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Advancements in information and communication technology have facilitated diverse 

operational environments, spanning across financial to military sectors. However, these 

advancements carry an escalation in cybersecurity threats, potentially compromising 

user privacy and security. Among the various mechanisms introduced to mitigate these 

threats, data hiding methods stand out. These methods embed covert data within cover 

data, such as audio and video files, thereby providing an additional layer of security. In 

this study, we develop upon the existing data hiding techniques, enhancing their 

capacity to conceal varied sizes of covert data. Our proposed method leverages both 

right and bottom context pixels for a more nuanced data hiding approach. The 

effectiveness of this scheme is evaluated by quantifying the quality of the stego data, 

represented by the Peak Signal to Noise Ratio (PSNR) value. Our initial findings 

indicate that our method yields superior stego data quality, suggesting its potential to 

accommodate a larger volume of covert data while preserving the similarity between 

the cover and stego files. This study thus contributes to more robust and efficient data 

hiding techniques, bolstering cybersecurity measures in the face of increasing digital 

threats. 
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1. INTRODUCTION

The rapid advancement of information technology has 

precipitated the swift development of computer networks, 

largely facilitating data transfer between devices. This 

progress, ubiquitous in nature, is uncompromised by location 

or time, provided network availability. A plethora of 

applications, compatible with various devices like 

smartphones and laptops, have been designed to cater to user 

demands, bolstered by the supportive services offered by 

software and hardware companies. 

However, this technological progress is not without its 

drawbacks. Security has consistently emerged as a significant 

concern, primarily due to the potential exploitation by third 

parties leveraging user unawareness. This could potentially 

lead to the public disclosure of user privacy. As such, 

mechanisms to safeguard covert data are paramount. Several 

methodologies have been introduced to address this issue, 

including the development of Intrusion Detection Systems [1, 

2], message encryption [3, 4], and data embedding techniques 

[5, 6]. 

Data embedding involves the integration of covert data into 

a cover file, such as an image or audio file (illustrated in Figure 

1). The challenge lies in ensuring the generated stego file bears 

resemblance to the cover file. This method, since its 

introduction, has encountered numerous challenges, including 

maintaining the quality of the stego file and determining the 

size of the covert data that the cover file can accommodate. 

While existing methods have shown improvements over their 

predecessors, there remains a persistent need for increased 

covert data size and improved stego file quality, contingent on 

the respective environment. A typical trade-off between the 

size of covert data and the quality of the stego file has been 

identified, necessitating user focus on one of these aspects. 

Ni et al. [7] introduced the concept of histogram shifting, 

applicable to both images and video files, considering that 

videos are essentially a compilation of pixel-containing frames. 

The peak and zero points are defined, determining the 

direction of the shifting process. However, this process affects 

the quality of the stego file, as pixel values within specific 

ranges are affected. Moreover, excessive pixel shifting is 

likely to degrade the stego file quality. 

Subsequent research developed a prediction error (PE) 

between two sequential frames [8]. The PE value is derived 

from the difference between corresponding pixels in the 

frames, generating a histogram where the embedding process 

is to be conducted. Similar to prior research, the shifting 

direction is determined to provide the embedding space. 

In contrast, Qu and Kim [9] adopted a different approach, 

Pixel based Pixel Value Ordering (PPVO), wherein an image 

is divided into context pixels of predetermined sizes (such as 

2×2 or 4×4). The minimum and maximum values of each 

context pixel are obtained to predict a value for embedding. 

The considered pixel in each image is compared to the 

minimum value for this prediction. The value is equal to either 

the minimum or the maximum, depending on the result of this 
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comparison. 

Drawing inspiration from Qu and Kim's research [9], we 

designed a method [10] that considers pixels to the right and 

bottom of the context (illustrated in Figure 2). The average of 

these values specifies the embedding process. This approach 

was found to enhance the performance of both Ni et al.'s and 

Qu and Kim's methods [7, 9], although it still slightly lags 

behind that of PE [8]. Various other data-hiding approaches 

can be found in studies [11-14], with specific purposes like 

Arabic text [15] and deep learning [16] also implemented. 

Techniques to break these data-hiding methods have been 

introduced [17, 18], perpetuating the competition between 

steganography (data hiding) and steganalysis [19]. 

In this study, we propose a video-based data-hiding method, 

improving upon previous methods by utilizing frames in the 

video file as the basis for embedding. A histogram is generated 

and the shifting direction is determined based on set criteria. 

Acknowledging the strengths and limitations of previous 

research, the proposed method aims to enhance the capacity to 

hide covert data. We continue to address two primary factors: 

the size of covert data and the quality of the stego file, as 

detailed in the following section. 

This paper is structured as follows: Section 2 details the 

methodology of the proposed approach. Section 3 presents the 

experimental results, analysis, and discussion, including a 

comparison with other research. The conclusion is provided in 

Section 4. 

 

 
 

Figure 1. General process of data hiding 

 

 
 

Figure 2. Illustration of a context pixel 

 

 

2. METHODOLOGY 

 

As previously described, this proposed method is developed 

by improving our proposed method [10], which extended [7, 

8]. In the study [10], we take the average value of the bottom 

and right pixels. It is to enhance the HS method [7], which is 

done according to the direction of the pixel with the lowest 

frequency. In the NS method [8], the shift is made in the 

direction of prediction errors based on the most significant 

value.  

Differently, in this research, we arrange it based on the 

direction of pixels or prediction error with either the smallest 

frequency, the largest value, or the smallest value. The 

remaining payload, pixels or prediction errors that may be 

shifted and also the peak point value in the frame or prediction 

errors are taken to consider the shift direction. The illustration 

of this proposed process is given in Figure 3. 

At the embedding stage, the video sample is processed to 

get all pixel values of each frame. The prediction error is 

searched for every two frames that are close to each other by 

reducing the pixel of a frame by the corresponding pixel in its 

subsequent frame (see Figure 4). Then, a histogram is created 

for each frame beside the first frame and each prediction error, 

where the shifting is performed. From each histogram, we 

determine four peak points and six zero points by considering 

the following factors: 

• p1 is the peak point one, the highest frequency in the 

frame 

• p2 is the peak point two, the highest frequency in the 

prediction error 

• p3 is the peak point three, the second highest frequency 

in the frame 

• p4 is the peak point four, the second highest frequency 

in the prediction error 

• z1 is the zero point one, the lowest frequency in the 

frame 

• z2 is the zero point two, the lowest value in the frame 

• z3 is the zero point three, the highest value in the frame 

• z4 is the zero point four, the lowest frequency in the 

prediction error 

• z5 is the zero point five, the lowest value in the 

prediction error 

• z6 is the zero point six, the highest value in the 

prediction error 

Next, some values are specified based on those definitions, 

as in Eqs. (1)-(8). 
 

𝑝5 = 𝑚𝑎𝑥(𝑝1, 𝑝3) (1) 
 

𝑝6 = 𝑚𝑖𝑛(𝑝1, 𝑝3) (2) 
 

𝑝7 = 𝑚𝑎𝑥(𝑝2, 𝑝4) (3) 
 

𝑝8 = 𝑚𝑖𝑛(𝑝2, 𝑝4) (4) 
 

𝑧7 = {
𝑧1, 𝑖𝑓 𝑧1 > 𝑝5

𝑧3, otherwise
  (5) 

 

𝑧8 = {
𝑧1, 𝑖𝑓 𝑧1 < 𝑝6

𝑧2, otherwise
  (6) 

 

𝑧9 = {
𝑧4, 𝑖𝑓 𝑧4 > 𝑝7

𝑧6, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (7) 

 

𝑧10 = {
𝑧4, 𝑖𝑓 𝑧4 < 𝑝8

𝑧5, otherwise
  (8) 

 

It needs to get the value of the ith payload to be inserted (ϵi) 

by finding the lowest value of the ith peak point frequency (fpi) 

and the remaining payload (r) based on Eq. (9). 
 

ϵ𝑖 = {
𝑚𝑖𝑛(𝑓𝑝𝑖 + 𝑓𝑝𝑖−2, 𝑟), if 𝑖 = 3 or 𝑖 = 4 

𝑚𝑖𝑛(𝑓𝑝𝑖 , 𝑟), otherwise
  (9) 
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The moving direction in the embedding is determined 

based on the highest value obtained from Eqs. (10)-(17). The 

kth histogram value (hk) is determined by ϵ and the number of 

pixels si.j) having a value between the ith peak point (pi) and the 

jth zero point (zj). 

Figure 3. The flow of the embedding process 

Figure 4. Generating prediction error 

ℎ1 =
ϵ1

𝑠1.1
(10) 

ℎ2 =
ϵ1

𝑠1.2
(11) 

ℎ3 =
ϵ1

𝑠1.3
(12) 

ℎ4 =
ϵ2

𝑠2.4
(13) 

ℎ5 =
ϵ2

𝑠2.5
(14) 

ℎ6 =
ϵ2

𝑠2.6
(15) 

ℎ7 =
ϵ3

𝑠5.7+𝑠6.8
(16) 

ℎ8 =
ϵ4

𝑠7.9+𝑠8.10
(17) 

Some highest h are selected, which are peak and zero points. 

If the selected h is either from h1, h2, h3, or h7, the shifting is 

performed in the frame; otherwise, in the prediction error. 

Here, all numbers between the peak and zero points are shifted 

toward zero points. In case the value of selected h is either h7 
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or h8, we select the highest peak point to be the top peak point, 

and the other is to be the bottom peak point. Next, all numbers 

higher than the top peak point are shifted to the right, and those 

less than the bottom peak point are to the left. According to the 

value of the payload bit, the peak point is shifted to the zero 

point; for either Eq. (16) or Eq. (17), the top peak point is 

shifted to the right, and the bottom peak point to the left. 

 

 

3. RESULTS AND DISCUSSION 

 

For this experiment, fifteen videos taken from [20] are used 

for evaluation, whose examples are provided in Figure 5. Each 

video has 600 frames, sizing 176×144. They are to be 

embedded using various payload sizes: 1, 10, 20, 30, 40, 50, 

60, 70, 80, 90, and 100 kb. Furthermore, we compare the 

performance of this proposed method to that of other existing 

methods of Ahmad et al. [10], Ni et al. [7], Yeh et al. [8], and 

Qu and Kim [9]. Similar to other research, PSNR is used to 

evaluate the quality of the stego video. 

The experimental results of the proposed method are 

provided in Table 1, while others are in Tables 2, 3, 4, and 5, 

which are HS [7], NS [8], PPVO [9] with 3 context pixels, and 

PPVO [9] with 5 context pixels, respectively. We find that the 

average of the obtained PSNR is 71.597 dB; the highest value, 

91.82 dB, is obtained using Foreman after being embedded 

using 1 kb payload and the lowest PSNR value, 62.84 dB, is 

from Coastguard containing 100 kb. It is shown that along with 

the increase in the payload size, the PSNR value decreases. 

Some video covers have lower PSNR values even though they 

are embedded by less payload size, such as Akiyo with 10 kb 

and Silent with 1kb. It happens because when choosing the 

direction of shifting, the value of the number of shifted pixels 

is proportional to the number of peak points; at the same time, 

the PSNR calculation is not comparable. In this method, the 

most influencing factor on the quality of the stego video is the 

number of shifted pixels, which have values between peak and 

zero points. The closer the peak point to the zero point, the 

better the quality of the stego video. 

The experiment shows that HS [7] has lower PSNR. It is 

because it shifts all values between the peak and zero points, 

whose number is almost the same as the payload size to embed. 

It is worth noting that the more payloads being embedded, the 

more pixels are shifted because their value is between the peak 

and zero points. On the other hand, the PSNR of NS [8] is 

closer to that of the proposed method. Different from HS, NS 

only shifts the prediction error whose value is higher than the 

peak point in the respective prediction error. Because the 

shifted prediction error values are higher than the peak point, 

the quality of their stego video is less than that of the proposed 

method. 

PPVO [9] using both 3 and 15 context pixels has higher 

PSNR values than HS [7] but still less than both NS [8] and 

the proposed method. We find that the proposed method has 

the highest average PSNR increase than the PPVO method, 

specifically in Silent video. Here, there is an increase of 12% 

from PPVO 3 context pixels, and 10% from PPVO 15 context 

pixels. The proposed method is also better than our previous 

research [10], considering that this study is developed by 

refining some weaknesses in that research. 

 

 
 

Figure 5. Videos taken for the cover [20] 

 

Table 1. PSNR values of the proposed method 

 

Video 
PSNR Value (dB) from Various Payload Sizes (kb) 

1kb 10kb 20kb 30kb 40kb 50kb 60kb 70kb 80kb 90kb 100kb 

Akiyo 78.21 70.29 78.07 76.60 75.40 74.50 73.73 73.10 68.95 71.93 71.50 

Bowing 83.56 79.76 77.63 76.23 75.11 74.26 73.53 72.93 72.24 71.74 71.33 

Carphone 78.02 74.53 73.78 70.95 70.59 69.05 68.81 67.84 67.75 67.56 66.94 

Claire 77.35 76.10 75.05 74.22 73.50 72.01 71.60 71.27 70.97 70.66 69.89 

Coastguard 75.40 73.22 70.18 68.35 66.41 65.60 64.52 64.33 63.71 63.22 62.84 

Container 80.75 78.57 76.88 75.68 74.68 73.91 73.23 71.74 71.36 70.96 70.61 

Deadline 78.69 73.75 73.11 68.78 70.38 70.09 67.72 68.66 68.47 68.25 66.19 

Foreman 91.82 81.66 72.52 69.99 69.70 68.18 66.99 66.85 66.72 65.78 65.13 

Galleon 74.17 74.04 73.37 71.17 70.80 70.47 70.15 69.13 68.92 68.68 67.05 

Grandma 79.34 77.62 76.31 75.34 74.51 73.80 72.63 72.14 71.71 71.27 70.90 

Mother_daughter 75.94 76.97 75.75 74.82 74.00 73.35 68.95 71.67 71.29 70.89 70.56 

Pamphlet 75.79 74.98 74.14 73.46 71.84 71.42 71.02 70.67 70.37 70.03 69.37 

Paris 77.07 73.33 69.61 70.38 70.06 68.63 68.41 68.24 67.31 67.14 67.01 

Sign_irene 77.38 76.12 75.07 74.24 73.50 71.47 71.07 70.72 70.40 70.13 69.12 

Silent 72.50 79.50 77.48 76.12 75.03 74.20 73.48 69.71 71.89 71.43 71.05 
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Table 2. PSNR values of the histogram shifting [7] 

 

Video 
PSNR Value (dB) from Various Payload Sizes (kb) 

1kb 10kb 20kb 30kb 40kb 50kb 60kb 70kb 80kb 90kb 100kb 

Akiyo 70.87 63.06 60.05 58.54 57.22 56.22 55.53 54.83 54.32 53.87 53.38 

Bowing 70.02 63.95 60.94 59.18 57.93 57.18 56.35 56.15 56.12 55.77 55.38 

Carphone 80.61 62.04 58.40 56.50 55.19 54.06 53.26 52.83 52.28 51.74 51.27 

Claire 70.48 67.33 65.53 64.26 63.28 61.85 61.26 60.74 60.28 59.86 59.15 

Coastguard 74.77 66.67 63.64 62.16 60.95 59.89 59.17 58.44 57.88 57.45 57.08 

Container 70.05 62.25 59.62 57.99 56.61 55.71 54.71 54.12 53.50 52.95 52.54 

Deadline 78.75 63.52 60.27 58.36 57.28 56.28 55.43 54.85 54.22 53.77 53.26 

Foreman 69.99 61.52 58.43 56.75 55.49 54.66 53.85 53.07 52.49 51.97 51.47 

Galleon 74.33 65.94 62.57 60.42 59.17 58.04 57.14 56.52 55.89 55.33 54.92 

Grandma 70.14 65.30 63.06 61.59 60.50 59.62 58.90 58.27 57.73 57.24 56.61 

Mother_daughter 75.94 68.09 65.25 63.68 62.72 61.78 60.86 60.19 59.63 59.22 58.76 

Pamphlet 69.96 62.17 60.36 58.46 57.14 56.14 55.47 54.76 54.26 53.71 53.22 

Paris 77.12 67.98 65.05 63.48 62.23 61.40 60.66 60.06 59.55 57.98 56.02 

Sign_irene 70.04 63.97 61.53 59.57 58.22 57.42 56.55 56.00 55.35 54.92 54.41 

Silent 72.50 61.48 57.84 55.93 54.76 53.71 52.91 52.23 51.68 51.30 50.85 

 

Table 3. PSNR values of the neighboring similarity [8] 

 

Video 
PSNR Value (dB) from Various Payload Sizes (kb) 

1kb 10kb 20kb 30kb 40kb 50kb 60kb 70kb 80kb 90kb 100kb 

Akiyo 82.40 79.28 77.38 76.10 75.02 74.19 73.46 72.87 72.08 71.61 71.23 

Bowing 80.79 78.39 76.74 75.57 74.59 73.83 73.16 72.61 71.10 70.71 70.38 

Carphone 71.40 71.04 70.69 67.78 67.60 66.19 64.86 64.77 63.86 63.78 63.04 

Claire 74.35 73.68 73.05 72.51 72.01 70.05 69.75 69.49 69.26 69.00 68.78 

Coastguard 71.57 71.20 68.07 66.30 65.07 64.98 64.03 63.24 62.59 62.54 61.94 

Container 77.71 76.49 75.37 74.49 73.71 73.08 72.51 70.35 70.08 69.77 69.51 

Deadline 71.34 71.00 70.65 68.42 68.21 68.02 66.74 66.61 66.48 66.34 66.22 

Foreman 71.78 71.40 71.02 67.93 67.75 66.24 66.12 66.00 64.70 64.61 63.63 

Galleon 71.52 71.20 70.84 68.51 68.31 68.12 67.93 66.39 66.27 65.13 65.05 

Grandma 75.68 74.79 74.00 73.33 72.72 72.21 70.95 70.61 70.30 69.98 69.70 

Mother_daughter 75.58 74.70 73.92 73.27 72.67 72.16 70.41 70.10 69.83 69.54 69.28 

Pamphlet 72.74 72.26 71.80 71.39 69.91 69.64 69.37 69.13 68.91 68.67 68.12 

Paris 72.34 71.90 68.66 68.45 68.25 66.72 66.58 66.45 65.36 65.26 65.16 

Sign_irene 74.26 73.60 72.98 72.44 71.94 69.52 69.26 69.03 68.81 68.58 67.23 

Silent 80.11 78.05 76.51 75.38 74.45 73.71 73.05 71.47 71.12 70.73 70.40 

 

 
 

Figure 6. Average PSNR values from various payload sizes 

 

The average of the PSNR values taken by embedding 

various videos is provided in Figure 6. In this graph, the 

respective payload size is embedded in all covers. Overall, it 

is shown that the proposed method has the best results, 

followed by the NS [8]. On the other hand, HS [7] has the 

lowest results, and the PPVO [9] is between them. It can be 

inferred that the proposed method, in general, can work on 

both various covers and payload sizes. Therefore, it is more 

applicable to use than the others.  

Nevertheless, it is worth noting that in specific cases, the 

others may be better than the proposed method. For example, 

NS [8] is more suitable for embedding 1 kb data to either 

Akiyo or Silent. It is predicted that those videos have different 

characteristics from others.
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Table 4. PSNR values of the PPVO [9] with 3 context pixel 
 

Video 
PSNR Value (dB) from Various Payload Sizes (kb) 

1kb 10kb 20kb 30kb 40kb 50kb 60kb 70kb 80kb 90kb 100kb 

Akiyo 73.54 73.05 72.55 69.76 69.52 69.28 67.74 67.60 67.45 66.37 66.27 

Bowing 73.81 73.40 72.80 72.29 69.79 69.52 69.27 69.03 67.68 67.51 67.35 

Carphone 73.31 72.77 72.26 69.53 69.26 67.69 67.52 66.42 66.30 65.44 65.34 

Claire 74.37 73.82 73.35 72.93 72.64 70.23 70.01 69.81 69.66 69.51 68.14 

Coastguard 71.10 67.93 64.91 63.14 61.89 61.35 60.48 59.75 59.13 58.59 58.33 

Container 72.67 72.31 71.84 69.07 68.84 67.23 67.08 65.94 65.85 64.95 64.88 

Deadline 72.83 72.35 69.33 69.10 67.39 67.24 66.06 65.14 65.06 64.30 64.23 

Foreman 72.69 72.24 69.23 69.01 67.29 67.15 65.96 65.86 64.95 64.85 64.11 

Galleon 72.23 71.93 68.92 67.15 67.04 65.82 64.86 64.08 64.03 63.37 62.80 

Grandma 73.21 72.80 72.46 69.61 69.40 69.23 67.64 67.51 67.42 66.30 66.20 

Mother_daughter 73.49 72.98 72.48 69.72 69.47 69.24 67.72 67.57 67.42 66.35 66.24 

Pamphlet 72.23 71.88 68.85 68.64 66.93 66.79 65.61 65.50 64.60 63.84 63.77 

Paris 72.13 71.72 68.69 66.93 65.67 64.70 63.90 63.23 62.65 62.13 61.29 

Sign_irene 73.26 72.73 72.22 69.57 69.31 69.07 67.57 67.42 67.30 66.22 66.10 

Silent 72.08 71.68 68.67 66.92 65.66 64.69 63.90 63.83 63.18 62.61 62.10 
 

Table 5. PSNR values of the PPVO [9] with 5 context pixel 
 

Video 
PSNR Value (dB) from Various Payload Sizes (kb) 

1kb 10kb 20kb 30kb 40kb 50kb 60kb 70kb 80kb 90kb 100kb 

Akiyo 74.97 74.35 73.68 70.97 70.65 69.08 68.89 67.77 67.65 66.76 66.66 

Bowing 75.47 74.89 74.07 73.39 71.05 70.70 70.37 68.99 68.83 68.59 68.39 

Carphone 74.50 73.82 70.83 70.50 68.83 67.64 67.47 66.57 66.45 65.71 65.61 

Claire 74.83 74.24 73.74 73.32 73.06 70.64 70.41 70.21 70.11 68.71 68.57 

Coastguard 74.53 69.47 67.21 65.19 64.19 63.07 62.43 61.65 61.18 60.58 60.21 

Container 74.72 74.16 71.11 70.84 69.14 68.96 67.80 67.67 66.80 66.67 65.95 

Deadline 75.30 74.49 71.52 69.77 68.51 67.55 67.39 66.63 65.99 65.42 64.92 

Foreman 75.25 74.49 71.45 69.65 68.37 68.20 67.24 66.45 65.80 65.68 65.12 

Galleon 74.45 74.04 71.07 69.33 68.07 67.10 67.02 66.24 65.60 65.02 64.52 

Grandma 75.31 74.71 74.24 71.44 71.18 70.95 69.41 69.27 68.17 68.04 67.94 

Mother_daughter 75.46 74.68 73.98 71.35 70.98 69.46 69.23 69.02 68.00 67.81 67.01 

Pamphlet 74.29 73.76 70.78 70.46 68.79 67.60 67.44 66.54 65.80 65.13 65.07 

Paris 74.92 71.65 69.83 67.68 66.25 65.64 64.69 63.91 63.55 62.93 62.63 

Sign_irene 74.67 73.96 73.41 70.76 70.41 68.91 68.69 67.64 67.47 67.36 66.50 

Silent 74.44 71.14 69.27 67.96 66.95 66.13 65.45 64.42 63.96 63.52 63.13 

 

 

4. CONCLUSIONS 
 

This study has enhanced the performance of existing data 

hiding methodologies. Drawing parallels to prior research, 

certain pixels were grouped into blocks. However, diverging 

from previous methods, specific directions for histogram 

shifting were defined. Experimental results have demonstrated 

that this proposed method generally augments the capacity for 

concealing covert data. 

Future iterations of this method could potentially further 

improve stego quality or increase payload size. Such 

enhancements might be achieved through the identification of 

more suitable steps for determining the direction of histogram 

shifting. Additionally, a comprehensive analysis of the 

characteristics of the covers could elucidate which algorithms 

are best suited for specific covers. These covers could be 

categorized based on defined parameters, providing tailored 

solutions. 

While the proposed method may necessitate complex 

calculations, potentially decelerating execution, it should be 

noted that this could pose a problem where time is a primary 

factor. Therefore, further refinement is still warranted to 

mitigate this issue. 
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