian pine dataset 

 

Table 3. Performance analysis of recall for different methods 

 
 Salinas Dataset Indian Pine Dataset 

Class label 
SDC-

3DCNN 

VGG-

16+GoogleNet 
AHB_ZfNet+VGG19 Class label 

SDC-

3DCNN 

VGG-

16+GoogleNet 
AHB_ZfNet+VGG19 

Sable 

Seedless 
87.4 86.4 97.45 Autumn Royal 86.4 84.6 96.53 

Alphonse 

Lavallée 
89.3 87.4 96.2 Crimson 84.5 87.5 97.56 

Lival 84.4 86.5 98.4 Itum4 87.4 84.6 98.4 

Black 

Magic 
87.6 85.3 96.9 Itum5 82.6 87.5 97.6 

Sugarone 

Superior 

Seedless 

85.1 82.6 94.8 Itum9 84.6 86.2 98.2 

Thompson 

Seedless 
86.3 84.7 97.5 Vinyard_untrained 87.4 86.5 96.8 

Victoria 84.3 84.6 96.3 Vinyard_vertical_trellis 89.6 86.3 94.5 

 

Table 4. Performance analysis of F1_score for different methods 

 
 Salinas Dataset Indian Pine Dataset 

Class label 
SDC-

3DCNN 

VGG-

16+GoogleNet 
AHB_ZfNet+VGG19 Class label 

SDC-

3DCNN 

VGG-

16+GoogleNet 
AHB_ZfNet+VGG19 

Sable 

Seedless 
81.8 84.6 97.65 Autumn Royal 86.5 86.7 98.65 

Alphonse 

Lavallée 
86.4 87.4 96.58 Crimson 87.3 84.9 97.74 

Lival 87.4 84.5 98.32 Itum4 84.7 87.6 98.54 

Black 

Magic 
84.6 87.5 97.48 Itum5 86.9 83.5 98.78 

Sugarone 

Superior 

Seedless 

82.6 86.4 98.25 Itum9 84.6 81.6 96.82 

Thompson 

Seedless 
84.7 87.5 97.8 Vinyard_untrained 86.8 84.6 97.56 

Victoria 83.5 89.4 98.4 Vinyard_vertical_trellis 86.4 89.7 98.23 
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Figure 9. Analysis of F1-score for Salinas dataset 

 

 
 

Figure 10. Analysis of F1-score for Indian pine dataset 

 

Table 5. Parametric analysis on Salinas’s dataset for the 

proposed AHB_ZfNet+VGG19 

 

Class label Accuracy Precision Recall 
F1-

score 

Sable Seedless 97.3 96.7 97.6 97.6 

Alphonse Lavallée 99.7 97.6 98.9 97.6 

Lival 96.8 98.5 97.4 97.6 

Black Magic 99.6 97.6 95.8 96.8 

Sugarone Superior 

Seedless 
97.5 96.8 94.5 98.5 

Thompson Seedless 98.4 98.9 97.3 97.6 

Victoria 98.6 97.6 98.5 98.5 

Average 98.27 97.67 97.41 97.74 

 

Table 6. Parametric analysis on Indian pine dataset using the 

proposed AHB_ZfNet+VGG19 

 

Class label Accuracy Precision Recall F1-score 

Autumn Royal 98.4 95.8 96.9 98.5 

Crimson 97.6 96.7 97.8 96.7 

Itum4 98.9 97.6 96.8 98.7 

Itum5 98.5 98.1 94.9 95.9 

Itum9 97.9 94.9 93.4 97.5 

Vinyard_untrained 98.7 97.5 98.2 98.4 

Vinyard_vertical_trellis 99.2 98.5 98.9 97.8 

Average 98.45 97.1 97.41 97.6 

4. CONCLUSION 

 

This research demonstrates the potential of hyper spectral 

remote sensing technology for early detection of viral 

infections in grapevines, particularly in the case of the newly 

discovered DNA virus, grapevine vein-clearing virus (GVCV). 

The study successfully identifies and categorizes infected 

grapevines during their initial asymptomatic stages, paving the 

way for timely intervention to prevent disease spread across 

vineyards. By using hyper spectral photography at the plant 

level and employing a statistical technique, the research 

effectively distinguishes between healthy and GVCV-infected 

grapevines based on their reflectance spectra patterns. The 

integration of the artificial hummingbird optimization 

technique aids in feature extraction, ensuring the selection of 

pertinent features and enhancing overall model classification 

accuracy. Moreover, the adoption of a nondestructive method 

to calculate total chlorophyll content in grape leaves provides 

valuable insights into disease severity assessment. The 

correlation between chlorophyll concentration and reflectance 

measurements in specific spectral ranges offers a non-invasive 

means to gauge disease impact on grapevine health. The 

hybrid approach utilizing ZfNet+VGG19 for pixel-wise and 

image-wise classification of disease severity showcases the 

effectiveness of the proposed methodology in accurately 

identifying and categorizing GVCV infections. Overall, this 

research establishes hyper spectral remote sensing as a 

promising tool for the early detection and monitoring of viral 

infections in grapevines, providing valuable support for 

viticulture farmers and researchers in managing disease 

outbreaks and maintaining crop health. The findings of this 

study contribute significantly to the field of agricultural 

diagnostics and offer new avenues for precision farming 

practices. Continued research in this area may lead to even 

more advanced and efficient disease detection methods, 

ultimately benefiting the grapevine industry and promoting 

sustainable and resilient agriculture. 
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