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Breast cancer, a pervasive and life-threatening malignancy, predominantly affects women 

worldwide. Despite the widespread adoption of imaging technologies such as 

mammography for early-stage breast cancer detection, access to such specialized imaging 

equipment remains limited in low-income countries. Conversely, ultrasound imaging has 

demonstrated its efficacy as a cost-effective tool for tumor identification. The advent of 

portable ultrasound devices facilitates rapid and precise lesion diagnosis in the breast, 

circumventing the need for hospital visits. Nevertheless, the images procured by portable 

ultrasound devices are typically necessitated to be transmitted in a compressed format for 

remote evaluation by physicians. This compression process often introduces artifacts in 

medical images, complicating the delineation of tumorous regions. To address this 

challenge, we introduce a deep-learning solution in this paper. A novel wavelet 

convolutional neural network (CNN) architecture is conceived to learn and subsequently 

diminish the artifacts present in compressed ultrasound images. To achieve this, a diverse 

dataset comprising various types of breast ultrasound images – malignant, benign, and 

normal – is utilized. Experimental outcomes indicate that the proposed method surpasses 

the denoising CNN in mitigating artifacts in compressed ultrasound images. This improved 

performance is particularly evident in the most compressed images, which are of significant 

interest. This research underscores the potential of deploying deep-learning techniques to 

enhance the quality of compressed medical images, thereby facilitating more accurate and 

efficient remote diagnoses. 
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1. INTRODUCTION

Breast cancer, a prevalent malignancy among women, is 

responsible for approximately one-sixth of all cancer-related 

fatalities [1, 2]. In the United Kingdom, for instance, it is the 

most prevalent cancer among females, with a new diagnosis 

occurring every ten minutes [3]. Early detection significantly 

increases the likelihood of successfully treating breast cancer. 

Various imaging technologies have been employed for the 

detection of this disease, with mammography being a common 

screening tool. However, limitations such as low sensitivity in 

detecting lesions in young women [4] and unnecessary costs 

associated with biopsies [5] have been identified. Ultrasound 

imaging, in comparison, offers a safer and more cost-effective 

alternative with higher sensitivity for detecting breast cancer 

lesions [6, 7]. Despite these advantages, ultrasound imaging is 

not devoid of drawbacks, such as the presence of speckle noise, 

which is currently the focus of ongoing research [8-11]. 

The situation in low-income countries, such as those in 

Africa, presents additional challenges. Women in these 

regions often lack access to both specialist physicians and 

necessary imaging devices, leading to late-stage breast cancer 

diagnosis [12]. This highlights the importance of portable 

ultrasound devices, which provide accurate and rapid 

diagnosis to patients unable to visit hospitals. The images 

obtained through these devices can either be evaluated on-site 

or transmitted to a distant physician for assessment. 

Deep learning (DL)-based neural networks have found 

extensive applications in biomedical sciences, including 

medical image segmentation and classification [13-17]. These 

techniques form crucial components of medical image analysis 

and are indispensable for monitoring and diagnosis 

applications. Beyond segmentation and classification, DL 

techniques have also been applied successfully to medical 

image compression in recent years. This is especially the case 

for computerized tomography (CT) and magnetic resonance 

(MR) images, which have traditionally been compressed using 

transform coding methods such as JPEG and HEVC [18-22]. 

Despite the promising results with CT and MR images, the 

field of ultrasound image compression based on DL methods 

remains relatively unexplored. Convolutional neural networks 

(CNN) and generative adversarial networks (GAE) have 

proved their superiority in compressing CT and MR images 

over conventional methods [23, 24]. Several recent studies 

have made contributions in this area. For instance, a portable 

ultrasound imaging system employing a variational 

autoencoder (VAE) to compress pre-beamformed RF signals 

acquired by compressive sensing was proposed [25]. In 

another study, Perdios et al. [26] presented an approach for 

ultrasound image recovery where compression and 

decompression of ultrasound signals were achieved using a 

stacked denoising autoencoder (SDA). Moreover, China et al. 

introduced an ultrasound image compression system that 

preserves speckle information, with a CNN-based 

decompressor generating patho-realistic ultrasound images 

that convey essential information about pathological tissues 
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[27]. 

As the medical images are more compressed by transform 

coding algorithms such as JPEG, they are exposed to higher 

degree of blocking artifacts. This is due to the fact that those 

compression algorithms operate on non-overlapping blocks of 

image data. Specifically, JPEG operates on 8×8 pixel blocks. 

Then, each block is transformed by discrete cosine transform 

and quantized. The quantization process creates blocking 

artifacts even in low compression rates. This complicates the 

effective identification of lesions and/or tumoral regions in 

medical images. The application of CNNs in the reduction of 

these artifacts in medical imaging is an emerging topic. To the 

best of our knowledge, denoising CNNs (DnCNNs) have been 

recently applied to the artifact reduction in 

electroencephalography (EEG) signals [28, 29], CT imaging 

[30] and digital tomosynthesis (DT) [31]. In this paper, we 

further advance and propose a wavelet–based CNN (WCNN) 

solution which reduces the blocking artifacts in compressed 

breast images acquired from the ultrasound device. For this 

purpose, we employ a publicly available dataset of malignant, 

benign and normal types of breast ultrasound images. 

Experimental results show that the proposed WCNN increases 

the image quality while maintaining the compression ratios, 

especially in the most compressed cases as desired. 

The paper continues as follows: Section 2 elaborates on 

JPEG compression, convolutional neural networks, and the 

proposed wavelet CNN. Section 3 presents and discusses the 

experimental results. Finally, Section 4 offers concluding 

remarks. 

 

 

2. METHODOLOGY 

 

In this section, we briefly introduce the JPEG compression 

and the CNN. Then a brief explanation of the WCNN follows. 

Finally, the proposed WCNN architecture is described. 

 

2.1 JPEG compression 

 

The JPEG image compression standard has been created by 

the Joint Photographic Experts Group (JPEG) and is the 

conventional method used in the coding of images. The 

specification basically consists of two parts: lossless and lossy. 

The lossless part just implements an entropy coding algorithm 

called Huffman coding. The lossy part is the mainstream of the 

standard (also known as the baseline mode) and implements 

the Discrete Cosine Transform (DCT). This transformation 

represents the data in a more compact form. The DCT is 

performed on 8×8 image blocks and the resulting DCT 

coefficients are scaled, truncated and quantized to reduce the 

dynamic range of data. The quantization step sizes of the DCT 

coefficients are kept in a quantization table separately. They 

are zigzag scanned to obtain the ordered DCT coefficients and 

entropy coded with the Huffman algorithm in the last stage.  
The fundamental problem associated with the JPEG 

compression is the creation of image artifacts. As 

aforementioned, the baseline JPEG algorithm is lossy. Its lossy 

nature comes from the quantization scheme undertaken after 

the DCT. The DCT coefficients are further quantized to save 

more storage space. This quantization scheme leads to image 

discontinuities at the boundaries of image blocks which appear 

as horizontal and vertical borders between the blocks known 

as blocking artifacts. This phenomenon is due to the fact that 

this coarse quantization neglects the correlation between 

adjacent image blocks so that two DCT coefficients which 

have similar frequency characteristic in adjacent image blocks 

are mapped into different quantization bins. The diminishing 

effects of blocking artifacts are obviously visible in the final 

encoded image and become much more visible as the 

compression rate increases. 

 

2.2 Convolutional neural network (CNN) 

 

CNN is considered to be a deep neural network specialized 

in image processing tasks. These types of networks imitate the 

visual cortex of human brain. CNN has two subnetworks: the 

feature extractor network and the classifier network. The 

feature extractor network consists of convolution and pooling 

layers. Convolution layers contain convolutional filters to 

convert images into feature maps. Feature maps identify the 

unique features of the input images. In the convolutional layer, 

images are convolved by the filters of that layer which is 

followed by an activation function such as rectified linear unit 

(ReLU), or a leaky ReLU as given by: 

 

𝑐𝑖,𝑗
𝑙 = 𝑓 (∑∑𝑥𝑖+𝑚,𝑗+𝑛

𝑙

𝑁

𝑛=0

𝑀

𝑚=0

𝑤𝑚,𝑛
𝑙 + 𝑏) (1) 

 

where, xl is the input image from the previous layer, wl is the 

weight of the convolution filter (or kernel) of the size 𝑀×𝑁 in 

the current layer, b is the bias, f(.) is the activation function 

and cl is the output feature map calculated for all pixels at row 

and column (i, j)’s of the input image. 

Pooling layers sub-sample the feature maps, i.e., reduce the 

size of the feature maps. Such kind of operation prevents a 

possible decrease in the network performance due to shifts, 

scales and distortions in the images. To achieve subsampling, 

max or average pooling is employed: 

 

𝑝𝑖,𝑗
𝑙 = argmax

𝑖,𝑗 ∈ ℜ
𝑐𝑖,𝑗 
𝑙 ⋁𝑚𝑒𝑎𝑛

𝑖,𝑗 ∈ ℜ
𝑐𝑖,𝑗 
𝑙  (2) 

 

where, ℜ is a region of the size 2×2, cl is the input feature map 

and 𝑝𝑖,𝑗
𝑙  is the output feature map. The main problem of a 

deepening network is the issue of overfitting. This is generally 

handled by the Dropout technique: 

 

𝐷(𝑥) = {

𝑥

1 − 𝑝
, 𝑖𝑓 𝑢 > 𝑝

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} (3) 

 

where, some nodes of the network are randomly set to 0 with 

probability p and u represents the output of the corresponding 

node which is between 0 and 1. This provides some kind of 

regularization in the CNN and increases the generalization 

capability of the network. In the classifier subnetwork, a 

flattening fully connected layer with softmax activation 

function can follow the feature extractor network: 

 

𝑠(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑗𝐾
𝑗=1

 (4) 

 

which maps the classifier outputs into probability values [0,1]. 

 

2.3 Wavelet CNN 

 

When digital images are to be processed at multiple 

2140



 

resolutions, wavelet transform (WT) is the tool of choice 

because WT provides powerful information regarding the 

spatial and frequency characteristics of the image [32]. In WT, 

an image is decomposed into a set of components, called 

subbands, which can be reassembled to reconstruct the original 

image without error. As shown in Figure 1, for the 

decomposition process, a sample image is low and high pass 

filtered along the columns and the outcomes of each filter are 

down-sampled by two. Then, each of these sub-signals is again 

high and low pass filtered along the rows and the outcomes 

obtained are once again down-sampled by two. As a result, the 

original image is divided into four subbands: LL (Low-Low), 

HH (High-High), HL (High-Low) and LH (Low-High). While 

the LL subband is obtained via two low pass filters and thus 

called the approximation subband, the HH subband is obtained 

via two high pass filters, called the diagonal subband. The HL 

and LH subbands are called vertical and horizontal subbands, 

respectively. Further decompositions are applied to the LL 

subband only in WT. 

Wavelet neural networks were first introduced by Zhang et 

al. [33]. In this seminal study, the radial basis functions of 

neural networks were replaced by orthonormal wavelet scaling 

functions. This yielded favorably comparable performance 

against multilayer perceptron and radial basis function 

networks. For further improvement, Fujieda et al. [34] 

proposed wavelet convolutional neural networks (WCNNs) 

which combine multiresolution analysis and CNNs into one 

model. In this study, they formulated convolution and pooling 

in CNNs as filtering and downsampling to connect CNNs to 

multiresolution framework. They have demonstrated that 

WCNNs achieve better accuracy in texture classification and 

image annotation tasks while having fewer trainable 

parameters than CNNs. It is also noted that WCNNs are less 

prone to overfitting and require less memory. Some other 

variants of WCNNs were also been proposed in the following 

years [35-37]. Besides, Fathi et al. [38] developed a hybrid 

Wavelet Neural Network model, combining DWT and 

NARNN, for stock price forecasting. This approach ensures 

enhanced accuracy by first decomposing stock data with DWT. 

When tested on the Egyptian Exchange (EGX-30), the model 

outperformed other methods, showcasing its efficacy, and 

Oyelade et al. [39] proposed a WCNN architecture to detect 

the discriminative features in digital mammography for 

increased classification accuracy. 

 

 
 

Figure 1. One-level decomposition of a sample image using 

WT 

2.4 The network architecture of the proposed method 

 

The network architecture of the proposed WCNN consists 

of two subnetworks: the contracting and the expanding 

networks. The contracting network has four wavelet 

decomposition layers (L, ψ) each followed by the cascade of 

convolution (Conv), batch normalization (BN) and activation 

function (ReLU) layers. The inputs to the first wavelet 

decomposition layer are patches of size 24×24 pixels from the 

images. The reason for that is JPEG is implemented by using 

8×8 pixel blocks and such size of patch involves all 

neighboring blocks of a specific operating block to carry in 

sufficient image statistics for deblocking. The BN operation is 

used to boost the deblocking performance of the WCNN. The 

expanding network, reversely, has four wavelet reconstruction 

layers (L, ψ-1) each followed by the same Conv+BN+ReLU 

blocks. Differently, before the last reconstruction layer the 

Conv+BN+ReLU block is followed by an extra only Conv 

layer. In the convolution layers, 32 filters of size 3×3 with 

stride 2 and padding 1×1 are used to generate the desired 

feature maps. In the decomposition layers, we apply Haar 

scaling and wavelet basis functions as lowpass and highpass 

filters as given by: 

 

𝜙(𝑥, 𝑦) = {

1 , 0 ≤ 𝑥, 𝑦 ≤ 1

0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
 

} (5) 

 

and 

 

𝜓(𝑥, 𝑦) =

{
 
 

 
 1 , 0 ≤ 𝑥, 𝑦 <

1

2

−1,
1

2
≤ 𝑥, 𝑦 ≤ 1

0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
 }

 
 

 
 

 (6) 

 

The subbands are generated by the scaling and translation 

of these basis functions: 

 

ℎ𝑗,𝑘(𝑚, 𝑛) = 2 
𝑗
2 𝜙(2𝑗𝑚 − 𝑘, 2𝑗𝑛 − 𝑘), 

𝑚, 𝑛 ∈ 𝑍, 𝑘, 𝑗 ∈ 𝑁 
(7) 

 

𝑔𝑗,𝑘(𝑚, 𝑛) = 2 
𝑗
2 𝜓(2𝑗𝑚 − 𝑘, 2𝑗𝑛 − 𝑘), 

𝑚, 𝑛 ∈ 𝑍, 𝑘, 𝑗 ∈ 𝑁 
(8) 

 

where, j is the scaling factor that corresponds to downsampling 

and k is the translation factor which is ignored in this case. The 

orthonormal Haar filter coefficients in the respective subbands 

are: 

 

𝑤𝐿𝐿 =
1

√2
[
1 1
1 1

] , 𝑤𝐿𝐻 =
1

√2
[
−1 −1
1 1

], 

𝑤𝐻𝐿 =
1

√2
[
−1 1
−1 1

] ,  𝑤𝐻𝐻 =
1

√2
[
1 −1
−1 1

] 
(9) 

 

In the WCNN, filtering followed by downsampling 

operations of multiresolution analysis is equivalent to 

convolution followed by the average pooling operations. One 

layer of subband decomposition is accomplished using Eq. 

(10): 
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𝑦 = (𝒙 ∗  𝒘 ∗ 𝒑) ↓ 𝑝 (10) 

 

where, x represents the input vector from the previous layer, w 

represents the Haar filtering kernel used as the convolution 

operator and p=(1/p, …, 1/p) represents the average filter with 

the downsampling factor p used as the average pooling 

operator. 

The network has been trained by a random selection of size 

24×24 patches for each image. It is trained for predicting the 

residual artifacts of the compressed images. After the residuals 

are predicted, it is straightforward to reconstruct the deblocked 

images by subtracting from the compressed images. We set 

80% percent of the data as the training data and the rest as the 

validation data. As the optimizer algorithm, we have used 

Adam optimizer. Adam optimizer combines the advantages of 

AdaGrad and RMSProp optimization algorithms and is well-

suited for problems that are in large in terms of data and 

parameters [40]. We set a learning rate α=0.001 with decay 

rates β1=0.9 and β2=0.999 and ϵ=10-8. The mini-batch size is 

32 and we run 20 epochs in the training phase. 

The network architecture of the proposed WCNN is 

illustrated in Figure 2. The hyperparameters of the proposed 

network are summarized in Table 1. 

 

Table 1. Hyperparameters of the proposed WCNN 

 
Parameter Value 

Input layer 24×24 

Convolution layer filter size 3×3×1 (stride:2 padding:1) 

Number of filters 32 

Activation function ReLU 

Wavelet function Haar 

Mini-batch size 32 

Initial learning rate 0.001 

Number of epochs 20 

Solver algorithm Adam 

 

 

 
 

Figure 2. The network architecture of the proposed WCNN 

 

 

3. RESULTS AND DISCUSSION 

 

We employ the publicly available dataset of breast 

ultrasound images obtained from female patients at the Baheya 

Hospital, Cairo, Egypt [41]. The images are acquired using 

LOGIQ E9 and LOGIQ E9 Agile ultrasound scanners. A total 

number of 645 breast ultrasound images, including 133 normal, 

333 benign and 179 malignant type images are employed from 

this dataset. This dataset also provides the ground truth (image 

boundary) for each ultrasound image to make the ultrasound 

dataset beneficial. A few sample images from the dataset are 

depicted in Figure 3. 

Compression and deblocking methods, JPEG, JPEG+CNN 

[42] and our method (JPEG+WCNN) are used to compress and 

reduce the artifacts of images. After compression and 

deblocking, we compare the image obtained with the reference 

image using the structural similarity (SSIM) index [43] to 

assess the performance of our method. SSIM index is used to 

assess the visual quality improvement of obtained images. 

SSIM index is a value between 0 and 1 and high values 

indicate better visual quality. All the experiments are carried 

on an Intel Core i5-based computer with 8 GB RAM and 2 GB 

NVIDIA GPU using MATLAB 2020B and toolboxes [44, 45]. 

First, ultrasound images are compressed using JPEG 

algorithm with various compression qualities ranging from 10 

(most compression case) to 40 (lowest compression case). 

Then, CNN and WCNN are applied to JPEG compressed 

images. The obtained SSIM values versus compression quality 

for a sample malignant type image is shown in Figure 4. 

Figure 4 shows that there is a small difference between the 

SSIM values of the JPEG, JPEG+CNN and our method for the 

lowest compression case (compression quality = 40). The 

SSIM values of the JPEG, JPEG+CNN and our method are 

0.9524, 0.9601 and 0.9655, respectively. It can be observed 

from Figure 4 that as the compression ratio increases, the 

improvement in SSIM increases and maximum improvement 

in SSIM happens in most compressed case (compression 

quality = 10). In this case, the SSIM of the JPEG, JPEG+CNN 

and our method are 0.8119, 0.8393 and 0.8664, respectively. 

The advantage of more compression is the smaller image size, 

while its disadvantage is more image degradation. Thus, 

improving the image quality after compression is very 

important. According to Figure 4, although the CNN improves 

the quality of the JPEG compressed image, our method shows 

the best performance among the methods. 

If the important factor is the sizes of the images, we 

compare the sizes of the same sample malignant type image 

with approximately the same SSIM values obtained by the 

three methods as shown in Table 2. The image size reduction 

ratio (ISRR) in Table 2 is given as follows: 
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𝐼𝑆𝑅𝑅 (%) =
|𝑠𝑖𝑧𝑒 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑖𝑚𝑎𝑔𝑒−𝑠𝑖𝑧𝑒 𝑜𝑓 𝑠𝑒𝑐𝑜𝑛𝑑 𝑖𝑚𝑎𝑔𝑒|

𝑠𝑖𝑧𝑒 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑖𝑚𝑎𝑔𝑒
×100 

(11) 

 

We compare the size of the images according to JPEG 

images thus the first image shown in Eq. (11) is the JPEG 

image.  

As given in Table 2, while the ISRR value of JPEG+CNN 

is 4.8%, this value is 22.4% for the proposed method in the 

low compression case (SSIM value is approximately 0.96). As 

the compression ratio increases, the effect of the proposed 

method increases. For the most compressed case (SSIM value 

is approximately 0.86), the ISRR value of the proposed 

method is 37.07%, while it is 13.82% for the JPEG+CNN. 

Figure 5 shows the sample malignant type images with SSIM 

values of approximately 0.86 obtained by the JPEG, 

JPEG+CNN and the proposed methods. There is almost no 

visual difference between the images in Figure 5. The results 

demonstrated in Table 2 and Figure 5 prove that when the 

image size is important, the proposed method can be used to 

obtain images with the same image quality but with a smaller 

size. Thus, advantages such as faster image transfer, less 

memory requirement and faster image loading are achieved 

without sacrificing image quality. These advantages are 

especially important for ultrasound images sent to a distant 

physician for evaluation.  

 

 
 

Figure 3. A montage of sample images from the dataset. 

From top row to bottom row: normal, benign and malignant 

type ultrasound images 

 

 
 

Figure 4. The obtained SSIM values vs. compression quality 

for a sample malignant type image 

 
(a) JPEG 

 
(b) JPEG+CNN             (c) Proposed method 

 

Figure 5. Sample malignant type images with SSIM values 

of approximately 0.86 obtained by the methods  

 

Up to now, we have analyzed a sample malignant type 

image. We perform the same analysis on 179 malignant type, 

333 benign type and 133 normal type images. The average 

SSIM values obtained versus compression quality for these 

images are shown in Figure 6. 

Comparing Figure 4 and Figure 6, there is no difference 

between the results. The proposed method shows the best 

performance among the methods. In particular, as the 

compression ratio increases, the proposed method performs 

better. Therefore, the proposed method allows the physician 

evaluating the image to make a better interpretation, as well as 

provides more successful image processing applications such 

as segmentation and classification. 

While an image is compressed, it is desirable to preserve the 

image quality as much as possible. JPEG compression shows 

the worst performance in this study thus it is necessary to apply 

a method that improves the quality of the image after JPEG 

compression. Applying the well-known CNN method after 

JPEG compression is important to improve image quality. This 

study proposes a wavelet-based CNN method to improve the 

image quality even further. Thus, we compare the 

performances of JPEG, JPEG+CNN and the proposed method. 

The proposed method gives the best results among the 

methods in this study in terms of both image quality and 

compression performance. Especially for the high 

compression case, when both the quality and size of the images 

obtained as a result of the three methods are compared, it is 

observed that the performance of the proposed method is very 

high. Considering real-time imaging, ultrasound devices have 

less processing time compared to other medical imaging 

devices. Especially when compared to JPEG method, the 

proposed method has a longer processing time, which can be 

considered as a disadvantage for the proposed method. The 

future direction for this research area is to reduce the 

processing time without sacrificing image quality. 
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Table 2. Comparing the sizes of the malignant images with approximately the same SSIM values 

Method JPEG JPEG+CNN Proposed Method 

SSIM, image size and ISRR 

SSIM Size SSIM Size ISRR (%) SSIM Size ISRR (%) 

0.8695 12.3 KB 0.8648 10.6 KB 13.82 0.8664 7.74 KB 37.07 

0.9316 17.8 KB 0.9319 15.9 KB 10.67 0.9314 12.6 KB 29.21 

0.9555 22.3 KB 0.9560 20.6 KB 7.62 0.9555 16.5 KB 26.01 

0.9654 25 KB 0.9657 23.8 KB 4.80 0.9655 19.4 KB 22.4 

(a) 

(b) 

(c) 

Figure 6. The average SSIM values obtained vs. 

compression quality for (a) 179 malignant type images (b) 

333 benign type images and (c) 133 normal type images 

4. CONCLUSIONS

In this study, we have proposed a deep-learning based 

approach to reduce the artifacts in the JPEG-compressed 

breast ultrasound images. The approach is based on wavelet 

convolutional neural networks. The network has been trained 

to generate the residual artifact image. The input to the 

convolution layer has been selected as 24×24 pixels patches 

from each compressed image. Because the JPEG compression 

is performed on 8×8 pixels blocks, by doing that, we have 

covered the all neighboring blocks of an operating block and 

carried sufficient statistic to the convolutional layers to 

deblock artifacts in the input compressed image. The SSIM 

values of JPEG, JPEG+CNN and JPEG+WCNN images have 

been compared to assess the performance of the proposed 

approach for malignant, benign and normal ultrasound images. 

The results obtained show us that the proposed approach 

assures good performance particularly in the most compressed 

ones and as such we recommend it to effectively reduce 

artifacts in the JPEG-compressed breast ultrasound images. 
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