
 

 
 
 

 
 

 
1. INTRODUCTION 

The problem of free convective heat and mass transfer flow 
of viscous electrically conducting fluid past an inclined 
surface under the influence of magnetic field has attracted the 
interest of many researchers in view of its application in 
aeronautics, fluid fuel nuclear reactor, geophysics, chemical 
process industries and in many engineering problems. 
Umemura and Law [1] have studied the natural convection 
boundary layer flow over a flat plate with arbitrary 
inclination. They also have noticed that the flow 
characteristics depend not only on the extent of inclination 
but also on the distance from the leading edge.Hossain et al. 
[2] have analyzed the free convective flow from an isothermal 
plate inclined at small angle to the horizontal. Combined heat 
and mass transfer flow by free convection past an inclined flat 
plate has been discussed by Anghel et al. [3]. Chen [4] has 
analyzed the natural convection flow over a permeable 
inclined surface with variable wall temperature and 
concentration. Ganesan and Palani [5] have solved the 
unsteady natural convection MHD flow past an inclined plate 
in presence of magnetic field with variable heat and mass 
flux. Sivasankaran et al. [6] have investigated the Lie group 
analysis of natural convection heat and mass transfer flow in 
an inclined surface. Alam and Rahman [7] have developed 
the MHD free convection and mass transfer flow past an 
inclined semi-infinite surface in presence of heat generation. 
Bhuvaneswari et al. [8] have explained exact analysis of 
radiation convective heat and mass transfer flow over an 

inclined plate in a porous medium. Kandasamy and Devi [9] 
have presented the effects of chemical reaction, heat and mass 
transfer on non-linear laminar boundary-layer flow over a 
wedge with suction or injection. Prakash and Ogulu [11] have 
discussed the unsteady two-dimensional flow of a radiating 
and chemically reacting fluid with time dependent suction. 
Effects of variable viscosity , heat and mass transfer on 
nonlinear mixed convection flow over a porous wedge with 
heat radiation in presence of homogeneous chemical reaction 
was discussed by kandasamy and Hashim [12]. Kandasamy et 
al. [13] have explained the thermophoresis and variable 
viscosity effects on MHD mixed convective heat and mass 
transfer past a porous wedge in presence of chemical 
reaction. Jyothi Bala and Vijaya Kumar [14] have studied the 
unsteady MHD heat and mass transfer flow past a semi-
infinite vertical porous moving plate with variable suction in 
the presence of heat generation and homogeneous chemical 
reaction. Hitesh Kumar [15] has viewed an analytical solution 
to the problem of radiative heat and mass transfer over an 
inclined plate at prescribed heat flux in presence of chemical 
reaction. The chemical reaction effects on MHD free 
convective flow through a porous medium bounded by an 
inclined surface has been analyzed by Mathanrao et al. [16]. 

The objective of this paper is to study the effects of visco-
elasticity on steady two-dimensional free-convection flow of 
an electrically conducting fluid through porous medium 
bounded by an inclined surface with constant suction velocity 
in presence of chemical reaction under the influence of 
uniform magnetic field applied normal to the direction of 
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flow. In the present paper, we have discussed a flow problem 
associated with second-grade fluid which follows from 
generalized Rivlin-Ericksen model which encounters both the 
elasticity and normal stress differences exhibited by most 
polymeric and biological liquids. 

The constitutive equation for the second-order fluid is 
taken in the form 

 

 
2

1 1 2 2 3 1       pI A A A                                         (1)                              

 

where   is the stress tensor, nA  are the kinematic Rivlin-

Ericksen tensors; 321 ,,  are material coefficients 

describing the velocity, elasticity and cross-viscosity 
respectively. From thermodynamic consideration it is noticed 

that the material coefficients 1 and 3 are positive and 2 is 

negative [Coleman and Markovitz [17]]. The equation (1) 
was derived by Coleman and Noll [18] from that of simple 
fluids by assuming that stress is more sensitive to the recent 
deformation than to the deformation that occurred in the 
distant past. 

It is reported that solution of poly-isobutulene in Cetane at 
300C simulate a second-order fluid and the material constants 
for the solutions of various concentrations have been 
determined by Markovitz. 
 
 

2. MATHEMATICAL FORMULATION 
 

The steady free convective flow of a visco-elastic 
incompressible electrically conducting fluid through a semi-
infinite porous medium bounded by an inclined surface under 
the influence of uniform magnetic field applied normal to the 
direction of flow has been studied. The flow is assumed to be 
in the x -direction, which is taken along the semi-infinite 

inclined plate and y-axis is taken normal to it. The Reynolds 
number is assumed to be very small and the induced magnetic 
field due to the flow is neglected. The fluid properties are 
assumed constant except for the influence of density in the 
body force term. As the boundary surface is infinite in length, 
all the variables are functions of y  only. Using boundary 

layer approximation, the governing equations of motion are: 
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where 00 v corresponding to steady suction velocity at the 

surface. 
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where u and v are the corresponding velocity components 

along and perpendicular to the surface, 1 is visco-

elasticity, g is the acceleration due to gravity ,  is the 

coefficient of volume expansion for heat transfer and * is 

the volumetric coefficient of expansion with species 

concentration, T  is the fluid temperature,  

T is the temperature of the fluid far away from the plate, 

 is the thermal conductivity,   is the density of the fluid, 

pC is the specific heat at constant pressure, C  is the species 

concentration, C is the species concentration of the fluid far 

away from the plate, D  is the chemical molecular 

diffusivity, 1D  is the rate of chemical reaction and k  is the 

permeability of porous medium,  is the angle of inclination, 

  is the fluid electrical conductivity,  is the magnetic field 

component along y-axis. 
The coresponding boundary conditions of the problem are: 
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where q  is the heat flux per unit area and m is the mass flux 

per unit area. 
Introducing the non-dimensional parameters 
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into the equations (3)-(5) and dropping asterisk, we get 
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The relevant boundary conditions are: 
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where is the distance , )(f is the velocity, Pr  is the Prandtl 

number, Sc  is the Schmidt number, Gr  is the Grashof 

number, Gm  is the solutal Grashof number, E  is the Eckert 

number, M  is the magnetic field parameter, Kr  is the 
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chemical reaction parameter, k  is permeability of porous 

medium,   is the permeability parameter,  is the elastico-

viscous parameter,   is the dimensionless temperature, C is 

the dimensionless concentration, 1 cosGr Gr  and 

1 cosGm Gm  and prime denotes differentiation with 

respect to. 
   
                                                                                                                                                                       

2. METHOD OF SOLUTION 
 

To solve the equations (8) to (10) let us assume 
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where E is considered as the perturbation parameter. 
Substituting (12) into equations (8)-(10) and equating 

harmonic and non-harmonic terms, and neglecting higher 

orders of  20 E , we obtain 

 

0 0 1 0 0 1 0 1 0

1
 



          
 

f f f M f Gr Gm C                (13) 

1 1 1 1 1 1 1 1 1

1
 



          
 

f f f M f Gr Gm C                  (14) 

 

0 0Pr 0                                                                        (15)    

                                                    
2

1 1 0 1 0 0Pr Pr Pr         f f f                                        (16)   

                          

0 0 0 0   C ScC KrScC                                                    (17)   

                                          

1 1 1 0   C ScC KrScC                                                     (18) 

 
subject to the boundary conditions: 
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The solutions of the equations (17) and (18) subject to the 

boundary conditions (19) are given by 
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To solve the equations (13)-(16), we use multiparameter 

perturbation scheme following Nowinski and Ismail (19) 

(as 1 1   for small rate of shear) as 
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Using (21) into equations (13)-(16) and equating like terms 

of 1 and neglecting those of 2

1 , we get the following 

differential equations: 

Zeroth-order equations: 
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First-order equations: 
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The solutions of the equations (22) to (29) under the 

boundary conditions (30) are presented as follows: 
 

2 1Pr

00 2 1 2

    t tf K e Ae A e                                          (31)  

                             
2 2 1Pr

01 6 5 3 4

       t t tf A e A e A e A e                          (32) 

 
2 2

1 2 1 2 1

1

2Pr 2Pr

10 22 14 15 16

2 ( Pr) ( Pr) ( )

17 18 19 20

2

21

  

   



  

      



   

   



t t

t t t t t

t

f A e A e A e A e

A e A e A e A e

A e

             (33) 

 
2 2 2

2 1 2 1

2 1 2 1

2Pr 2

11 44 34 35 36

( Pr) ( Pr) ( )

37 38 39

2 2 ( )2Pr

40 41 42 43

  

  

  

 





  

     

   

   

  

   

t t t

t t t t

t t t t

f A e A e A e A e

A e A e A e

A e A e A e A e

                (34) 

 

Pr

00

1
,

Pr

  e                                                                    (35) 

 

01 0                                                                                 (36)       

                                      
2 1

2 1 2 1

2 2Pr 2Pr

10 13 7 8 9

( Pr) ( Pr) ( )

10 11 12

  

  

   

     

   

  

t t

t t t t

A e A e A e A e

A e A e A e
                     (37)    

334



 

2 2

2 2 2 1

2 1 1 1

11 23 24

( Pr) ( Pr) ( )

25 26 27

( ) ( Pr) 2

28 29 30

2Pr Pr

31 32

 

  

  

 

 



 

 

     

    

 

 

   

  



t t

t t t t

t t t t

A e A e

A e A e A e

A e A e A e

A e A e

                        (38) 

 
The fluid velocity, temperature and concentration are given 

by 
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The non-dimensional form of shearing stress coefficient at 

the surface is given by 
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The non-dimensional heat flux in terms of Nusselt number 

is given by 
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The mass flux in terms of Sherwood number is given by 
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 where the constants are obtained but not presented here due 
to sake of brevity. 

   
 

4. RESULTS AND DISCUSSION 
 

The steady two-dimensional MHD free convective visco-
elastic flow through a porous medium bounded by inclined 
surface in presence of chemical reaction with heat and mass 
transfer has been formulated, analyzed and solved by using 
multi parameter perturbation scheme. Approximate solutions 
have been derived for velocity, temperature, concentration 

and shearing stress. The non-dimensional parameter 1 0   

characterizes the Newtonian fluid phenomenon and non-zero 

values of 1 exhibit the visco-elastic fluid. 

Figures 1-7 depict the fluid velocity ( )f  against η for 

several  values of Prandtl number (Pr), Schmidt number 
(Sc),Grashof number for heat transfer (Gr), Grashof number 
for mass transfer (Gm),Eckert number (E) , permeability 
parameter (k), chemical reaction parameter (Kr) and visco-

elastic parameter  1 ,with  fixed values of ε = 0.3,α==1. 

 
 
 
 
 

6. FIGURES 
 

 
 

Figure 1. Fluid velocity f(η) against η for Pr=3, Sc=1, Gm=2, 
Gr=1, Kr=0.1, M=3 

 

 
 

Figure 2. Fluid velocity f(η) against η for Pr=3, Sc=1, Gm=2, 
Gr=1, Kr=0.2, M=3 

 

 
 

Figure 3. Fluid velocity f(η) against η for Pr=3, Sc=1, Gm=2, 
Gr=1, Kr=0.1, M=4 
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Figure 4. Fluid velocity f(η) against η for Pr=3.5, Sc=0.8, 
Gm=2, Gr=1, Kr=0.1, M=3 

 

 
 

Figure 5. Fluid velocity f(η) against η for Pr=3, Sc=1, Gm=3, 
Gr=1, Kr=0.1, M=3 

 

 
 

Figure 6. Fluid velocity f(η) against η for Pr=3, Sc=1, Gm=2, 
Gr=2, Kr=0.1, M=3 

 

 
 

Figure 7. Fluid velocity f(η) against η for Pr=3.5, Sc=1, 
Gm=2, Gr=1, Kr=0.1, M=3 

 
It is evident from the figures 1-7 that the fluid velocity f(η)  

accelerate near the plate and uniformly away from the plate in 
both Newtonian and non-Newtonian cases. The rising trend 
of absolute value of visco-elastic parameter 

|| 1  1 0, 0.05, 0.1     |increases the fluid velocity in 

comparison with Newtonian fluid. 
 

 
 

Figure 8. Shearing stress σ against Chemical reaction 
parameter (Kr) for Pr=3, Sc=1, Gm=2, Gr=1, M=3 

 

 
 

Figure 9. Shearing stress σ against magnetic parameter 
(M) for Pr=3, Sc=1, Gm=2, Gr=1, Kr=0.1 
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Figure 10. Shearing stress σ against Schmidt number (Sc) 
for Pr=3, Gr=5, Gm=5, Kr=0.1, M=3 

 

 
 

Figure 11. Shearing stress σ against solutal Grash of 
number (Gm) for Pr=3, Sc=1,   Gr=1, Kr=0.1, M=3 

 

 
 

Figure 12. Shearing stress σ against Grashof number for 
heat transfer (Gr) for Pr=3, Sc=1, Gm=2, Kr=0.1, M=3 

 

 
 

Figure 13. Shearing stress σ against Prandtl number (Pr) 
for Sc=1, Gm=2, Gr=1, Kr=0.1, M=3 

 
The figures 8-13 exhibit the effects of the visco-elastic 

parameter 1| | on shearing stress σ against Chemical reaction 

parameter Kr, Magnetic parameter M,Schmidt number Sc, 
solutal Grashof number Gm, Grashof number  for heat 
transfer Gr and Prandtl number Pr with the fixed values of  
α=1,ε=0.3 to observe the visco-elastic effects. The figures 
reveal that the shearing stress coefficient σ increases with the 

increasing values of visco-elastic parameter 1| |  compared 

to Newtonian fluid.  It is also noted that shearing stress  
increases with the increase of Chemical reaction parameter, 
solutal Grashof number Gm ,Grashof number for heat transfer 
Gr, and Prandtl number Pr but reverse trend is observed  in 
case of Schmidt number Sc and magnetic parameter M. 

It has also been observed that the temperature field, 
concentration field, Nusselt number and Sherwood number 
are not significantly affected by the visco-elastic parameter. 

 

 

5. CONCLUSION 
 

The present study gives an analytical treatment about the 
effects of visco-elasticity on the steady MHD flow with heat 
and mass transfer in presence of chemical reaction. From the 
results the following conclusions could be drawn: 

(l) The flow field is considerably affected by the visco-
elastic parameter. 

(2) The influence of visco-elasticity is maximum near 
the surface of the wall in combination of other physical 
parameters. 

(3) The velocity of the fluid flow is affected by the 
magnetic parameter. It is seen that with the enhancement of 
magnetic parameter the velocity diminishes and this is 
matched with physical behavior of magnetic parameter. 

(4) The rate of heat transfer and rate of mass transfer are 
not significantly affected by the visco-elastic parameter in the 
fluid flow region. 
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