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This review offers an exhaustive examination of phoneme recognition, an essential sub-

word acoustic unit in speech processing. Phoneme-based systems find widespread utility in 

diverse applications including speech recognition, speaker identification, and language 

recognition. The efficacy of these systems hinges upon the precise recognition of phonemes, 

thereby underscoring the criticality of enhancing our understanding of phoneme recognition 

to optimize system performance. Previous reviews have primarily focused on specific issues 

within the realm of phoneme recognition, with comprehensive studies on the subject being 

notably sparse in existing literature. Consequently, there is an urgent need for an extensive 

investigation into phoneme recognition to bolster recognition accuracy. This comprehensive 

review seeks to bridge this knowledge gap by examining pivotal aspects such as vowel 

recognition, consonant recognition, acoustic-phonetic cues, contextual effects, feature 

extraction methods, classification techniques, phoneme recognition enhancement strategies, 

and performance metrics. The review elucidates various technologies and trends in phoneme 

recognition, thereby providing valuable insights that can mitigate errors in phoneme-based 

systems through the application of appropriate techniques delineated in the study. The 

findings of this study hold substantial potential benefits for a wide spectrum of speech 

research communities, encompassing students, educators, specialists, developers, and 

scholars. The review encompasses both fundamental and advanced concepts pertinent to 

phoneme recognition, thereby offering a comprehensive resource for individuals engaged in 

this field.  
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1. INTRODUCTION

Automatic speech recognition (ASR) systems often utilize 

sub-word models to circumvent the issue of insufficient data 

during training that plagues many word-based models. A 

robust sub-word model should possess an ample number of 

instances to successfully model word utterances, while also 

being resilient to environmental variability [1]. Among these, 

phoneme-based systems have gained prominence in speech 

recognition due to the limited number of phonemes in any 

given language, facilitating the application of various 

operations and rules to form words through the combination of 

phonemes [2, 3]. 

However, phoneme-based ASR systems encounter 

numerous challenges, including phoneme confusion, 

variations in speaking rates and styles, and inherent variability 

in the speech signal. Context-dependent triphones have been 

employed to address these contextual effects [4-7]. 

Phonemes can be broadly classified into two categories: 

vowels and consonants. Efforts have been made to mitigate the 

contextual effects on vowels by considering factors such as 

vowel identity, identities of adjacent segments, syllable 

placement within a word, vowel placement within a syllable, 

stress status of a syllable, effects of phrase boundaries, and 

word accent status [8]. Larger acoustic units were also utilized 

to lessen the influence of contextual factors [9]. Consonants 

face recognition difficulties due to the manner in which they 

are produced, and semivowels pose additional recognition 

challenges due to their acoustical similarity to vowels [10]. 

Furthermore, consonants can be sub-divided based on place 

and manner of articulation. Recognizing nasalized sounds is 

particularly challenging due to their anti-resonance properties. 

Phoneme recognition is also problematic when the crucial cue 

is duration, as is the case with vowels and diphthongs. To 

address duration, researchers have employed time-delay 

neural networks (TDNNs) for these phoneme classifications 

[11]. 

Phoneme recognition systems are expected to cover a broad 

range of contextual variations. Data scarcity becomes an issue 

during phoneme recognition when the training data for some 
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phonemes are inadequate. Knowledge-based systems have 

been explored to mitigate the impact of data scarcity and 

mismatches between training and testing conditions [12]. 

Variability issues have been addressed using linguistic 

phonetic knowledge [13]. 

Previous reviews on the subject of phoneme recognition 

have largely focused on limited or specific issues [14-17]. 

Comprehensive reviews on phoneme recognition are notably 

lacking in the literature. This research review aims to bridge 

this gap by offering a comprehensive examination of phoneme 

recognition, including fundamental concepts and important 

issues such as phoneme structure, vowel recognition, 

consonant recognition, acoustic-phonetic cues, contextual 

effects, feature extraction methods, classification methods, 

phoneme recognition improvement techniques, and 

performance measurement metrics. 

This research contributes by investigating the following 

aspects of phoneme recognition: 

1. Exploration of vowel and consonant recognition. 

2. Examination and comparison of different acoustic-

phonetic measures used in phoneme recognition. 

3. Exploration of contextual effects and improvement 

techniques in phoneme recognition. 

4. Investigation of classification methods, acoustic-

phonetic approaches, and feature extraction methods. 

5. Exploration of performance metrics. 

6. Presentation of a comparative study of phoneme-based 

systems. 

 

The remainder of the paper is structured as follows: Section 

2 reviews related work. Sections 3 and 4 delve into phoneme 

and phoneme recognition respectively. Section 5 investigates 

acoustic-phonetic measurements in phoneme recognition. 

Section 6 describes contextual effects in phoneme recognition. 

Section 7 illustrates the methods for improving phoneme 

recognition. Sections 8 and 9 outline performance matrices, 

results, and analysis. Finally, Section 10 concludes the 

research findings and provides directions for future work. 

 

 

2. RELATED WORK 

 

Phoneme recognition is an essential step towards 

developing speech-based applications due to the natural way 

of interacting with machines through speech. Researchers 

have worked actively towards phoneme recognition for 

developing different speech based applications. A review 

study on Hindi phoneme recognition was presented [18]. 

Research findings reveal that phoneme recognition was 

implemented using different classification methods: hidden 

Markova models (HMMs), artificial neural networks (ANNs), 

time delay neural networks, and deep learning-based systems. 

To improve recognition, different feature extraction methods 

were also applied. Most of the work was presented for vowel 

recognition. The substitution error was mostly found in the 

studies. 

A study on Hindi phoneme recognition was conducted. 

Further different classification methods and feature extraction 

methods for Hindi speech were also explored. It was 

concluded that most of the research work was oriented toward 

vowel recognition, and errors were reported due to the 

substitution of the phonemes [18]. 

A review was conducted for recognizing phonemes using 

three classifiers Hidden Markov Model (HMM), artificial 

neural network (ANN), and vector quantization with 

comparative analysis [19]. The review indicated that phoneme 

recognitions were performed on continuous speech, isolated 

words, and rhythmic words. Different databases such as 

TIMIT, Hindi rhythmic words, and individual phoneme sets 

were applied. The classification algorithm using statistical 

methods, hybrid approaches, RNN, K-means, neural network, 

and vector quantization in the experiments were applied. 

Remarks were provided that global optimization of ANNs 

improved results, and sequence learning due to the feedback 

mechanism also performs significantly. Further, segmental 

HMM used phoneme transition data and phoneme length 

information.  

A survey was conducted on TIMIT phonemes for deep 

learning-based approaches. The study included different 

research work using a feed-forward network with rectified 

linear units (ReLU), Time Delay neural network (TDNN), and 

long short-term memory (LSTM) neural networks. The best-

reported phone error rate (PER) is 15.73%, with LSTM with 

five hidden layers and 512 LSTM units, while TDNN reported 

PER of 16.91%. It was observed that the best results were 

obtained with LSTM [15].  

A class of deep artificial neural networks containing a 

minimum of three layers was used. The Bangla phonetic 

feature table was constructed. The improvements in Bengali 

speech recognition were also discussed. A comparative 

analysis of these two methods was also presented [20]. An 

elaborate and comprehensive review of the acoustic-phonetic 

assessment of speech and its use in ASR was presented [14]. 

Firstly, essential cues for recognition were discussed. Next, the 

implicit acoustic-phonetic and explicit phonetic methods to 

ASR are highlighted. The ANNs, HMMs, and dynamic time 

warping (DTW) are examples of implicit approaches to speech 

recognition. The two essential phases are training and testing 

for implicit strategies using statistical methods for ASR 

systems. The explicit approaches to recognition are based on 

specific knowledge. Some examples are landmark-based 

speech recognition and event-based speech recognition, such 

as combinations of vowels and consonants such as 

CV/CVC/VC/CCVC. Finally, different speech recognition 

frameworks were presented and compared. 

A study on landmarks-based based stop consonants 

recognition was conducted. It was remarked that stop 

consonants are generated due to the constriction of the vocal 

cord; therefore, they pose difficulty in detection due to low 

energy and high variability. The study revealed that 

researchers used landmarks that are denoted by abrupt and 

essential changes in articulation. Further, it was concluded that 

VOT is a vital landmark for separating voiced and unvoiced 

stops. These two landmarks can also be applied to the problem 

of dysarthria, which is caused by the disorder of the speech 

production system [17].  

The genetic algorithm was applied to select optimized 

feature vectors for distinctive phonetic features and phoneme 

recognition in Arabic to reduce the recognition algorithm's 

computational overhead and improve recognition accuracy. It 

was concluded that genetic algorithm-based features reduced 

the dimension of the input vector by 50% and obtained a 

recognition accuracy of 90% [21]. 

Persian Speech recognition was implemented using deep 

learning methods [22]. Faddat Persian speech dataset was 

applied for developing the speech recognition system. The 

features were extracted using Deep Belief Network (DBN). 

The acoustic model was generated using Deep Bidirectional 
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Long Short-Term Memory (DBLSTM) with Connectionist 

Temporal Classification (CTC) at the output layer. It was 

concluded that a bidirectional network increases accuracy 

compared to a unidirectional network, and the DBLSTM-

based system performed better than HMM and Kaldi_DNN. 

Studies also indicate that machine learning-based 

algorithms are preferred to the acoustic phonetic-based 

algorithm for the language having resources for developing 

speech recognition systems [7]. The automatic phoneme 

recognition system was developed for Fongbe under-

resourced tonal language spoken in Africa. The read speech 

corpus contained 3117 utterances. For acoustic analysis, 

formant frequencies were applied for vowels, while pitch and 

intensity were used for consonants. For classification deep 

belief network with fuzzy logic was experimented with for 

phoneme recognition. The best results were obtained with a 

24% phoneme error rate with 512 hidden layer units [23]. 

Acoustic to phonetic conversion experimented for Arabic 

speech. The distinctive phonetic features that particularly 

indicate a phoneme's distinctive quality were applied. The 

spectrogram was used for distinctive phonetic features (DPF). 

Deep learning methods such as deep belief networks (DBN) 

and convolution recurrent neural networks (CRNN)were 

applied for classification. The results indicate that CRNN is 

providing better results than DBN for DPF [24]. Bengali 

vowel and diphthong recognition was proposed by using 

amplitude interpolation. The Mel Frequency Cepstral 

Coefficients were applied. Different machine learning-based 

classifiers were applied [25].  

To take advantage of ANN-based processing the Arabic 

phoneme recognition was implemented. For feature extraction 

multi-wavelet transform was applied. For classification 

Learning Vector Quantization (LVQ) was applied. It was 

stated that the developed system obtained accuracy of 98%. 

To address the issue of phoneme recognition in spoken term 

detection for low-resource Indian language like Marathi, 

Gujrati. Malayalam, and Kannada language. The MFCCs were 

extracted. The multilingual broad phoneme classifier was used 

to conduct language independent spoken term detection. In the 

first phase broad phoneme classification was performed and 

then in the next phase template matching was performed. DNN 

based broad phoneme classifier was used. The broad 

classification based on categories such as vowel category, 

nasal sound category, fricatives, silent category, approximants, 

affricates, voiced plosives category and unvoiced plosives was 

conducted, it was concluded that the use of broad phoneme 

classifier is capable of independent spoken term detection for 

low resource languages. 

Research studies show many challenges for phoneme 

recognition. Figure 1 shows a summarized view of different 

problems faced during the development of phoneme 

recognition systems. The literature review revealed that 

phoneme recognition is influenced by duration of the phoneme, 

speaking rate, style, accent, contextual effects, age, gender, 

health condition, training and testing environments, confusion 

of phonemes within the same categories and lack of state-of-

the-art resources. There is a need to investigate phoneme 

recognition to improve speech recognition as phonemes are 

basic in automatic speech recognition systems and accurate 

recognition of phonemes leads to improved speech recognition. 

The work presented in this study is different from others. 

All the above research reviews address specific issues in 

phoneme recognition. The presented work covers broad 

aspects of phoneme recognition, which are essential for 

reducing errors and improving phoneme recognition. The 

presented study also addressed basic and advanced issues in 

phoneme recognition. The basic concepts in phoneme 

recognition were discussed to enable the reader to understand 

the topic. Different challenges were discussed and reviewed to 

address phoneme recognition. 

 

 
 

Figure 1. Various challenges in phoneme recognition 

 

 

3. SUBWORD MODELLING UNITS 

 

The subword models are used in speech recognition in place 

of word-based models to overcome the requirement of large 

instances of words during the training phase. The words are 

made from these sub words for the realization of a speech 

recognition system. The choice of sub word modelling unit 

and the methods to generate words from these sub word units 

is the focus of sub word modelling in speech recognition. 

Figure 2 shows the taxonomy of different sub word modelling 

units used in speech recognition [26].  

 

 
 

Figure 2. Different subword modeling units in automatic 

speech recognition systems 

 

The subword modelling units can be categorized as 

phoneme, grapheme, morpheme, and syllable. The phoneme is 

the smallest unit of sound speech, while grapheme is the 

smallest writing unit in a language [27]. The morpheme is the 

smallest unit of meaning [28]. The syllable is the unit of 

pronunciation. A phoneme can be further divided into di-

phone and senone. The di-phone is the combination of two 

adjacent phonemes in an utterance. The senone are defined as 

tied states in context-dependent phonemes [29]. The context-

dependent phonemes such as triphones are generating by using 

the left and right contexts of the phoneme. The demi-syllable 

is made of an initial syllable consonant cluster with the first 
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half of the vowel or syllable-final consonant cluster plus the 

second half of the vowel [30]. The context-dependent syllable 

is realized by considering the left and right context of the 

syllable [31]. 

 

3.1 Phoneme 

 

To understand phoneme recognition basic process of 

creating phonemes and related issues are essential to explore 

and study. The human speech production system generates 

speech sounds. The two most important systems vocal tract 

and the nasal cavity, describe speech production phenomena 

in speech processing. The articulators move to produce 

different sounds. Different formant frequencies and 

antiresonance principles narrate acoustic properties for 

different speech sounds. The vibration generates the voiced 

speech in the vocal tract. The turbulent airflow causes 

unvoiced speech due to constriction in the vocal tract. 

Phonetics deals with the structure of sounds, and linguistics 

deal with creating rules for converting sounds into information. 

The phoneme is the fundamental unit of speech with defined 

numbers in every language. 

The consonant and vowels are the main parts of phonemes. 

There are 42 phonemes containing vowels, semivowels, 

diphthongs, and consonants in American English. The 

consonants include nasals, stops, fricatives, and affricates. The 

vowels are produced by vocal fold vibration. Other categories 

similar to vowels are diphthongs and semivowels. A diphthong 

is a transition from one vowel to another. The semivowel is 

further classified into liquid and glides. Further consonants are 

produced by constriction of the vocal tract. The fricatives are 

generated by excitation of the vocal tract with a constant 

airflow that becomes turbulent due to constriction. The 

fricatives may have voicing components, therefore called 

voicing fricatives. Affricatives are produced by the transition 

of a stop to fricatives. The stop consonants are produced by 

creating pressure behind the full constriction of the vocal tract 

and abruptly releasing the pressure. The nasals are voiced 

consonants produced by an exciting nasal cavity. Figure 3 

shows the phoneme structure used in the well-known TIMIT 

speech corpus [32]. 

At the first level of the hierarchy, the phoneme structure is 

categorized into obstruent, silences and sonorants. The 

obstruents are generated with turbulent noise, such as fricative, 

plosives and affricatives, as shown in the subcategory of the 

obstruent in Figure 3. The sonorants are generated without 

turbulent noise and divided further into vowels, nasals and 

liquids. The fricative and plosives are further divided into 

voiced and unvoiced sounds, and vowels can be further 

divided into back, front and centre vowels. The TIMIT speech 

corpus is a dataset of recorded speech that is widely used in 

speech processing and recognition research. It contains 

phonetically transcribed recordings of 630 speakers, 

representing eight major dialects of American English. The 

phonetic structure of the TIMIT corpus is based on the 

International Phonetic Alphabet (IPA), which is a standardized 

system for representing the sounds of human language. The 

corpus includes phonetic transcriptions at the level of 

individual phonemes, as well as at the level of phonetic 

features such as voicing, place of articulation, and manner of 

articulation. The corpus is organized into training, 

development, and test sets, which are used to train and 

evaluate speech recognition systems. The phonetic structure of 

the corpus is carefully designed to ensure that the training, 

development, and test sets are representative of the range of 

phonetic variability in natural speech. 

 

 
 

Figure 3. TIMIT speech corpus phonetic structure 

 

Further language issues also play an important role in 

recognition. Figure 4 shows Pierce’s model for natural 

language construct [33-36].  

The model contains four constructs. These constructs are 

symbolics, grammatical, semantic, and pragmatics. All these 

constructs also have prominence in speech recognition. The 

symbols may be any speech unit such as word, phoneme, and 

syllable. 

Pragmatics is concerned with studying sentence 

interpretation according to the contextual situation. Grammar 

is the study of the rules in a language. Semantics is related to 

learning and analysing the meaning of the text. The symbols 

may be any speech unit, such as word, phoneme, and syllable. 

The idea that language is a system of signs that are used to 

represent things, ideas, and concepts is central to Peirce's 

model for natural language formation. As Peirce sees it, a sign 

has three parts: the signer, the signified, and the interpretant. 

A phrase, gesture, or picture are all examples of signifiers. 

What a sign actually depicts, or the signified, is a meaning or 

an idea. The effect of the sign on the interpreter, known as the 

interpretant, might range from a straightforward 

comprehension of the sign's meaning to a tangled web of 

inferences and inferences. 

In Peirce's theory, context plays a crucial part in establishing 

the meaning of signals. In particular, he contended that signals 

are not unchanging objects but rather take part in a continuous 

cycle of interpretation and mutual influence among the 

signifier, the signified, and the interpretant. So, a sign's 

meaning can shift depending on the circumstances in which it 

is employed and the perspective from which it is viewed. 

Semiotics, the study of signs and symbols, owes much to 

Peirce's framework. Linguistics, communication studies, and 

philosophy are just some of the disciplines that have benefited 

from its application to questions of meaning and the 

connection between language and cognition and the world as 

we know it. 

Further, grammar connects the symbols to form a message 

unit. Speech recognition scientists use pronunciation 

dictionaries to create lexicons to generate words from the 

specified symbols. However, grammar may create any word, 

so for creating meaningful words, semantics is used. 

Pragmatics deals with contextual effects in natural language 

understanding systems. It was stated that this is the hardest part 

to incorporate into the speech understanding system. 
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Figure 4. Peirce's model for natural language construct [33-36] 

 

 

4. PHONEME RECOGNITION 
 

Every speech recognition process starts with creating a 

speech text and developing a speech corpus. After that, 

relevant information is extracted in terms of features from the 

speech signal. Further, the phoneme-based acoustic models 

(AM) are created from the features, and the trained model is 

produced after using re-estimation. A highly probable word 

series is identified from the trained AM and language models 

(LM) with an ASR engine.  

 

4.1 Vowel recognition 

 

Vowel recognition using the formant was presented [37]. 

The speech corpus was recorded with 80 Malaysian speakers. 

The new feature extraction method using the bandwidth 

approach was applied. The vowels can be defined with stable 

frequency phenomena, and it sets a unique basis for 

recognition of the vowels due to the various average vocal 

tract length present in males, females, and children. The mean 

magnitudes were also calculated from the bandwidth 

frequency ranges. The results were also compared with 13 Mel 

Frequency Cepstral Coefficients (MFCC). The 

backpropagation neural network was used for classification. 

The contextual effects on vowel duration were presented in 

[8]. The study was performed on two speech corpora 

consisting of 18000 and 6000 vowel segments from the spoken 

utterances by American English speakers. The research was 

conducted to investigate the new facts already available in the 

literature. Different factors such as stress and accent, statistical 

methods, piecewise multiplicative corrections, the sum of 

product models, and vowel identity were considered. It was 

concluded that intrinsic vowel duration, pitch accent, position, 

stress, post, and prevocalic consonants accounted for 86% of 

the variance. It was also discovered that pitch accent amplified 

the effect of syllabic stresses in accented words, while 

deaccented syllables were less affected. The postvocalic 

consonant cluster effects were related to voicing and the 

manner of production. Syllable boundaries also have a 

significant role in contextual effects. Investigations revealed 

that the length of the vowels becomes shorter in closed 

syllables. 

4.2 Consonant recognition 

 

Consonants constitute a significant part of any phoneme-

based system. Efforts have been made to classify nasals and 

semivowels automatically [38]. TIMIT speech corpus was 

selected for the study. Different measures based on 

onset/offset were used for the nasal sounds. A support vector 

machine (SVM) classifier was used to combine acoustic 

properties. The results reported for different sonorant 

consonant categories are 88.6% for prevocalic, 94.9 for 

postvocalic, and 85.0% for intervocalic. The overall 

recognition score achieved by nasals was 92.4%, while 

semivowels reached 88.1%. The recognition of semivowel 

was presented by using linguistic features for American 

English. The features used were sonorant, syllabic consonantal, 

high, back, front, and retroflex. The speech corpora included 

polysyllabic words and sentences with various dialects. The 

recognition results were reported for semivowels [10].  

The stop consonants in consonant-vowel (CV) words were 

recognized using acoustic-phonetic features [12]. The study 

used two speech corpora, TIMIT and NTIMIT (telephonic). 

Spectral processing based on FFT was applied. The acoustic 

cues such as the relative centre of gravity, burst amplitude, 

voice onset time, and log of ratios of first formant prominence 

were used as acoustic-phonetic features. The study aimed to 

distinguish labial /p/, alveolar/t/ and velar/k/. The best results 

reported are 85.7% for overall recognition, while the labial 

sound got 89.3% recognition, the alveolar sound got 84 % 

recognition, and the velar sound got an 84.8% recognition 

score.  

 

 

5. ACOUSTIC PHONETIC MEASUREMENTS IN 

PHONEME RECOGNITION 

 

Different acoustic-phonetic measurements were used for 

phoneme recognition, such as voiced and unvoiced parameters, 

articulatory features, formant-based measurements, burst and 

voice onset time, vowel offset and onset points, nasalization, 

and fricative. Phonetic reduction happens when a phoneme 

moves away from its natural form. It was concluded that vowel 

reduction is connected to the duration and quality of vowels 
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[39, 40]. The research findings also indicate that formant 

frequency is the most frequent parameter for forensic speaker 

practices [41]. Many parameters such as formant values, 

duration, mean frequency and energy differences were also 

studied. Acoustic phonetic variability was addressed for Polish 

vowels [13]. Three levels of abstraction, such as intrinsic 

allophonic, extrinsic allophony, and phonemic variation, were 

defined to describe the speech sound. The research work 

aimed to address intrinsic allophony issues in Polish vowels. 

Table 1 shows the comparative analysis of the parameters 

used for usefulness in recognition, the method used for 

calculating these measurements, challenges, and 

improvements to these methods. 

 

Table 1. Comparative analysis of different exiting method with different parameters [14, 42-47] 

 
Acoustic-

Phonetic Cues 
Usefulness in Recognition Methods Used Challenges 

Solution to 

Challenges 

Voiced and 

unvoiced 

Information regarding voicing 

is essential for phoneme 

recognition, as almost all stops 

are voiced and unvoiced. The 

confusion analysis is reduced 

due to voiced and unvoiced 

information among the same 

place of articulation. 

The parameters used for 

voiced activity detection 

are zero-crossing rate, 

predictive coefficients, 

autocorrelation coefficients 

at first lag, and peak 

strength harmonic 

measures. Further, multiple 

features were combined 

with GMM, HMM, and 

ANN-based methods were 

also used. 

Easy when voicing energy is 

high. Weak glottal activity weak 

parameters such as nasals are 

challenging to detect. 

LP residual, 

dominant resonant 

frequencies, 

Perceptual linear 

predictive 

coefficients, and 

Wavelet-based 

features are used. 

Formants 

based 

measurement 

Formants are used in detecting 

vowels and are also useful for 

recognizing vowel-like 

regions, recognizing 

consonants-vowel, robust 

against channel distortion and 

noise and well suited to tackle 

mismatch between testing and 

training environments. 

Formant transition shows the 

place of constriction. 

The formants are estimated 

by calculating and then 

tracking the formants. 

Different methods are 

centred on the Linear 

prediction and cepstrum 

assessment. 

Peak-picking techniques in 

formant estimation are 

susceptible to joined formants 

and spurious peaks. Accurate 

calculation of formants is also 

an important task. 

A set of digital 

formant resonators in 

parallel are used. 

Burst and 

voice onset 

time 

Voice onset time (VOT) 

includes helpful information 

about consonants related to 

articulation; the smallest VOT 

is observed for bilabial and 

grows steadily in the direction 

of velar sounds. 

The maximum value of the 

normalized cross-

correlation calculated 

between consecutive inter 

epoch periods, thresh hold 

logic for detection of stop 

burst, fuzzy classifier, and 

rule-based classifier. 

The complications are caused 

due to the effect of place of 

articulation on VOT values. 

Language-specific 

phonological rules 

assigned and 

multitasking learning 

are used. 

Nasalization 

Useful phoneme recognition 

and lowers misunderstanding 

between nasalized and non-

nasalized vowels. 

It is characterized by the 

first two resonance 

frequencies, the existence 

of additional peaks: one 

between the first two 

formants and one at lower 

frequencies for nasalized 

vowels. Low to high order 

residual energy ratio and 

dominant resonance for 

nasal murmur recognition. 

Automatic detection of 

antiresonance is difficult. 

Detecting nasality 

relied mainly on 

robust formant 

extraction and 

feature extraction 

methods such as 

PLPs. 

 

Fricative 

 

Acoustic phonetic information 

is useful in phoneme 

recognition. Recognition of 

unvoiced fricatives from 

voiced fricatives increases 

recognition accuracy. 

The parameters for 

calculation of fricatives 

such as the zero-crossing 

rate for voiceless frication, 

LP spectrum, articulation 

place, and voicing event. 

Detection of voiced fricatives is 

not easier and causes confusion 

between voiced fricatives and 

low energy sonorants such as 

semivowels and nasals. 

Spectral features 

calculated from a 

short time frame 

using SVM show the 

improvements. 

Articulatory 

features 

The degree of constriction 

determines vowel highness, 

aspiration, and frication. 

Articulatory features are 

grouped into place, manner, 

voicing roundness, frontness, 

and height. 

The methods, such as 

acoustic articulatory 

transformation using 

inverse mapping, direct 

physical measurement, and 

classification score for 

pseudo-articulatory 

features, are used to find 

articulatory features. 

The inverse mapping is 

complicated in continuous 

speech. Direct physical 

measurement requires costly 

setup such as X-Ray filming, 

electromagnetic articulography, 

and electropalatography. The 

databases based on physical 

measurements for Indian 

languages are not available. 

Most of the work is 

based on a spectral 

feature to derive 

articulatory features. 
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Vowel onset 

and offset 

points 

The voice onset point (VOP) 

and voice endpoint (VEP) are 

essential in consonant 

recognition. 

VOP measurements are 

based on zero-crossing rate, 

spectral peak, and ANN-

based methods. 

Difficulty in the detection of 

semivowel and voiced aspirated 

sounds. 

To improve the 

accuracy amplitude 

envelope of the 

vowel emphasized 

amplitude, the 

modulated-frequency 

modula-ted signal 

was used for VOP 

and VEP. 

 

 

6. CONTEXTUAL EFFECTS IN PHONEME 

RECOGNITION 

 

The researchers extensively studied Hindi phoneme 

confusion analysis [48]. The contextual effects on vowel 

duration were obtained in the study [8]. It was concluded that 

syllable boundaries also significantly affect contextual effects. 

Context-dependent triphones were used to address the 

contextual effects [49]. The bidirectional Long Short Term 

Memory (BiLSTM) network was used for phoneme 

recognition [50]. It was concluded that the bidirectional 

system presents the input into two forward and backward 

networks, which are well fitted for addressing contextual 

effects. The phoneme recognition was addressed by using the 

HMM-ANN paradigm with contextual information [51]. The 

contextual effects were studied at the feature level and output 

level of the MLP. 

The hierarchical phoneme recognition was implemented to 

address phoneme confusion within the same broad categories. 

Different levels of hierarchy were defined. First-level vowels 

and consonants were defined. Different categories such as 

semivowel, fricative, affricates, nasals, stop consonant 

category I and stop consonants category II were used at the 

second level. A further division was made within these 

categories. MFCCs were extracted for feature, and a support 

vector machine was used for classification. The experiment 

was conducted using the TIMIT database. The significant 

improvements in TIMIT speech corpus phoneme recognition 

were observed by applying hierarchical phoneme recognition 

compared to traditional speech recognition [52]. 

 

 

7. PHONEME RECOGNITION IMPROVEMENT 

TECHNIQUES 

 

The researchers have suggested different techniques to 

improve phoneme recognition. Contextual effects play an 

important role in phoneme recognition. Researchers used 

triphone-based context-dependent phonemes to reduce the 

contextual effect [4, 53]. Many statistical parameters are 

related to phonemes, such as length, duration, and frequency. 

The paper addresses finding helpful statistical parameters in 

phoneme recognition. To improve Arabic phoneme 

recognition, helpful statistics based on HMM states for 

different phonemes were presented. It was concluded that 

various measures such as phoneme duration, frequency, and 

the probability of different phonemes occurring are helpful 

statistics to improve phoneme recognition.  

Further, it was indicated that appropriate states could be 

designed as per the phoneme [54]. The small-duration 

phonemes suffer from deletion errors, so a proper feature 

extraction method is needed for small-duration phonemes. The 

researchers also applied wavelet-based features to improve 

phoneme recognition [55] to address small-duration phonemes. 

Researchers used syllable-based speech recognition to reduce 

the contextual effects [56]. Articulatory features were also 

applied to improve phoneme recognition [47]. 

Every classification method has its own advantages. 

Therefore, the combination of different classifiers can also 

lead to improve phoneme recognition. The phoneme 

recognition was improved using the HMM-ANN paradigm 

with contextual information [45]. The contextual effects were 

examined at the feature level and output level of the multilayer 

perceptron (MLP). The sub-phonemic groups were addressed 

at the feature level. The hierarchical estimate of phoneme 

posterior probabilities was intended to tackle contextual 

information at the output of MLP, and silence was excluded 

for the recognition accuracy measurement.  

The research was conducted to include contextual 

information by applying the BiLSTM network that uses past 

and present information to improve phoneme recognition. 

Two experiments were performed using a TIMIT speech 

corpus with unidirectional and bidirectional LSTM networks. 

The first experiment was conducted for frame-wise phoneme 

classification. The results indicated that bidirectional LSTM 

performed better than unidirectional LSTM and conventional 

recurrent neural networks (RNNs). The second experiment 

was conducted using a combination of bidirectional LSTM 

and HMM. The system outperformed both traditional HMM 

and unidirectional LSTM-HMM. It was also stated that RNNs 

are useful when the span of contextual effects is known. 

Bidirectional systems present the input into two forward and 

backward networks, better suited for modelling contextual 

effects [44]. 

The recent works based on deep neural networks (DNNs) 

systems show improved speech recognition results [57].  

DNN-based systems have the training and testing phases. 

Though earlier works improved the training phase, this work 

focused on the test phase. The research work was 

experimented using a real duration probability distribution for 

each phoneme using a hidden semi-Markov model (HSMM) 

instead of geometric distribution of state duration in HMM. 

Each phoneme was represented by only one state by simply 

using phoneme duration in HSMM. The researchers also 

examined the performance of a post-processing method that 

connects the phoneme sequence obtained from the neural 

network. Bigram language models with MFCCs were used in 

the experiments. Experiments were conducted on the Persian 

speech corpus. The results show that the extended Viterbi 

algorithm on HSMM improves phoneme recognition accuracy 

by 2.68% and 0.56% over the conventional methods using 

GMM-HMM and Viterbi on HMM, respectively. 

 

 

8. PHONEME RECOGNITION PERFORMANCE 

EVALUATION 

 

The studies show phoneme error rate (PER), phoneme 
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accuracy, and phoneme correctness mostly used evaluation 

metrics. The PER is defined below [58-60]. 

 

Phoneme accuracy = (N-S-I-D)/N (1) 

 

Phoneme error rate (PER) = (S+I+D)/N (2) 

 

The following explains the variables used N, S, I, and D in 

Eqs. (1) & (2).  

N: denote a total number of phonemes in the reference string. 

S: indicates substitution. 

I: indicates insertion. 

D: indicates deletion. 

 

 

9. RESULTS AND ANALYSIS 

 

The HMM-based, ANN-based, GMM-based, dynamic time 

warping (DTW), and vector quantization based phoneme 

recognition were performed. The classification algorithm 

reported, such as HMM/ANN hybrid, takes advantage of the 

combined methods. The neural networks supervised, 

unsupervised learning algorithms, Kohonen map, RNN, and 

K-means for phoneme recognition were applied. Deep 

learning-based TIMIT phoneme recognition was presented. 

The study included different research work using a feed-

forward network with rectified linear units (ReLU), Time 

Delay neural network (TDNN), and long short-term memory 

(LSTM) neural networks. It was observed that the best results 

were obtained with LSTM. Figure 5 shows the phoneme error 

rate (PER%) indicated by different methods on the TIMIT 

speech corpus [15, 61]. Table 2 presents a comparative 

analysis of phoneme recognition of various methods. 

The Mel Frequency Cepsral coefficients (MFCCs), linear 

prediction cepstral coefficients (LPCs), Perceptual Linear 

Prediction Coefficients (PLP), wavelet-based methods for 

short duration phoneme, and cepstral mean normalization 

based features were utilized for phoneme recognition. The 

bandwidth-based feature extraction improved vowel 

recognition. Spectral processing based on FFT was applied. 

The acoustic cues such as the relative centre of gravity, burst 

amplitude, voice onset time, and log of ratios of first formant 

prominence were used as acoustic-phonetic features to classify 

stop consonants in TIMIT and NTIMIT. The research findings 

indicate that MFCCs are widely used in extracted features. 

 

 
 

Figure 5. TIMIT phoneme recognition with PER% 

 

Table 2. Comparative analysis for phoneme recognition 
 

Reference Features Used Classification Method Recognition Accuracy 

[38] 
 

Onset/Offset 
SVM TIMIT consonants 

Sonorant consonant categories 88.6% 

for prevocalic, 94.9 for postvocalic, 

85.0% for intervocalic. The overall 

recognition score nasals: 92.4%, 

semivowels: 88.1%. 

[12] 

Spectral 

processing based 

on FFT was 

applied. 

The acoustic cues such as the 

relative centre of gravity, burst 

amplitude, voice onset time, and 

log of ratios of first formant 

prominence were used as 

acoustic-phonetic features. 

Voiceless stop consonants 

in consonant-vowel (CV) 

words. Two speech 

corpuses TIMIT and 

NTIMIT (telephonic) were 

used in the study. 

85.7% for overall recognition, labial 

sound: 89.3% recognition score, 

alveolar sound: 84 % recognition 

score, velar sound got: 84.8% 

recognition score. 

[37] 

Bandwidth-based 

feature 

extraction. 

Back Propagation Neural 

Networks 

Malaysian Vowel 

recognition using the 

formant. 

The bandwidth-based feature 

extraction provided the classification 

accuracy of 89.58%, which was 

0.71% better than MFCCs. 

[2] MFCCs HMM Hindi vowel Vowel:83.19% 

[62] MFCCs GMM Hindi vowel 
Microphone recorded speech:91.4% 

Telephonic speech: 84.2% 

[63] 

Gammatone 

frequency 

cepstral 

coefficients and 

formant. 

CDHMM Hindi vowel 
Speaker dependent: 99.15%, Speaker 

independent: 98.5% 

[64] 

MFCCs, along 

with vocal tract 

area function. 

SVM, K nearest neighbours 

(KNN) and linear discriminant 

analysis (LDA) were combined 

with a voting classifier. 

British English 
Phoneme recognition accuracy: 

83.95% 

[57] MFCCs DNNs and HSMM Persian speech corpus. 

The extended Viterbi algorithm on 

HSMM achieves improvements in 

phoneme recognition accuracy of 

2.68% and 0.56% over the 

conventional methods using GMM-

HMM and Viterbi on HMM, 

respectively. 
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The study revealed that researchers used landmarks that are 

denoted by the abrupt and essential changes in articulation. 

Two prominent landmarks, VOT and burst release, were 

experimented with in the studies to detect stop consonants. 

Further, it was concluded that VOT is an important landmark 

for separating voiced and unvoiced stops. For vowel 

identification, these two landmarks can also be applied to the 

three articulatory features, high, backness, and roundness. 

Vowel recognition using the formant was presented. The 

vowels can be defined with stable frequency phenomena, and 

it sets a unique basis. The research was conducted to 

investigate the new facts which were already available in the 

literature. Different factors such as stress and accent, statistical 

methods, piecewise multiplicative corrections, the sum of 

product models, and vowel identity were considered. It was 

concluded that intrinsic vowel duration, pitch accent, position, 

stress, post, and prevocalic consonants accounted for 86% of 

the variance. It was also discovered that pitch accent amplified 

the effect of syllabic stresses in accented words, while 

deaccented syllables were less affected. 

The categorization of consonants was made on the basis of 

place of articulation, manner of articulation, and voicing. The 

recognition of consonants is a challenging task in speech 

recognition due to their production methods. Researchers 

made efforts to recognize the consonants using different 

techniques in the literature. Efforts have been made to classify 

nasals and semivowels automatically. TIMIT speech corpus 

was selected for the study. Various measures based on 

onset/offset were used to capture the consonantal nature of the 

nasal sounds. A support vector machine (SVM) classifier was 

used to combine acoustic properties. The recognition of 

semivowel was presented by using linguistic features for 

American English. The used features were related to sonorant, 

syllabic consonantal, high, back, front, and retroflex. The 

research work aimed to identify voiceless stop consonants in 

consonant-vowel (CV) words. 

Different acoustic-phonetic measurements were used for 

phoneme recognition, such as voiced and unvoiced parameters, 

articulatory features, formant-based measurements, burst and 

voice onset time, vowel offset and onset points, nasalization, 

and fricative. 

The researchers have suggested different techniques to 

improve phoneme recognition. Researchers used triphone-

based context-dependent phonemes to reduce the contextual 

effect. To improve Arabic phoneme recognition, helpful 

statistics based on HMM states for different phonemes were 

presented.  

It was concluded that various measures such as phoneme 

duration, frequency, and the probability of occurring of 

different phonemes are helpful statistics to improve phoneme 

recognition. Further, it was indicated that appropriate states 

could be designed as per the phoneme. Further researchers also 

applied wavelet-based features to improve phoneme 

recognition to address small duration phonemes. Researchers 

used long-span syllable-based speech recognition to reduce 

contextual effects. Articulatory features based on place, 

manner, roundness, frontness, and height were applied to 

improve phoneme recognition.  

The contextual effects in phoneme recognition were 

addressed using different approaches phoneme recognition 

was improved by using the HMM-ANN paradigm with the use 

of contextual information. The contextual effects were 

examined at the feature level and output level of the multilayer 

perceptron (MLP). The sub-phonemic groups were addressed 

at the feature level. The hierarchical estimation of phoneme 

posterior probabilities was proposed to address contextual 

information at the output of MLP. For the recognition 

accuracy measurement, silence was excluded. Bidirectional 

Long Short-Term Memory (LSTM) network was applied to 

improve phoneme recognition. Two experiments were 

performed using the TIMIT speech corpus with unidirectional 

and bidirectional LSTM networks. The first experiment was 

conducted for frame-wise phoneme classification. The results 

indicated that bidirectional LSTM performed better than both 

unidirectional LSTM and conventional recurrent neural 

networks (RNNs). It was also stated that RNNs are useful 

when the span of contextual effects is known. Bidirectional 

systems present the input into two forward and backward 

networks better suited for modelling contextual effects. The 

recent works based on deep neural networks (DNNs) systems 

proved to give improved speech recognition results. DNN-

based systems have the training and testing phases. Though 

earlier works improved the training phase, this work focused 

on the test phase. The research work was experimented using 

a real duration probability distribution for each phoneme using 

a hidden semi-Markov model (HSMM) instead of geometric 

distribution of state duration in HMM. Each phoneme was 

represented by only one state by using phoneme duration in 

HSMM.  

The researchers also examined the performance of a post-

processing method that connects the phoneme sequence 

obtained from the neural network. Bigram language models 

with MFCCs were used in the experiments. Experiments were 

conducted on the Persian speech corpus. The results show that 

the extended Viterbi algorithm on HSMM achieves 

improvements in phoneme recognition accuracy of 2.68 % and 

0.56% over the conventional methods using GMM-HMM and 

Viterbi on HMM, respectively. It was concluded that RNNs 

improved speech recognition. 

 

 
 

Figure 6. Phoneme recognition issues related to contextual 

effects, improvement methods, acoustic-phonetic 

measurements and deep learning-based methods 

 

It was also indicated that system performance degrades 

when the testing and training conditions are different. 

Different databases such as TIMIT, Hindi rhythmic words, 

Arabic, NTIMIT (telephonic), individual self-created speech 

corpus, CV/CVC syllable-based corpora, and unique phoneme 

sets were applied. The speech corpora included polysyllabic 

words and sentences uttered by male and female speakers with 

various dialects. TIMIT and NTIMIT (telephonic) were used 

mostly in the study. The researchers have applied different 

matrices to evaluate phoneme recognition. Most developers 

applied the matrices, such as phoneme error rate (PER), 
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phoneme accuracy, and phoneme correctness. Figure 6 shows 

issues related to contextual effects, improvement methods, 

acoustic-phonetic measurements and deep learning-based 

methods. 

 

 

10. CONCLUSIONS 

 

A comprehensive review of phoneme recognition is 

presented to explore and understand the different issues. The 

comprehensive review presented challenges to phoneme 

recognition. The basic concepts of phoneme recognition were 

discussed to understand the study. Various essential matters 

such as phoneme structure, phoneme recognition, vowel 

recognition, consonant recognition, acoustic-phonetic cues, 

contextual effects, feature extraction methods, classification 

methods, and phoneme recognition improvement techniques 

and performance metrics were covered. The acoustic-phonetic 

cues for speech recognition such as voiced and unvoiced, 

articulatory features, formants-based measurement, burst and 

voice onset time, vowel onset and offset points, nasalization, 

and fricative were explored. Different methods to calculate 

acoustic-phonetic cues with challenges and solutions were 

provided. 

Research outcomes reveal that experiments were conducted 

using different classification methods based on HMM, ANN, 

GMM, SVM, and VQ. Various feature extraction techniques 

were also applied to improve phoneme recognition. Different 

feature extraction techniques were applied, such as MFCCs, 

LPCs, wavelet-based methods, and PLPs. 

Researchers also worked on subcategories such as vowels 

and consonants in addition to phonemes. It was also observed 

that different acoustic-phonetic studies were presented to 

explore the recognition of stop consonants, vowels, 

semivowels, nasals, and fricatives. It was observed that 

phoneme recognition suffers from contextual effects. 

Researchers applied BLSTM ANN-based methods, context-

dependent triphones, and longer acoustic units such as 

syllable-based speech recognition to address the contextual 

effects.  

The research study shows that the researchers mostly 

worked on identifying the vowels. The vowel recognition was 

presented using formant analysis, HMM, ANN, linguistic 

features, and acoustic-phonetic approaches. DNN techniques, 

hybrid classification (HMM-ANN), articulatory features, 

landmark-based recognition, event-based recognition, 

wavelet-based features, improved and hybrid features were 

applied for phoneme recognition.  

Further research may be continued by exploring more 

confusion analysis of the phonemes. 
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