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Accurate diagnosis is a crucial first step in the management and treatment of lung 

diseases, which include infectious diseases such as COVID-19, viral pneumonia, lung 

opacity, tuberculosis, and bacterial pneumonia. Despite these conditions sharing similar 

manifestations in chest X-ray images, it is imperative to correctly identify the disease 

present. This study, therefore, sought to develop a convolutional neural network (CNN)-

based model for the classification of lung diseases. Four distinct CNN models, namely 

MobileNetV2, ResNet-50, ResNet-101, and AlexNet, were rigorously evaluated for 

their ability to classify lung diseases from chest X-ray images. These models were tested 

against three classification schemes to examine the impact of high interclass similarity: 

a 4-subclass classification (COVID-19, viral pneumonia, lung opacity, and normal), a 

5-subclass classification (COVID-19, viral pneumonia, lung opacity, tuberculosis, and

normal), and a 6-subclass classification (COVID-19, lung opacity, viral pneumonia,

tuberculosis, bacterial pneumonia, and normal). The retrained ResNet-50 architecture

yielded the best results, achieving a classification accuracy of 97.22%, 92.14%, and

96.08% for the 6-subclass, 5-subclass, and 4-subclass classifications respectively.

Conversely, ResNet-101 demonstrated the lowest classification accuracy for the 6-

subclass and 5-subclass classifications, with 78.12% and 79.49% respectively, while

MobileNetV2 had the lowest accuracy for the 4-subclass classification, with 88.89%.

These results suggest that, despite high interclass similarity, the ResNet-50 model can

effectively classify lung-related diseases from chest X-ray images. This finding

supports the use of computer-aided detection (CAD) systems as decision-support tools

in the early classification of lung-related diseases.
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1. INTRODUCTION

Lung or pulmonary diseases constitute a spectrum of 

pathological disorders that adversely affect the organs and 

tissues instrumental in respiration, thereby impeding efficient 

gas exchange. These afflictions compromise various 

components of the respiratory system, including the pleurae, 

the pleural cavity, respiratory nerves, breathing muscles, 

bronchi, bronchioles, alveoli, and trachea [1]. The spectrum of 

lung diseases spans minor, self-limiting conditions such as the 

common cold, influenza, and pharyngitis, to life-threatening 

diseases like bacterial pneumonia, lung opacity, tuberculosis, 

acute asthma, lung cancer, and severe acute respiratory 

syndromes such as COVID-19 [2]. 

The burden of lung diseases is particularly significant in 

developing and low- to middle-income countries, where 

millions grapple with extreme poverty and poor air quality. As 

estimated by the World Health Organization, over four million 

individuals succumb prematurely each year to illnesses 

associated with lung diseases such as asthma and pneumonia. 

This underscores the urgency for effective preventive 

measures and diagnostic systems for early detection and 

management of lung diseases [3, 4]. 

Since the outbreak in late 2019, COVID-19 has exhibited 

severe pulmonary implications, including difficulty in 

breathing among those infected. Moreover, the causative agent 

of COVID-19, along with other viruses or bacteria, can 

precipitate pneumonia, a form of lung disease. 

The integration of radiological imaging procedures and 

computer-aided diagnosis (CAD) systems holds great promise 

for improving the detection and classification of lung diseases. 

Given that these diseases primarily affect the lung passages, 

the application of deep learning modalities for early detection 

and classification is particularly apt. The use of machine vision, 

image-processing techniques, and deep learning algorithms as 

diagnostic tools can significantly reduce the risk of 

misdiagnosis [5]. These tools offer superior accuracy, 

portability, and affordability, thereby enhancing their 

applicability in clinical settings. This can substantially 

mitigate lung-related health risks, especially in regions where 

access to quality healthcare is limited. The deployment of 

CAD systems can potentially improve the quality of healthcare 

services, decreasing mortality rates amidst increasing disease 

prevalence. 

The concept of transfer learning in image classification 

posits that a model trained on a sufficiently large and diverse 

dataset can serve as a generalized model of the visual world. 

Once the feature maps are learned, they can be used to 
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construct a different model using a significant dataset, 

eliminating the need to start from scratch. Transfer learning 

involves leveraging knowledge gained from one model to 

improve the efficacy of another model [6, 7]. 

Accordingly, in this study, deep learning techniques 

employing transfer learning were utilized to classify lung 

diseases. Chest X-ray images were fed into deep learning 

architectures (MobileNetV2, ResNet-50, ResNet-101, and 

AlexNet) to identify and extract the pertinent features of these 

diseases. The objectives of this study were to curate hybrid 

chest X-ray image datasets of lung diseases from benchmark 

datasets, preprocess these images to address inconsistencies in 

data formats, develop a CNN-based model for classifying lung 

diseases from these chest X-ray images, and evaluate the 

performance of this classification model. 

In their seminal work, Zak and Krzyżak [8] presented a 

bifurcated deep learning approach for the classification of lung 

disorders (namely, pneumonia and tuberculosis) based on 

chest X-ray images extracted from the Shenzhen dataset. The 

initial phase involved the utilization of U-Net to segment the 

target lung region, followed by the employment of three 

transfer learning models (InceptionV3, VGG16, and ResNet-

50) with previously trained ImageNet weights. Notably, the 

InceptionV3 model exhibited superior performance with an 

accuracy and specificity of 82.00% and a sensitivity of 82.33%. 

Similarly, Apostolopoulos and Mpesiana [9] employed 

transfer learning for classifying lung disorders (normal, 

COVID-19, and pneumonia) using chest X-ray images from a 

publicly available dataset. They used five models (Inception, 

MobileNetV2, Xception, Inception ResNetV2, and VGG19), 

and VGG19 emerged as the most effective with a specificity 

of 98.75%, accuracy of 93.48%, and sensitivity of 92.85%. 

In an innovative approach, Pham [10] combined three 

databases, namely the COVID-19 Chest X-Ray Dataset 

Initiative, the COVID-19 Radiography Database, and the 

IEEE 8023/COVID Chest X-Ray dataset, for conducting 2-

class (COVID-19 and normal cases) and 3-class (COVID-19, 

viral pneumonia, and normal) classifications. Three pre-

trained CNNs, AlexNet, SqueezeNet, and GoogleNet, were 

incorporated into the network. The model achieved an 

accuracy of 95%, specificity of 97%, and sensitivity of 90% in 

detecting COVID-19. Notably, among the applied pre-trained 

CNNs, SqueezeNet and AlexNet demanded the least training 

and prediction time. 

Further, an end-to-end learning method was proposed by 

Kim et al. [11], wherein raw chest X-ray images were directly 

input into a deep learning model (EfficientNet v2-M) using 

transfer learning to extract significant features for lung disease 

classification. The method was validated using three classes of 

data from the National Institutes of Health (NIH) dataset: 

normal, pneumonia, and pneumothorax. The validation results 

demonstrated a loss of 0.6933, accuracy of 82.15%, sensitivity 

of 81.40%, and specificity of 91.65%. The method was further 

tested on a dataset from the Cheonan Soonchunhyang 

University Hospital (SCH), which comprised four classes: 

normal, pneumothorax, tuberculosis, and pneumonia. The 

testing accuracy for the normal, pneumonia, pneumothorax, 

and tuberculosis classes was reported as 63.60%, 82.30%, 

82.80%, and 89.90%, respectively. 

In light of the aforementioned studies, the present study 

seeks to make the following contributions: 

(1) The curation of a hybrid chest X-ray image dataset 

encompassing COVID-19, bacterial pneumonia, viral 

pneumonia, lung opacity, tuberculosis, and healthy instances; 

and 

(2) The development of a CNN-based multi-classification 

model for lung-related diseases using chest X-ray images from 

multiple sources to enhance the analysis of chest radiography 

images. 

 

 

2. METHODS 

 

The dataset that was used for this study were gotten from 

different publicly available online repository. The coronavirus 

Radiography Database by Chowdhury et al. [12] from Kaggle 

[13] were accessed and collated in order to fulfill the 

requirements of this investigation. 3,616 X-rays of chest 

images belong to the COVID-19 class, 1,345 images of chest 

X-rays that show viral pneumonia, 6,012 X-rays images of 

lung opacity, and 10,192 chest X-rays images that are normal 

in this dataset. From this repository, 1,000 images were put to 

use from each class of images. 

Chest X-Ray for Tuberculosis is the second dataset. CXR 

images for Tuberculosis (TB) positive cases as well as normal 

images are included in the dataset from the Kaggle repository 

that belongs to investigators from Qatar University in Doha, 

Qatar, and the University of Dhaka, Bangladesh, as well as 

their collaborators from Malaysia and in collaboration with 

medical professionals from Hamad Medical Corporation and 

Bangladesh. This chest X-ray data is available in the study [14]. 

The dataset includes 700 X-rays of chest images that were 

gotten for the tuberculosis class. Another tuberculosis data was 

obtained from the TBX11K dataset [15] which consists of five 

categories of tuberculosis diseases in this dataset, i.e., Healthy, 

Sick but Non-TB, Latent TB, Active TB, and Uncertain TB, 

active TB dataset were extracted for this research. The last 

dataset that was used for the research which is bacterial 

pneumonia was also obtained from the Kaggle repository [16]. 

The total dataset contains 6,000 datasets which were 

divided into 6 classes. Each class in the dataset contains 1,000 

data samples. The data samples in each class were split in the 

proportion of 80:20 to train and test, while 10 percent of the 

training samples were used for validation to prevent 

overfitting. Table 1 illustrates the distribution of the dataset. 

Figure 1 depicts the images of chest X-rays of viral pneumonia, 

COVID-19, normal, tuberculosis, lung opacity, and bacterial 

pneumonia. 

 

 
 

Figure 1. Included in the sample images of chest X-ray used 

in this study (a) COVID 19; (b) Pneumonia; (c) Normal; (d) 

Tuberculosis positive; (e) lung-opacity; (f) bacterial 

pneumonia 
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Table 1. Distribution of the dataset 

 

Class 
Total Number of 

CXIs/Class 

Training 

Set 

Validation 

Set 
Testing 

COVID-19 1000 720 80 200 

Viral 

Pneumonia 
1000 720 80 200 

Tuberculosis 1000 720 80 200 

Lung Opacity 1000 720 80 200 

Bacterial 

Pneumonia 
1000 720 80 200 

Normal 1000 720 80 200 

 

The normalize function from the Python preprocessing 

library was used to normalize the data as part of the 

preprocessing of the dataset. It accepts an array as input and 

normalizes its values to range from 0 to 1. After that, it gives 

back an output array with the same size as the input array. 

Normalization is the process of rescaling attributes of real-

valued images into a 0 to 1 range. To lessen the sensitivity of 

model training to feature scale, deep learning uses data 

preprocessing. This makes it possible for the model in 

converging to improved weights, which leads to a more 

accurate model. Also, the dataset was in different sizes, 

therefore, they were pre-processed to the same size of 

224×224. 

The study was implemented with a transfer learning 

technique by manipulating MobileNetv2, ResNet50, 

ResNet101, and AlexNet as a base model and defined the new 

top layers as a fine-tuning model. The conventional pipeline 

of transfer learning is initially to excerpt features from the 

source dataset and then fine-tune them on the targeted dataset. 

Figure 2 shows the transfer learning pipeline. 

 

 
 

Figure 2. The transfer learning pipeline 

 

Four cutting-edge pretrained networks—MobileNetv2, 

ResNet50, ResNet101, and AlexNet—were used in this study 

in extracting the deep features from the previously trained 

networks. These networks were refined using the chest x-ray 

dataset after being pre-trained on the ImageNet dataset, 

containing one million images divided into 1,000 classes. In 

this study, the chest X-ray images will be fed into each pre-

trained network individually in extracting the highlighted 

vectors at the fully connected layer. All training was done 

using the Python programming language in Jupyter Notebook. 

MobileNetv2 and ResNet50 was implemented with 

TensorFlow Keras library while ResNet101 and AlexNet were 

implemented on PyTorch library on Intel(R) Core (TM) i5-

2,520M central processing unit operating at 2.50 GHz, and 

RAM comprised of 8GB 2,400 MHz DDR4 modules. 

The model was trained for 6-subclass classification 

(Coronavirus, tuberculosis, viral pneumonia, bacterial lung 

opacity, and pneumonia) and 5-subclass classification 

(COVID-19, viral pneumonia, bacterial pneumonia, lung 

opacity, and tuberculosis) for all the models. The model was 

trained for 4-subclass classification (COVID-19, Viral 

Pneumonia, lung opacity, and bacterial pneumonia) for 

MobileNetV2 and ResNet-50. Each model has a batch size of 

32, drop out of 0.6, a learning rate of 0.001, global average 

pooling, and Adam optimiser was employed for the precise 

classification. 

The models will be evaluated using five criteria which are 

accuracy, recall, precision, specificity, and F1-score. They are 

as described in Eqs. (1)-(4): 

 

TP TN
Accuracy

TP TN FP FN

+
=

+ + +
 (1) 

 

Pr
TP

ecision
TP FP

=
+

 (2) 

 

Re
TP

call
TP FP

=
+

 (3) 

 

2* *Re
1

 Re
 

Pr

precision call
F Score

ecision call
=

+
 (4) 

 

where, TP (True Positive), TN (True Negative), FN (False 

Negative) and FP (False Positive). 

Also, confusion matrices analysis was used in validating the 

model [17]. The confusion matrix provides extra details on the 

illustration of the classification model. The confusion matrix 

has two types of elements: diagonal and off-diagonal. The 

diagonal elements depict how many points have predicted 

labels that match actual labels, indicating that the point is 

correctly classified. Off-diagonal elements represent how 

many of the points for which the classifier mislabelled or 

misclassified the data. The more accurate the predictions that 

the model was able to make, indicated by the diagonal 

numbers of the confusion matrix indicates the prediction that 

the model was able to make accurately. 

The model was iterated using the forward propagation as 

well as the backward propagation utilising Adam optimiser. 

The optimised repetitions of forward and backward 

propagation making the model optimised for classification of 

the lung diseases. 

Adam Optimizer is defined as shown in Eq. (5): 

 

*t
t

t

V
w g

S
 =

+
 (5) 

 

η: Initial learning rate; 

Gt: Gradient at time t along wj; 

Vt: Exponential average of squares of gradients along wj; 

St: Exponential average of squares of gradients along wj; and 

∈: Smoothing term. 
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3. RESULT 

 

In this section, the distinct metrics for the classification of 

lung-related diseases were observed, followed by the accuracy 

observation. The model was trained in detecting and 

classifying lung disease-confirmed cases by means of chest X-

rays images. The dataset was built with a randomly chosen 

evenly distributed amount of chest x-rays from the chosen 

repository to eliminate bias effects. Different dataset was used 

for each of the training, validation, and testing. In essence, the 

test dataset has not been known aforehand by the model, this 

will make the model perform excellently on the new dataset. 

For each of the 6-subclass classifications, the 

implementation for lung-related disease cases was trained and 

validated. For all of them, the model was trained for 10 epochs 

with a batch size of 32. The results of the analysis of the 6-

subclass lung-related diseases with a balanced dataset with the 

deep feature extraction pipeline are presented.  

Figure 3 shows the trained and validated losses of each of 

the models, whereas Figure 4 showed the trained and validated 

accuracy for each of the models. In each of the epochs, 

ResNet50 had the lowest training loss and also had the highest 

training accuracy. This implies that the lung diseases were able 

to train well on the ResNet50 model. 

 

 
 

Figure 3. Trained and validated accuracy model for six-subclass classification 

 

 
 

Figure 4. Trained and validated loss model for six-subclass classification 

 

 
 

Figure 5. Confusion matrix for MobileNetv2 for 6-subclass 

classification for classification of lung-related diseases 

 

The confusion matrix for the 6-subclass classification of 

lung-related disease dataset with MobileNetv2 is presented in 

Figure 5. COVID-19, viral pneumonia, and bacteria 

pneumonia achieved good classification performance in 

comparison to the other classes of diseases. The model is able 

to classify the occurrence of one lung disease. This will enable 

the patient to quickly take adequate precautions. Furthermore, 

classification measures for each class in terms of precision, 

recall, specificity, F1-score were also determined (Table 2). 

The highest precision was for COVID-19, viral pneumonia, 

and bacterial pneumonia, which demonstrates the method's 

potential for use in assisting with the quick classification of 

bacterial, viral, and COVID-19 pneumonia. Table 3 displays 

the ResNet50 results for macro average metrics for 6-subclass 

classification. Nevertheless, Table 4 shows the MobileNetv2 

results for macro average metrics for 5-subclass classification. 

In addition, Figures 6-8 show the confusion matrix of 

ResNet50, ResNet101 and AlexNet respectively. The models 

have a good classification for each of the lung-related diseases. 
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Table 2. MobileNetv2 results for macro average metrics for 

6-subclass classification 
 

Dataset Precision Recall F1-Score Support 

Bacteria Pneumonia 0.93 1.00 0.96 186 

Lung_Opacity 0.70 0.64 0.67 222 

Viral Pneumonia 0.94 0.56 0.70 336 

COVID-19 0.99 0.78 0.87 255 

Normal 0.10 0.79 0.17 24 

Tuberculosis 0.82 0.93 0.87 177 

 

 
 

Figure 6. Confusion matrix for ResNet50 for 6-subclass 

classification for the classification of lung-related diseases 

 

Table 3. ResNet50 results for macro average metrics for 6-

subclass classification 

 
Dataset Precision Recall F1-Score Support 

Bacteria Pneumonia 0.94 0.99 0.97 191 

Lung_Opacity 0.89 0.73 0.80 243 

Viral Pneumonia 0.94 0.65 0.77 286 

COVID-19 0.91 0.89 0.90 205 

Normal 0.20 0.95 0.33 42 

Tuberculosis 0.94 0.81 0.87 233 

 

Table 4. MobileNetv2 results for macro average metrics for 

5-subclass classification 

 
Dataset Precision Recall F1-Score  Support 

Lung-Opacity 0.70 0.86 0.77 163 

Viral Pneumonia 0.94 0.75 0.83 251 

COVID  0.99 0.84 0.91 235 

Normal 0.55 0.91 0.69 121 

Tuberculosis 0.76 0.62 0.68 170 

 

 
 

Figure 7. Confusion matrix for ResNet101 for 6-subclass 

classification for classification of lung-related diseases 

 

 
 

Figure 8. Confusion matrix for AlexNet for 6-subclass 

classification for detection of lung-related diseases 

 
 

Figure 9. Trained and validated loss model for five-subclass classification 
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Figure 10. Trained and validated accuracy model for five-subclass classification 

 

 
 

Figure 11. Confusion matrix for MobileNetv2 for 5-subclass 

classification for the classification of lung-related diseases 

 

Moreover, MobileNetV2, ResNet50, ResNet101, and 

AlexNet architectures were trained on a total of 5,000 datasets 

for five-subclass classification. Chest x-ray consists of 1,000 

images each for the lung-related disease (Lung-Opacity, 

COVID-19, Viral pneumonia, normal, and tuberculosis) with 

the dataset divided in the proportion of 80:20 for training and 

testing, the training dataset was additionally divided into 

training and validation.  

Figure 9 illustrates the trained and validated loss of each of 

the model, whereas Figure 10 shows the trained and validated 

accuracy for each of the model. In each of the epochs, 

ResNet50 had lowest training loss and had the highest training 

accuracy. This implies that the lung diseases were able to train 

well on the ResNet50 model. 

 
Figure 12. Confusion matrix for ResNet101 for 5-subclass 

classification for detection of lung-related diseases 

 
 

Figure 13. Confusion matrix for ResNet50 for 5-subclass 

classification for detection of lung-related diseases 

 

 
 

Figure 14. Confusion matrix for AlexNet for 5-subclass 

classification for the classification of lung-related diseases 

 

Figure 11 depicts Confusion matrix for MobileNetv2 for 5-

subclass classification for the classification of lung-related 

diseases while Figure 12 shows the confusion matrix for 

ResNet101 for 5-subclass classification for detection of lung-

related diseases while Figures 12 and 13 show the confusion 

matrix for ResNet50 and ResNet101 for 5-subclass 

classification for detection of lung-related diseases 

respectively. Finally, Figure 14 shows the confusion matrix for 

AlexNet for 5-subclass classification for the classification of 

lung-related diseases. 
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4. DISCUSSION 

 

In this study, MobileNetV2 and ResNet50 were built as 

lightweight deep-learning models for lung-related disease 

identification and classification in chest X-rays. Also, 

ResNet101 and AlexNet models were also trained using the 

same dataset with PyTorch libraries. The architecture of the 

model is used in the classification of the most prevalent and 

pandemic lung-related diseases: bacterial pneumonia, lung 

opacity, viral pneumonia, COVID, normal, and tuberculosis. 

The model compared the performance of the accuracy, recall, 

precision, F1 score. The highest training accuracy was 

achieved 97% and the testing accuracy is 94% indicating that 

model is able to classify each of the lung-related diseases 

accurately. 

For six classifications, ResNet-50 outperformed 

MobileNetV2 in terms of accuracy, as evidenced by the 

confusion matrices and average accuracies. In ten (10) epochs, 

the accuracy of the ResNet-50 is 97%, whereas that of the 

MobileNetV2 is 86.35%. However, MobileNet's training has 

the lowest time. In the process of increasing the number of 

epochs, accuracy will undoubtedly continue to rise. In 

comparison to MobileNet, ResNet-50, ResNet101, and 

AlexNet, ResNet50 has the highest training and testing 

accuracy for the detection of lung-related diseases. The 

accuracy of each of the model is shown in Table 5. 

Furthermore, Table 6 shown the comparison of the training 

time for each of the model and classification.  

 

Table 5. Comparison with earlier literature on classification of lung-related diseases with X-ray images of the chest 

 
Author(s) Dataset Techniques Used Accuracy 

Al-Timemy et al. 

[18] 

5-subclasses: 

435 COVID-19/ 439 normal/ 439  

pneumonia bacterial/ 434 Tuberculosis/ 439 pneumonia viral 

3-subclasses: 

435 COVID-19/ 434  

Tuberculosis / 439 normal 

The subspace discriminant 

classifier ensemble of Resnet50 

91.6 

98.6 

Jia et al. [19] 

5-subclasses 

1770 COVID-19, 1436 Tuberculosis, 1345 viral pneumonia, 1700 

bacterial pneumonia and 1341 normal 

4-subclasses 

1700 COVID-19, 1341, viral pneumonia, 1436 tuberculosis, 1341 

healthy 

3-subclasses 

1770 COVID-19, 1341 viral pneumonia, and 1341 healthy 

Modified MobileNet 

99.6 

99.9 

99.7 

Ozturk et al. [20] 

3-subclass: 

125 COVID-19/ 500  

Pneumonia/ 500 Normal 

DarkCOVIDNet CNN 87.2 

Khan et al. [21]  

4-subclass: 

284 COVID-19/ 310 normal/ 330  

pneumonia bacterial/ 327 pneumonia viral 

CoroNet CNN 89.6 

This study 

6 subclasses 

1000 Bacteria pneumonia, 1000 Lung-Opacity, 1000 Viral pneumonia, 

1000 COVID, 1000 normal, 1000 tuberculosis 

MobileNetV2 

ResNet50 

ResNet101 

AlexNet 

92 

97 

82 

85 

 

5 subclasses 

1000 Lung-Opacity, 1000 Viral pneumonia, 1000 COVID, 1000 

normal, 1000 tuberculosis 

4 subclasses 

MobileNetV2 

ResNet50 

ResNet101 

AlexNet 

84 

91 

79 

84 

 
1000 Lung-Opacity, 1000 Viral pneumonia, 1000 COVID, 1000 

normal 

MobileNetV2 

ResNet50 

88 

96 

 

Table 6. Comparison of the training time 

 
Model Classification Time (Sec) 

ResNet50 6- Subclass 190.18 

MobileNetV2 6 - Subclass 71 

ResNet50 5- Subclass 150.56 

MobileNetV2 5 - Subclass 40.86 

ResNet50 4- Subclass 189.53 

MobileNetV2 4 - Subclass 34.54 

 

 
5. CONCLUSION 

 
In the present study, a multi-pronged approach was adopted, 

leveraging the capabilities of MobileNetv2, ResNet50, 

ResNet101, and AlexNet models. These models, endowed 

with the previously trained weights of ImageNet and fine-

tuned, were deployed for the categorization of lung-related 

diseases based on chest X-ray images. The overarching aim 

was to augment the diagnostic capabilities of Computer-Aided 

Diagnostics (CADs), particularly in terms of accuracy and 

efficiency. 

Lung disorders exhibit chest X-ray characteristics that bear 

a striking similarity to each other, rendering early 

classification a matter of paramount importance. In this 

context, the present study's focus on the utilization of pre-

trained networks, devoid of GPU support, emerges as a key 

feature. A CPU-enabled computer was harnessed for the 

efficient extraction of deep features from chest X-ray images. 

Moreover, the classification accuracy was evaluated across 

six, five, and four subclass classifications. This study 

demonstrated the potential of pipelines requiring minimal 

computational power, thereby contributing to the 

classification of lung-related diseases using chest X-ray 

images, particularly in scenarios where more sophisticated or 

computationally intensive techniques might be unavailable. 
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