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The computation of fair values for exotic options often necessitates complex pricing 

techniques, which remain sparsely addressed in academic literature. Predominantly, the 

assessment of fair value for vanilla options relies on methodologies such as the Black-

Scholes model or Monte Carlo simulations. This study proposes an innovative, dynamic 

approach to pricing, leveraging artificial intelligence in conjunction with the Heston 

model and a Monte Carlo simulation engine. This approach aims to furnish estimates 

of the prices for Barrier and Asian options. To enhance the accuracy of the model, 

calibration was performed employing a supervised machine learning algorithm, a 

continuous risk-free curve, and a dynamic implied volatility surface, derived from the 

current market data of vanilla options on S&P 500 futures. The amalgamation of these 

models yields instantaneous pricing for exotic option derivatives, contingent on the 

investor's determination of time to maturity and barrier levels. The efficacy of the model 

was evaluated by comparing the output prices to theoretical model predictions and a 

selection of over-the-counter traded options. Our findings indicate that the proposed 

dynamic, integrated approach substantially reduces the disparity between the theoretical 

models and current market prices. The prices calculated by our model demonstrate a 

marginal error of merely 0.33% in comparison to market prices, a significant 

improvement over the considerably larger error of 3.12% exhibited by traditional 

models. 
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1. INTRODUCTION

1.1 General background of the topic 

Banks and other financial institutions widely employ 

mathematical models in their efforts to price and value 

financial derivatives. Despite the persistent use of the Black-

Scholes model for option pricing and valuation by industry 

professionals, a significant body of empirical research 

suggests that this model inadequately captures the dynamics 

of the underlying asset price process. The Black-Scholes 

model assumes that the underlying asset follows a geometric 

Brownian motion with constant volatility. However, the 

options market pricing typically implies different volatilities 

for varying strike prices and maturities. As a consequence of 

this limitation, the Black-Scholes model is often subject to 

substantial pricing and hedging discrepancies. 

1.2 Problem statement 

Liu and Wang [1] sought to merge artificial intelligence and 

mathematical models, employing an innovative approach that 

integrated Black-Scholes autoregression with deep learning. 

The application of autoregression, which predicts future trends 

based on historical data, demonstrated promise. However, 

given the temporal variations in historical volatility and time 

to maturity, further research is necessary to fully realize these 

initial observations. In efforts to mitigate the specification 

error inherent to the Black-Scholes model, several alternative 

models have been proposed that relax some of its unrealistic 

assumptions. These extended models are broadly categorized 

into single-factor models, which include deterministic 

volatility function models and constant elasticity of variance 

models, and multi-factor models, such as Merton's [2] and 

Bates' [3] jump-diffusion models, as well as the stochastic 

volatility models of Hull and White [4] and Heston [5]. 

The Heston model, a financial framework that emphasizes 

evolving volatility, is particularly significant in the context of 

precise option pricing. 'Plain vanilla' options, being the most 

fundamental type, grant the holder the right to purchase or sell 

an asset at an agreed price and time. However, 'exotic' options, 

which are more complex, feature unique characteristics that 

allow for greater customization. To predict outcomes in 

scenarios characterized by substantial uncertainty, the Monte 

Carlo simulation, a tool for probability modeling, is frequently 

employed in options pricing. 

Model risk emerges as a predominant concern, given the 

high dependence of exotic option prices on the efficiency of 

the deployed model, and the fact that each model relaxes 

certain Black-Scholes assumptions. Despite these models 

exhibiting improved accuracy, the model risk to which market 

participants are exposed persists. The challenge that therefore 

necessitates examination is whether this risk could be 

minimized through the deployment of a more intricate and 

dynamic alternative approach. 

1.3 Significance of the study 

This study is centered on the development of an AI-based 
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model designed to account for market sensitivity in the pricing 

and hedging of exotic options, such as Barrier and Asian 

options. Diverging from prior research, our empirical 

investigation endeavors to fit the model to observable liquid 

options and evaluate its proficiency in hedging exotic options. 

Consideration is also given to the calibration of models by 

practitioners based on market data, facilitating accurate 

computation of model risk. The outcomes of this study are 

anticipated to equip investors with a comprehensive tool for 

pricing exotic options and ensuring market fairness, offering 

valuable insights to practitioners, regulators, and academics in 

the fields of finance and mathematics. 

The initial dataset employed in our model, consisting of 

S&P 500 vanilla call option prices, was procured through 

machine learning techniques. Aiming to curtail error in the 

pricing process, the price was determined through the fusion 

of two models — the Heston model and the Monte Carlo 

simulation — into a singular model, predicated on machine 

learning techniques. To simplify the pricing process, the 

output from the Heston model was utilized as input data for 

the Monte Carlo simulation model. This methodology was 

subsequently applied and tested on three forms of prevalent 

exotic options: Asian options, Up-and-Out barrier options, and 

Down-and-Out barrier options.  

Model parameters are derived through a calibration process, 

the objective of which is to minimize the discrepancy between 

the extracted prices of vanilla options for the S&P 500 and the 

prices calculated by the Heston model for the precise 

parameters of the extracted data. In the subsequent time step, 

these model parameters are incorporated into a Monte Carlo 

pricing model for the pricing of Barrier and Asian options. 

This procedure is repeated until the maturity of the exotic 

options. To assess the accuracy of the devised model, a sample 

of 34 randomly selected over-the-counter (OTC) options, 

priced by an international market maker employing 

undisclosed methods, was collected for comparison with the 

results from the developed dynamic model. The output prices 

generated by the developed model were also juxtaposed with 

the theoretical prices ascertained by models including Black-

Scholes and the Trinomial models. The intention behind such 

a comparison was to ascertain whether a dynamic approach 

yield results closer to current OTC prices than traditional 

approaches. 

This study aspires to bridge the previously identified gap 

between current OTC prices and theoretical model prices. 

Machine learning is employed to determine the appropriate 

model parameter values and to amalgamate different models 

into a single, reliable pricing process. The rationale behind this 

approach is its potential contribution to ongoing research 

endeavours seeking to enhance the fair valuation of such 

complex yet highly sought-after financial derivative products. 

Since the inception of the Black-Scholes model (1973), the 

mechanism of pricing options has remained relatively simple 

and expedient, largely due to the model's assumption of 

constant values for both the risk-free rate and volatility. To 

enhance the congruence between predicted and actual option 

values, Heston [5] introduced a mathematical model wherein 

volatility is treated as a stochastic random variable. 

 

1.4 Applications of machine learning and neural networks 

in option pricing 

 

A radical transformation has been ushered in the pricing 

mechanics of options products, enabled by the advent of 

Machine Learning (ML) which leverages the principle of 

super-human intelligence via neural networks [6, 7] and the 

concept of Big Data, thereby birthing a new field of analytics. 

Neural networks were initially deployed in vanilla pricing 

through stochastic volatility models by McGhee [8] and 

Horvath et al. [9]. Notably, contracts pertaining to exotic 

option pricing were predominantly path-independent, with a 

few exceptions [10]. Nonetheless, the notion of acceleration 

assumes significance in the context of calibration, particularly 

in instances of inadequate solutions such as stochastic alpha 

beta rho in AI applications. 

Hutchinson et al. [11] were the pioneers in applying ML to 

option pricing, where they discerned the distribution algorithm 

underlying options price fluctuations. The system employed 

neural networks, demonstrating exceptional proficiency in 

estimating options’ prices. The homogeneity hint, later 

managed by Kakkad et al. [12], was originally introduced by 

Dugas et al. [13] to restrict the range of potential outcomes. 

This hint took into account the uniformity of the option pricing 

function in strike and asset prices. Subsequently, Hahn [14] 

implemented ML in the Australian equity options market with 

an addendum: a specific volatility model was proposed and 

constructed based on short- and long-term historical volatility, 

ANN-based volatility, and the GARCH-based volatility model. 

This model was associated with the extant stochastic model. 

In the same year, Audrino and Colangelo [15] applied ML in 

a novel semi-parametric approach for implicit volatility 

surface, decreasing the residuals between predicted and 

theoretical implied volatility. 

Another application of ML in option pricing was observed 

in the work of Kakkad et al. [12], who developed a hybrid 

model as a fusion of various option pricing models (Monte 

Carlo, BS, SVR). Kakkad et al. [12] introduced two novelties: 

the bank nifty and the uniformity hint. The bank nifty, notably, 

is traded on the National Stock Exchange of India Limited 

(NSE). On a different note, neural networks were utilized by 

Fang and George [16] in a successful effort to correlate the 

prices of an Asian option and a closed-form model. Two 

stimulating experiments were conducted, yielding conclusive 

results regarding the significant enhancement of the closed-

form model's performance. De Spiegeleer, Madan, Reyners, 

and Schoutens applied the Gaussian Process Regression model 

to predict the prices of European options [10], and 

subsequently, used this model for the alternative purpose of 

calculating the implied volatility surface. 

The outcomes of these neural network advancements have 

been categorized into three classifications by Mezofi and 

Szabo [17]. The first encompasses the prediction of implied 

volatility, which contributes to the Black-Scholes model's 

calculation of the option premium. The second involves 

obtaining the ratio between the strike price and the option 

premium. The third directly anticipates the option premium, 

incorporating implied volatility. Recent research has initiated 

the exploration of networks consisting of more than four 

hidden layers, each containing 400 nodes, with the aim of 

enhancing the complexity of Multilayer Perceptron (MLPs) 

(2019). Integrated and cooperative neural networks have also 

been amalgamated into the development of unbiased MLPs to 

improve simplification. Nevertheless, further work is required 

to adequately approximate volatility or compute options 

pricing, despite Recurrent Neural Networks (RNNs) having 

been significantly influenced by the challenge of stock price 

prediction. 

Models beyond the Black-Scholes model, such as those by 
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De Spiegeleer et al. [10] and Yao et al. [18], also employ the 

Gaussian Process Regression (GPR) method for Heston. 

However, a conflict arises in the region of inadequate guidance 

of disproportionate correlations. Conversely, Ferguson and 

Green [19] evaluated a Monte-Carlo pricing model by utilizing 

a 6-layer deep learning network of varying sizes. It was 

confirmed that the efficiency of models with larger datasets 

and lower Monte-Carlo accuracy surpassed that of models 

with smaller datasets and higher Monte-Carlo accuracy. This 

was tested on sample dataset sizes of 5 million, 50 million, and 

500 million [19]. In this model, simplification was enhanced 

and overfitting reduced due to mathematical noise, playing the 

role of an automated regularization approach [19].  

The findings of Brostrom and Kristiansson [20] diverge 

from those of Ferguson and Green [21], culminating in two 

primary conclusions. The first states that the training dataset 

under consideration contained only one million unique 

patterns, contrasting with the 500 million samples of erroneous 

training data used by Ferguson and Green [21]. The second 

conclusion posits that training on smaller mathematical 

precision than the test data results in success. Babbar and 

McGhee [22] utilized the Local Stochastic Volatility approach 

via training a deep neural network capable of representing an 

individual option contract accurately, thereby accelerating the 

computation processes of risk and price for exotic options. 

Conversely, Liu et al. [23] employed Fourier methods to 

calculate implied volatility and evaluate European call options 

by training considerably expanded 4-layer deep learning 

networks, considering four primary inputs. Deep learning was 

found to be extremely effective in both the Heston Stochastic 

Volatility and Black-Scholes models, with a dataset of one 

million unique prices per model. The authors contend that 

regions near each input’s limit contribute to superior deep 

learning prediction inaccuracies and that deep learning 

procedures should target slightly broader intervals than is 

typical. 

A novel approach, termed the Model Calibration Approach 

(MCA), was adopted by Liu et al. [23] and Horvath et al. [9]. 

MCA seeks parameters that fit the current volatility to 

accurately value an exotic option [9, 22]. Nevertheless, MCA 

carries a disadvantage as it may necessitate consideration of 

significant points on the volatility surface, given the difficulty 

in determining the weight of each point on the volatility 

surface. Consequently, historical literature has led to several 

conclusions: firstly, the importance of market sentiment needs 

to be underscored in most of these studies; secondly, these 

studies concluded that rating options by the neural system 

using a market pricing formula is grounded in a genuine 

market pricing principle, as these studies centered on market 

records. 

 

 

2. METHOD 

 

The previous articles discussed the methodologies used in 

pricing options, specifically focusing on Heston, Black and 

Scholes models, as well as the Monte Carlo principle. 

However, there is an underlying factor, risk-free rate 

interpolation, which influences the calibration process 

between Monte Carlo and Heston. Traders often avoid using 

the Heston model due to its complex parameter calibration. In 

our approach, we optimize the Greek parameters to reduce 

error and make the calibration process more efficient. We 

construct a volatility surface and a risk-free rate curve using 

imported options data, and these parameters vary with time. 

The study involves 1,000+ iterations to fit the Greek 

constraints of the Heston model. The system involves data 

retrieval, volatility surface construction, risk-free rate curve 

creation, and finalizing Heston's Greek parameters for 

monetary evaluation. Automating the task enables instant 

updates of volatility and risk-free rates, expanding the models' 

pricing scope and adapting to market behavior. The code can 

calibrate parameters and generate accurate exotic option prices 

based on user input, enhancing the models' realism and output 

quality. 

 

2.1 Research design 

 

There are no obtainable market prices to be detected 

because the primary market utilized for exchanging the most 

exotic options is the over-the-counter market. Therefore, 

compared to their vanilla counterparts, exotic option prices are 

more sensitive to the model specification. This paper tries to 

rationalize the pricing methods and minimize the ambiguity 

caused by complex mathematical models by integrating the 

required inputs with market factors that reflect market 

sentiments towards the product risk profile at a point in time. 

The proposed methodology consists of a two-step model: As 

displayed in Figure 1, Model A defined by step 1 to 3 below 

that will become an input model to Model B described in steps 

4 and 5: 

 

 
 

Figure 1. Illustrated model scheme 

 

1. Defined f the Heston function as fHeston with arguments 

of s, St, K, r, T, sigma, kappa, theta, vega and rho that 

illustrated our inputs and the model parameters {σ, k, θ, v, ρ} 

respectively; 

2. Computed the integral of fHeston function by selecting a 

large limit that allows our integral to converge, resulting our 

Heston Pricing Model; 

3. Started with the calibration process: 

a. Assembled datasets containing option inputs and 

presented values using a web scrapping scheme from yahoo 

finance. 

b. Constructed the volatility surface using the imported data 

(days to maturity, strike price, vanilla call option prices). 

c. Obtained the last available risk-free rates using treasury 

rates from the CNBC website. 

d. Applied the interpolation methodology to acquire our 

risk-free curve. 
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e. Constructed a vector function in order to compute the 

prices of all options consistent with the ordinary points on the 

volatility surface using the Heston Pricing Model. 

f. Heston’s parameters fit the points of the volatility surface 

using a reiterative process that minimizes the square error 

between all estimated prices utilizing the market prices and our 

model. 

4. For every set of parameters obtained from Model A, we 

calculated the moving average of stock price, known as the 

drift value, that will be an input for Model B. 

5. Using the obtained drift, the exotic option prices were 

calculated via Monte Carlo replication with 100,000 iterations. 

 

2.2 Sampling technique and sample size 

 

As the prices of exotic options could not be accessed, we 

utilized a dataset of vanilla option prices for S&P 500 index 

futures, covering the period from November 10, 2022, to 

December 17, 2027. This dataset was chosen for several 

reasons. First, it allows for meaningful comparison with 

previous literature studies focused on index options [3, 23, 24]. 

Second, index options provide a more comprehensive 

representation of the overall economy compared to individual 

stocks traded actively in the market. 

For this stage of the study, we selected option Greeks as a 

sample of vanilla option prices for the S&P 500. Using this 

data, we created a volatility surface by plotting strike prices, 

option prices, and days to maturity. We considered 

approximately 90% of the available days to maturity values for 

the volatility surface, and for each expiration date, we used 15 

sample values for the option strike price, including at-the-

money, in-the-money, and out-of-the-money values. The 

sample size can be adjusted based on the platform's capacity 

to handle data processing, and in general, larger sample sizes 

yield better model performance and results. The sample 

consisted of 675 contract prices, varying based on the 

expiration date and strike price. 

To determine risk-free rates, we imported treasury rates 

from cnbc.com and constructed a risk-free curve using 

interpolation. It's important to note that our model was 

calibrated using current market data, distinguishing it from 

Hull and Suo's model, which relies on a "true" model for 

generating exotic and vanilla option datasets. This approach 

allows for benchmarking between the realized prices and our 

model's results. The main factors influencing our model and 

its output are the calibration procedures for each stock 

evaluation and the input values for each exotic option 

characteristic. 

 

2.3 Tools and techniques of data collection 

 

An open-source dataset is absent because the historic vanilla 

options information and their numerous tenders are incredibly 

assorted. Accordingly, an automatic procedure was exploited 

to acquire option prices using a web scrapping approach from 

Yahoo Finance to execute our data collection in a dynamic 

behavior on each code run. This procedure maintains access to 

a database with the daily trading outcomes of all listed option 

contracts and their corresponding security prices without 

uploading any file containing those prices. 

This data was supplemented with treasury yields obtained 

from the CNBC website, which will inform the risk-free rate 

for our model. The interpolation procedure was used to 

compute the risk-free rate curve and alter the technique that 

prior studies have frequently directed. Numerous models 

match the crop on the US Treasury instrument considering 

maturity much closer to each option's expiration time.  

Additionally, because the trade data only includes the 

contract's inner bid and ask values, the mid-price (average of 

the two) was used as a label for the option's fair value. Prior 

investigations led by Anders et al. [25], Bennell and Sutcliffe 

[26] and Stark [27] advocate the convention of exclusion 

principles to eliminate “non-representative” instances 

symbolizing unanticipated or illiquid options’ situations [26-

28]. These filters eliminate options that are too far in-the-

money or out-of-the-money, have an expiration date longer 

than five years, or are traded at such low values that the 

discrete character of security prices comes into play. In this 

study, it was decided on a certain number of strikes close to 

the money to pass these limitations. 

 

2.4 Empirical framework 

 

This section will be reconnoitering and elucidating the 

separate phases implemented to assemble the outcomes via 

aggregating the financial, mathematical, and programming 

fields. 

 

2.4.1 Building the Heston model 

The Heston Pricing Formula for a call option: 

 

𝐶 = 𝑆𝑡 . 𝑃1(𝑆𝑇 > 𝐾) − 𝐾𝑒−𝑟𝑡 . 𝑃2(𝑆𝑇 > 𝐾) 

 

Where the extended form is: 

 

𝐶 = 𝑆𝑡 . [ 
1

2
+

1

𝜋
∫ 𝑅𝑒 [

𝑒−𝑖𝑠𝑙𝑛𝐾𝑓1(𝑠, 𝑣, 𝑥)

𝑖𝑠
] 𝑑𝑠 ] − 𝐾𝑒−𝑟𝑡 . [ 

1

2

∞

0

+
1

𝜋
∫ 𝑅𝑒 [

𝑒−𝑖𝑠𝑙𝑛𝐾𝑓2(𝑠, 𝑣, 𝑥)

𝑖𝑠
] 𝑑𝑠 ] 

∞

0

 

 

The previous function contains two integrals and a Re that 

condenses the complete integral. This concludes that the 

results will be in the imaginary complex form, so we will only 

represent the price with the real number part. As known, i is 

used as a definition of the complex number of the square of 

negative values (𝑖 = √−1). Each integral result in a function 

fj, defined as: 

 

𝑓𝑗(𝑆, 𝜈, 𝑥) = exp(𝐶𝑗(𝜏, 𝑠) + 𝐷𝑗(𝜏, 𝑠). 𝜐 + 𝑖. 𝑠. 𝑥) 

 

C and D are defined as: 

 

𝐶𝑗(𝜏, 𝑠) = 𝑟. 𝑖. 𝑠. 𝜏 +
𝑎

𝜎2
[(𝐵𝑅𝑆). 𝜏 − 2 ln (

1 − 𝑔𝑗 . 𝑒𝑑𝑗.𝜏

1 − 𝑔𝑗

) ] 

𝐷𝑗 =
𝐵𝑅𝑆

𝜎2
(

1 − 𝑒𝑑𝑗.𝜏

1 − 𝑔𝑗 . 𝑒𝑑𝑗.𝜏) 

 

And assuming: 

 

𝑥 = ln 𝑆𝑡 

𝑑𝑗 = √(𝜌. 𝜎. 𝑖. 𝑠)2 − 𝜎2. (2. 𝑢𝑗. 𝑖. 𝑠 − 𝑠2) 

𝑔𝑗 =
𝑏𝑗 − 𝜌. 𝜎. 𝑖. 𝑠 + 𝑑𝑗

𝑏𝑗 − 𝜌. 𝜎. 𝑖. 𝑠 − 𝑑𝑗
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where, u1=0.5, u2=0.5, and b1=k-ρ.σ, b2=k. 

BRS element is defined by: 

 

𝐵𝑅𝑆 = 𝑏𝑗 − 𝜌. 𝜎. 𝑖. 𝑠 + 𝑑𝑗 

 

Everything was combined into one integral and one function 

f rather than being divided into two integrals: 

 

𝐶 =
1

2
(𝑆𝑡 − 𝐾𝑒−𝑟(𝑇−𝑡))

+
1

𝜋
∫ 𝑅𝑒 [ 𝑒𝑟(𝑇−𝑡)

𝑓(𝑠 − 𝑖)

𝑖𝑠. 𝐾𝑖𝑠

∞

0

− 𝐾
𝑓(𝑠)

𝑖𝑠. 𝐾𝑖𝑠
] 𝑑𝑠 

(1) 

 

 

f defined with: 

 

𝑓(𝑥) = 𝑒𝑖𝑥𝑟𝑇𝑆𝑡
𝑖𝑥 (

1 − 𝑔. 𝑒𝑑.𝜏

1 − 𝑔
)

−
2𝑘𝜃
𝜎2

× exp [
𝜏𝑘𝜃

𝜎2
(𝑘 − 𝜎𝜌. 𝑖. 𝑥 − 𝑑) +

𝜐

𝜎2
(𝑘

− 𝜎𝜌. 𝑖. 𝑥 − 𝑑)
1 − 𝑒𝑑𝑗.𝜏

1 − 𝑔𝑗 . 𝑒𝑑𝑗.𝜏] 

 

Assuming that: 
 

d = √(ρ. σ. i. x)2-σ2. (2. i. x-x2), 𝑔 =
𝑘−𝜌.𝜎.𝑖.𝑥+𝑑

𝑘−𝜌.𝜎.𝑖.𝑥−𝑑
 

 

fHeston is referred by f with inputs St, s, K, r, T, 𝜎, 𝜅, 𝜃, 𝜈, 

and ρ. i were deliberated as a global variable since complex 

numerical values were strictly used in our function. Each 

complex number was fundamentally an action on i in which 

the function is protracted, calculating d and g. Then, the large 

exponential f(x) is cracked down and fragmented into two 

segments of the exponential function rendering it less complex 

to distribute the product of both exponentials gaining the 

complete fHeston function.  

Since it is not possible for something to constantly operate 

because our integral extends to infinity, selecting a significant 

bond that permits our integral to converge was a must. By 

convergence, the supplementary zones under the computed 

curvature are so finite that they are regarded as negligible. In 

this model, a hundred was nominated. However, this number 

can be changed to detect sensitivity and performance. To 

calculate the integral function, our area was divided into 

rectangles discovering the mid-point, which will be utilized to 

compute each rectangle’s area, followed by summating all the 

areas. Our model initialized P the final price values to 0. Then, 

the areas were fragmented into 1,000 rectangles setting the 

limit to 100. In the core, the width of each rectangle will be 

du=100/10000. Subsequently, the first part of the Eq. (1) was 

calculated before the integral. 

Thereafter, two variables were defined which are s1 and s2 

as stated in the formulation. Increments of s1 are obviously 

detected at each iteration of the loop. For instance, 

s1=du*(2*1+1)/2 leading to s1=du*1.5 when j=1. On the other 

hand, s1=du*(2*2+1)/2 leading to s1=du*2.5 when j=2. Both 

examples prove our midpoint rule cast-off for the integration. 

Another reason we did not start from 0 is due to the fact that 

close attainment to the null value may mean dividing a number 

by 0, which would indeed be problematic. At this stage, the 

rectangles’ widths are considered in which the height is 

basically the value extracted from the fHeston function when 

changing the x-value intercept. The summation of all results 

extracted from fHeston and divided by the denominator are 

deliberated as heights. In conclusion, the areas now can be 

computed and summed together. 

 

2.4.2 The role of calibration 

Calibration should be mandatorily performed to make a 

pertinent model to actual markets appropriate for fiscal 

evaluation alongside transaction and risk management. These 

parameters were utilized in the mechanisms of pricing 

complex and exotic options. Unfortunately, discovering a 

locked arrangement formulary for estimating exotic options 

was difficult due to the presence of very intricate categories of 

options. For the aim of finding the parameters of the Heston 

model, plain vanilla options were used. On the other hand, the 

attained factors from the marketplace to compute the monetary 

value of the exotic options were utilized via implementing the 

Monte Carlo simulation model.  

Having options with different expiries and maturities was 

considered when conducting the calibration procedure. One 

set of parameters is possessed for the whole set of options. 

However, sensitivities cannot be accumulated if a model 

occurs for each point since it is fundamentally an assessment 

between apples and oranges. Commencing with a parameter 

array (𝜎=0.1, 𝜅=0.1, 𝜃=0.1, ρ=0.1, ν=0.1), the Heston prices 

were computed for all categories of options followed by 

calculating the squared error between the forecasted prices by 

the Heston model and the actual market prices. Afterward, a 

solver was utilized in order to lessen the error to the extent of 

becoming negligible, which can be implemented on Microsoft 

Excel ®. Finally, options will be financially evaluated via the 

optimal parameters and the Monte Carlo simulation approach.  

The first step consists of obtaining option quotes which can 

be collected either by scraping the quotes online or directly 

from any accessible online source. The first option was chosen 

for our model in order to add dynamics to it as well. However, 

option quotes typically do not go out very long into the future 

since it would be very difficult to analyze the shape of the 

marketplaces in the next decade due to the maturities of bonds 

that can go to infinity, such as permanency bonds. Options 

constructed on static revenue products are disposed to go out 

very long into the impending timelapse contrasting from 

option quotes only in the case with bonds.  

The S&P 500 index options were used to calibrate our 

Heston model. The calibration is probably directed with any 

particular stock partaking in adequate quoted options. To 

acquire the options’ prices, we introduced an “options” bundle 

from the “yahoo_fin” library. Furthermore, the Pandas library 

is used to organize the obtained data as tabulations. A blank " 

surface " list was formed, which includes all the quotes as an 

assorted array. A maturity date will be accessible 

fundamentally by each component list. Since we are focusing 

on mutual strikes, all lists are equivalent in length. The 

dateIndex encompassed the maturity dates. To compute the 

maturity dates relative to today in the unit of years, we will be 

consuming these maturity dates which are comprised in the 

dateIndex. Similarly, the option quotes were added to this 

surface. Finally, the volatility surface was defined by 

observing 15 different strike prices and forty-five different 

maturity times. These maturity/moneyness amalgamations 

combined offer 675 “standard” points on the volatility surface.  
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The same structure to detect the risk-free curvature was 

used as well. The treasury degrees extracted from the CNBC 

website were used via the scraping method to maintain the 

dynamics of our model in which the most current possible 

rates were extracted. Then, all rates were converted to floating 

alongside changing the time to maturity vector: 

From: [ 1M 3M 6M 1Y 2Y 3Y 5Y 7Y 10Y 20Y 30Y ] 

To: [
1

12
,

3

12
,

6

12
, 1, 2, 3, 5, 7, 10, 20, 30 ] 

Next, interpolation is applied in order to obtain the interest 

rate curve. However, this step is very vital as it aids in 

evaluating the rate corresponding to each maturity. Nelson 

Siegel Svensson's method was used to smear this interpolation. 

This method is deliberated as one of the most recognized 

practices for interpolating a curve.  

The calibration process started by setting up the parameters 

which were used to determine the coherence of our Heston 

model. The surface is transformed into an array of quotes 

containing strike, maturity, and quotes associated with each 

horizontal row. DIFHest is also a simple function that 

distributes a vector of differences between the prices obtained 

from the market and gained from our model. Consequently, 

the errors were squared and summed on each iteration to cast 

what is called the summation of squared errors when we 

converge with our optimization algorithm. This is how the 

algorithm function can resume the process of minimizing the 

error until reaching an optimal solution. For the sake of 

optimizing the functions’ evaluations, few elements from the 

Numba library were also added since the computations will be 

fastened in the calibration process: 

 

𝐸𝑟𝑟𝑜𝑟 = (𝑀𝑎𝑟𝑘𝑒𝑡𝑃𝑟𝑖𝑐𝑒𝑠 − 𝑀𝑜𝑑𝑒𝑙𝑃𝑟𝑖𝑐𝑒𝑠)/𝑀𝑎𝑟𝑘𝑒𝑡𝑃𝑟𝑖𝑐𝑒𝑠 

 

The inputs are: (Algorithm values in this order: [sigma, 

kappa, theta, vega, rho]) 

Initial values (Default value: [0.1, 0.1, 0.1, 0.1, 0.1]) 

Lower bounds for our values (Default value: [0.001, 0.001, 

0.001, 0.001, -1.00]) 

Upper bounds for our values (Default value: [1.0, 1.0, 1.0, 

1.0, 1.0])  

Volatility surface  

Risk-free curve 

Stock price (St today) 

This calibration is lengthy in the time constraint since the 

option surface comprises 675 points necessitating about 20 

minutes. The number of options can be abridged or executed 

as an approximation. Then, the optimum factors will be 

procured, which should be equivalent to today’s stock prices. 

 

2.4.3 Implementation in Python 

For the purpose of executing the model in Python and 

defining the MCHeston function, the following will be 

conducted: 

a. Defining the number of time steps desired annually in 

which dt could be daily, weekly, monthly or yearly. We 

designated just one timestep each month.  

b. Determining the sum of recapitulations which we require 

for spawning 𝑆𝑇 1000, 10000, or 100,0000 (iterations number).  

c. Stating all the gaussians assisting in hurtling this code 

where we consume X amount of timesteps, which is our 

timesteps x maturity and alongside Y which is the sum of 

iterations. 

d. Computing all 𝑣𝑡 simultaneously for each timestep. The 

NumPy bundle enables us to conduct vectorized computations 

rapidly.  

e. Each 𝑣𝑡 [i,:] depends on the 𝑣𝑡 [i-1,:] that came before it, 

and the same is true for St [i,:]. The values 𝑣𝑡 are similarly 

determined first before being inserted into St. 

f. Mean value of all 𝑆𝑇 will be deducted from 𝐾 shadowed 

by reducing it at the rate of r on a ceaseless establishment in 

order to acquire the present value of our option.  

g. The ampoules will be considered to grasp all the ideals of 

ST and 𝛼. Additionally, the initial standards of ST will be 

today’s stock price in which 𝛼 the primary worth should be the 

factor of 𝜎. 

h. All those steps lead us to calculate the drift value using the 

function MCHeston. This function takes as inputs:  

 
[𝑆0 , 𝐾, 𝑟, 𝑇, 𝑠𝑖𝑔𝑚𝑎, 𝑘𝑎𝑝𝑝𝑎, 𝑡ℎ𝑒𝑡𝑎, 𝑣𝑒𝑔𝑎, 𝑟ℎ𝑜, 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠, 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝] 

𝐷𝑟𝑖𝑓𝑡 = max (𝑀𝐶𝐻𝑒𝑠𝑡𝑜𝑛, 0) 

 

i. The drift value will be implemented to the Monte Carlo 

simulation in our model, adding the needed parameters of the 

exotic options, the price will be calculated. Output prices are 

discussed in the next section.  

 

 

3. RESULTS AND DISCUSSION 

 

In this study, we developed a model through deep analysis 

of theoretical frameworks, exploring its results and 

trustworthiness, and highlighting its dynamic nature. We 

collected market prices for a sample of 34 exotic options from 

a renowned market maker, providing a valuable benchmark for 

performance comparisons. The strength of our model lies in its 

recalibration at each trading moment, reflecting real-time 

market option pricing and allowing the model parameters to 

fluctuate over time. This provides a more accurate 

representation of the underlying asset return distribution 

compared to models with constant parameters. Tested on a 

variety of exotic options, our model demonstrated its 

versatility and superior performance, especially with the Asian 

and Up-and-Out options. These findings underline the 

potential of our dynamic model in enhancing the accuracy of 

exotic option pricing. 

 

3.1 Results by option type 

 

Three option types (Up-and-Out Barrier, Down-and-Out 

Barrier, and Asian), with different time-to-maturity values, 

underlying prices, strikes, and barrier levels) will be 

demonstrated. It is worth mentioning that the theoretical prices 

were conducted by yhe Black and Scholes model for the Asian 

options and by the trinomial model for the Barrier options. 

 

3.1.1 Up-and-out barrier option 

Table 1 shows three different calculated errors. First, the test 

is obtained by comparing our model's performance to the 

market, second by comparing the performance of the 

theoretical models to the market, and third by comparing our 

model prices to the theoretical prices. 

According to Table 1, the average error of the difference 

between our prices and market prices is (0.36%). In contrast, 

the error between the prices obtained by the theoretical model, 

which is a trinomial model in this case, and the market prices 

is (7.01%). The variance is lower in our model compared to 

the theoretical one. The skewness and kurtosis calculated for 

our model are more indicative than the theoretical ones since 

they are closer to zero demonstrating the absence of fatty tails. 
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Hence, our model is closer to a normal distribution, and the 

extreme errors are lower than those of the theoretical model. 

These results help validate our theory of establishing a model 

that takes theoretical models into account while including 

market sensitivity as an essential component to output the 

closest prices possible to the markets. 

 

Table 1. Up-and-out parameters 

 

 Paper v/s Market 

Maker Error 

Theories v/s 

Market 

Maker Error 

Paper v/s 

Theories 

Error 

Mean 0.36% 7.01% -0.74% 

Standard 

Deviation 
0.07 0.30 0.22 

Skewness -0.42 1.66 -1.06 

Kurtosis -1.38 2.01 0.93 

 

3.1.2 Down-and-out option 

Similarly, we can conclude from Table 2 that our model is 

performing well compared to the market. With an average 

error of (0.82%), the error between the prices obtained by the 

theoretical model and the market prices is (-4.32%). When 

taking the standard deviation into account, we can deduce that 

our model is achieving lower error from the mean for each 

exotic price. Looking at skewness and kurtosis, we see that we 

have a lower skewness but a higher kurtosis. This indicates 

that the theoretical models are closer to a normal distribution. 

In addition, the error calculated between our model and the 

theories shows some variation. Nonetheless, we are still 

having decent results with a small average error, albeit to a 

lesser extent, when comparing our model (the Down-and-Out 

type) to other exotic option types which performed better. 
 

Table 2. Down-and-out parameters 

 

 
Paper v/s 

Market Maker 

Error 

Theories v/s 

Market Maker 

Error 

Paper v/s 

Theories 

Error 

Mean 0.82% -4.32% 8.91% 

Standard 

Deviation 
0.03 0.16 0.23 

Skewness 0.38 -0.81 1.40 

Kurtosis 1.92 -0.13 1.56 

 

3.1.3 Asian options 

Table 3 shows that our model is performing so much better 

than the theoretical models, as evidenced by a lower average 

and a very low standard deviation. The skewness and kurtosis 

values are negative but close to zero support our model and 

hypothesis. The two models in the Asian case seems to be 

performing well compared to the market. 
 

Table 3. Asian parameters 
 

 
Paper v/s 

Market Maker 

Error 

Theories v/s 

Market Maker 

Error 

Paper v/s 

Theories 

Error 

Mean -2.00% 6.37% -6.67% 

Standard 

Deviation 
0.04 0.13 0.12 

Skewness -0.97 0.94 -1.33 

Kurtosis -0.56 0.06 -0.08 

 

3.2 Discussions and interpretations 

 

The exotic price of an option is a very critical subject, 

especially since the accuracy of the price is affected by several 

factors. Many researchers have tried to conduct accurate 

pricing using well-known reputable models for option pricing. 

Almost all the studies tried to apply different theoretical 

methods to address this problem, but the implementation of 

artificial intelligence escalated the pricing task to a new higher 

level. This paper has developed a model that considers the 

importance of the dynamic and sensitive behavior of the 

market by applying artificial intelligence.  

Therefore, overall artificial intelligence has provided better 

results compared with other static models. This may be partly 

because artificial intelligence can capture the market's 

sensitivity better than other methods. Chen used a model of 

non-constant volatility by using the Heston model on a barrier 

option and another version by using Brownian motion without 

incorporating artificial intelligence [28]. The calculated error 

obtained by Chen [28]. was higher than ours. A higher 

sensitivity denotes a greater influence on how the predicted 

value varies in relation to the network's expected output. 

However, the model structure played a significant role in the 

accuracy of prices. Figure 2 shows the error using all the 

available option prices to evaluate our model. 

 

 
 

Figure 2. All exotic option prices 

 

Table 4. All exotic option parameters 

 

 

Paper v/s 

Market 

Maker 

Error 

Theories v/s 

Market 

Maker Error 

Paper v/s 

Theories 

Error 

Mean -0.33% 3.12% 0.29% 

Standard 

Deviation 
0.05 0.21 0.20 

Skewness -0.32 1.49 0.51 

Kurtosis -0.32 4.12 2.42 

 

When comparing our model to the theoretical ones, the 

former has a lower average error (-0.33%), a lower standard 

deviation (0.05), and skewness and kurtosis that are closer to 

zero (Table 4). Hence, our model has a better performance 

than theoretical ones. This highlights the importance of a 

dynamic model, which takes into consideration the sensitivity 

of the market by building upon existing theoretical models.  

To validate our model from a statistical view, we have used 
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the two-sample Kolmogorov-Smirnov test, one of the most 

beneficial and versatile nonparametric techniques for 

evaluating two samples as it verifies if they are derived from 

the same distribution. This test does not report any confidence 

level since it does not compare any particular parameter 

(median, average). It is adequate for this study as it provides a 

dissimilarity parameter output of the best fitting sample 

(theoretical vs. our model) when compared to the original 

distribution (market prices in our case). The sample with the 

less dissimilarity value will be assumed to be the best fit for 

the original data. Dissimilarity will be calculated as follows: 

𝐷 = max
1≤𝑖≤𝑛

|∑ 𝑌𝑖
𝑖
1 − ∑ 𝑍𝑖

𝑖
1 |, where n represents the sample size. 

 

Table 5. Dissimilarity values 

 

 Paper v/s 

Market 

Theories v/s 

Market 

Paper v/s 

Theories 

Dissimilarity 

Value 
103.66 388.44 368.27 

 

Based on the dissimilarity value mentioned in Table 5, our 

model result is more similar to the market results when 

compared to those derived from the theoretical models. 

Among all the studies listed and analyzed in the literature 

review, the most similar approach to this study is the model 

calibration approach study by Babbar and McGhee [22] and 

Horvath et al. [9]. This study results are more effective due to 

the volatility surface plot. Furthermore, it tried to summarize 

all the advantages of the previous study in ours and waive their 

disadvantage by using a neural network. On the other hand, the 

study by Mezofi and Szabo [17] introduced machine learning 

and neural network to release the volatility of Black and 

Scholes of its static status, but failed to mention any output 

concerning the exotic option price. Therefore, it can be 

advantageous when compared to theoretical model by being 

closer to the market, but also still aligned with the theory. This 

is achieved by incorporating more realistic variables which 

instantly takes the market sentiment. 

 

3.3 Limitations and future research 

 

Despite our model's promising performance in exotic option 

pricing, we faced limitations including data unavailability and 

memory constraints of Google Colaboratory. We had 

restricted access to market prices for exotic options, limiting 

our sample size to 34, and our memory capacity limited the 

number of vanilla option prices and Monte Carlo iterations we 

could utilize. Our research hints at promising future directions 

including automation in parameter calibration, ensemble 

modeling, and expanding testing to put options and different 

exotic options. Alternatives like the Bates model could 

potentially enhance performance, and implementing a neural 

network model may further improve pricing accuracy. These 

future directions aim to overcome current limitations and bring 

us closer to a more accurate and comprehensive exotic option 

pricing model. 

 

 

4. CONCLUSIONS 

 

This study introduces an AI model that tackles real-world 

complexities in the pricing of exotic options, taking into 

account direct relationships with the volatility surface and 

option parameters. The model integrates data from 675 vanilla 

call option prices for the S&P 500, the risk-free rates curve, 

and a constructed volatility surface. Testing has demonstrated 

significant advancements towards market prices, as evidenced 

by reduced error variances, low skewness, near-zero kurtosis 

levels, and Kolmogorov-Smirnov analysis. Theoretical 

models have been expanded upon with our dynamic model that 

accounts for market sensitivity. While our model 

approximates the market more closely, it remains in alignment 

with theoretical models and can be adapted to other contract 

types and exotic options. It rapidly computes prices for three 

types of exotic options with minimal error, considering the 

same variables impacting standard option pricing. The 

implementation of multiple models enhances the pricing of 

exotic options. 

 

4.1 Theoretical implications 

 

Option pricing research frequently focuses on vanilla 

options, with a smaller number of studies addressing the 

complexities of exotic options. Existing studies typically 

employ constant-parameter models to evaluate out-of-sample 

pricing and hedging, whereas practitioners adjust models daily 

to correspond with market fluctuations. This disparity 

prompted the proposal for a new methodology that does not 

rely on historical exotic option data. Instead, collaboration 

with investment banks was initiated to align our model with 

real market prices, thus fostering practical application. 

Previous research, such as Cao et al., valued exotic options 

based on volatility surfaces, yet neglected the significance of 

market prices [29]. In a similar vein, Kingma and Ba 

developed neural network models with a sole emphasis on 

model risk [30]. Conversely, our approach maintains the 

relevance of theoretical models while affording a fresh 

comparative perspective. By integrating the established 

Heston and Monte Carlo models, a dynamic, reliable model 

has been created. The accuracy of our findings is corroborated 

by minimal volatility and smaller spreads between over-the-

counter prices and the outputs of our model, exceeding 

conventional mathematical models. 

 

4.2 Practical implications 

 

This study bridges the gap between market and theory 

prices, eschewing the use of static parameters and highlighting 

practical implications. Our model, capable of accurately 

predicting exotic prices, caters to academics, researchers, and 

market companies, including investors, banks, and market 

makers. It serves not only as a benchmark for option pricing, 

but also provides guidance in determining transaction costs 

and commissions. The model extends its usefulness to traders, 

aiding in the formulation of profitable portfolios by predicting 

exotic option prices. Thus, our research extends beyond 

academic confines, offering tangible applications, particularly 

within the financial industry. 
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