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Facial recognition technology, utilizing short-duration video, offers an accurate access 

control mechanism, capable of distinguishing genuine faces from fraudulent 

representations. However, the ability to detect concealed or artificially altered faces, as 

well as printed spoofs, remains a considerable challenge, even with sophisticated 

biometric recognition algorithms. This limitation can significantly undermine the 

performance of access control systems, rendering them susceptible to potential security 

breaches. In this study, we present an innovative technique that leverages the separation 

of Red, Green, and Blue (RGB) channels to discern between authentic faces and printed 

spoofs in color video recordings. This technique is deployed over a 20-second duration 

to effectively intercept and preclude security violations in access control systems. The 

proposed method was evaluated with a dataset from 20 participants, demonstrating 

commendable accuracy in detecting both real and spoof faces. Specifically, the 

technique exhibited remarkable precision in real face detection and counterfeit face 

detection. When applied to a 4-second video dataset from the same participants, 

comparable results were obtained. This method provides a significant advancement in 

the realm of face-controlled access systems by facilitating precise real-face detection 

via cost-effective video imaging, predicated on cardiac pulse rhythm signals. This 

methodology holds the potential to enhance the reliability of facial recognition systems, 

particularly in high-security environments. 
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1. INTRODUCTION

The accuracy of automated face recognition systems has 

seen substantial enhancements over recent decades. A myriad 

of advanced algorithms has been developed to overcome 

challenges associated with illumination, pose and expression 

variations, thereby enabling unconstrained face recognition 

across diverse applications [1]. However, despite these 

advancements, certain factors continue to impede the 

performance of access systems. These include issues 

pertaining to masked faces [2], printed faces, plastic surgery 

[3], make-up application [4], and spoofing faces [5]. For a face 

verification system to be effective in real-world scenarios, 

such as in securing access to restricted areas, a reliable system 

for distinguishing real and fake faces is essential. 

Numerous approaches in the literature on fake face 

detection are based on the observation of texture properties in 

an image, comparing frames from a genuine person's face to 

spoofed face images. 

In a recent paper, Kim et al. [2] proposed a method to 

distinguish a real face from a masked face using radiance 

measurements. This approach recovers the albedo from the 

reflectance of human facial skin and the reflectance of masked 

face materials (silicon, latex, or skinjell). Within a face 

verification system environment, Kim et al. simplified the 

computation of albedo from face reflectance, enabling the 

measurement of radiance for the forehead region under 850 

and 685 nm illumination. 

In another paper, Chen et al. [4] studied the differences 

between a make-up face and a non-make up face, and designed 

a method to detect the presence of make up on the face by 

extracting the features from the color, shape and texture 

characteristics for the ROI of the right eye, left eye and mouth 

cropped from the input face. In his experiments he used SVM 

to classify the make-up face and nonmake up face. On the print 

photo attack database [6] in the IJCB 2011, Chakka et al. [7] 

found the performance of six spoofing printed face detection 

algorithms on that database in a competition for measuring 2D 

face spoofing attacks. Määttä et al. [8] detected the spoofing 

face from a single image-based microtexture analysis, and 

found that for spoofing face detection, local phase quantization 

with a Gabor wavelet-based descriptor was less efficient than 

(LBPs) local binary patterns. Furthermore, they demonstrated 

that using three LBP descriptors of different configurations 

was more efficient than using LBPs with a single configuration. 

Määttä et al. [9] also introduced a fusion system leveraging 

two descriptors from Gabor wavelets obtained from the local 

blocks of a face image, LBPs, and a histogram of oriented 

gradients. The histogram calculated for all the blocks was 

concatenated for each descriptor, producing three feature 

vectors. The classification was carried out using a linear SVM, 

with the final result derived from the fusion of the match 
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scores of all three SVMs.  

In another study aimed at detecting attacks from printed 

face photos, a fusion approach was employed which combined 

power spectrum and Local Binary Pattern (LBP) features, 

using a camera from an automated teller machine to compile 

the database [10]. These methods primarily relied on motion- 

and texture-based strategies, with facial movements leveraged 

to determine liveness. 

Du et al. [11] undertook a project aimed at recognizing 

players' emotions during gameplay. This was achieved by 

measuring heart rate and detecting facial expressions in videos 

using continuous human emotion perception. In this work, a 

bidirectional long- and short-term memory (Bi-LSTM) 

network was deployed to learn the heart rate features, and a 

convolutional neural network (CNN) was trained to learn 

facial expression (FE) features. A self-organizing map back 

propagation (SOM-BP) was utilized to fuse these features and 

achieve an accurate match of the emotion. 

Wang et al. [12] conducted a comprehensive review and 

comparative analysis of various methods for measuring heart 

rate from frontal face videos. The results of the survey indicate 

that using the heart rate signal extracted from facial skin as a 

source provides superior results, and that the independent 

component analysis (ICA) method outperforms others in 

signal extraction. Temko [13] introduced a novel algorithm, 

Wiener Filter and Phase Vocoder (WFPV), which employs a 

Wiener filter to reduce motion artifacts and a phase vocoder to 

refine heart rate estimates. Their heart rate estimation system 

was compared with existing algorithms on a database of 23 

photoplethysmography (PPG) recordings. 

Dautov et al. [14] implemented face detection using video 

plethysmography, with power spectral density (PSD) 

employed for heart rate monitoring. Nadrag et al. [15] utilized 

the Haar cascades method, initially proposed by Viola and 

Michel Jones, in combination with a fast Fourier transform 

(FFT) to identify the region of interest (ROI). Their paper 

presents a solution for measuring the heart rates of multiple 

individuals simultaneously, using object tracking to obtain a 

collection of face rectangles. The average color within the ROI 

is then used as the signal corresponding to the heart rate. 

Zheng et al. [16] carried out heart rate predictions from 

facial videos with masks, using eye location as a reference 

point. Remote photoplethysmography (rPPG) was employed 

to extract signals from the face video, and a convolutional 

neural network (CNN) was utilized for heart rate detection. 

Uppal et al. [17] conducted work on heart rate measurement 

using the brightness preserving bihistogram equalization 

(BBHE) technique. Their approach involves separating the 

captured image into red, blue, and green channels, with cheeks 

selected as the ROI. BBHE was applied to these regions, and 

heart rate measurement was performed using Principal 

Component Analysis (PCA). 

Li et al. [18] proposed a framework that incorporates face 

tracking and the normalized least mean square adaptive 

filtering method. Discriminative response map fitting (DRMF) 

is employed to identify the ROI, and Welch's power spectral 

density estimation method is utilized for heart rate detection. 

Gupta et al. [19] conducted heart rate monitoring using the 

Modeling and Bayesian Tracking (MOMBAT) method for 

detecting heart rate from face videos. Zheng et al. [20] 

detected heart rate using the symmetry substitution method, 

even in scenarios where facial details were lacking, such as 

during online classes. When the head is rotated approximately 

30 to 40 degrees, causing partial loss of the ROI in the face, 

information from the left and right cheeks is symmetrically 

copied. 

A comprehensive review was conducted by Rouast et al. 

[21] in which remote heart rate measurements were taken 

using low-cost RGB face videos. In their analysis, they 

emphasize that future remote PPG (rPPG) algorithms should 

focus on balancing the trade-off between the amount of 

processed data and the complexity of the algorithm. 

Although remote photoplethysmography (rPPG) is capable 

of detecting heart rates from facial videos, the accuracy can be 

compromised by head movement. To address this challenge, 

Wang et al. [22] proposed an anti-motion interference method 

termed T-distributed Stochastic Neighbor Embedding (T-

SNE) Based Signal Separation (TSS). In this approach, TSS 

initially decomposes the observed color traces into pulse-

related vectors and noise vectors using the T-SNE algorithm. 

The vector with the most significant spectral peak is then 

selected as the pulse signal for heart rate detection. 

Ibrahim et al. [23] introduced a method to address the 

obstacles in heart rate estimation from cameras that capture 

videos from long distances. In their research, facial landmarks 

are computed using a cascaded regression mechanism. The 

region of interest (ROI) is selected based on these facial 

landmarks, specifically where minimal nonrigid motion is 

identified. Temporal photoplethysmography (PPG) signals are 

extracted from the ROI, and environmental illumination 

signals are removed using an independent component analysis 

(ICA) filter. This PPG signal is further processed by applying 

a series of temporal filters to exclude frequencies outside the 

range of interest before determining the heart rate. 

Zhao et al. [24] proposed a novel method to extract pulse 

signals from ROIs across multiple scales. Their research 

constructs a facial ROI pyramid of multiple scale levels. Blood 

volume pulse (BVP) signals are then extracted, and the final 

pulse signal is computed via signal fusion, to which a convex 

combination is applied. 

Špetlík et al. [25] proposed a two-stem convolutional neural 

network for heart rate estimation. Heart rate estimation is 

achieved remotely by tracking the peripheral circulation of the 

blood, that is, through a non-contact reflective 

photoplethysmographic (NrPPG) HR detection. Their system 

operates on two components, the extractor and the heart rate 

estimator. The extractor's role is to process an input image and 

output a single number. This extractor is applied to a sequence 

of images to obtain a sequence of scalar outputs and NrPPG 

signals. These signals are then input into the heart rate 

estimator to determine the heart rate. 

Related work on spoof face detection relies on complex 

configurations and texture analysis to yield satisfactory 

results. In contrast, our proposed approach for detecting the 

liveness of real faces is based on the analysis of cardiac pulse 

rhythm signals, employing video imaging and RGB analysis. 

We conducted experiments with 20 subjects, each recording 

two videos—one of their real faces and one of a printed face. 

This research can be summarized as follows: 

1) A technique for a preprocessing method to detect the 

cardiac pulse signal from the green channel and red‒green 

channel in real face videos based on color RGB separation and 

signal enhancements is proposed. 

2) Thresholds are set based on the difference between 

the max and min cardiac pulse signals. 

3) We propose a liveness detection technique for real 

faces and spoofing detection for fake printed faces based on 

the thresholds from the cardiac pulse signals yielded from the 
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green channel color of the ROI. 

There are several proposed algorithms from existing works 

that measure the cardiac pulses from the face region only, with 

participants using video, that are non-contact [26, 27]. Some 

works use a thermal camera to monitor the change in the 

information in the thermal signal emitted from the vessels [28, 

29]. In other works, a webcam camera was used to measure 

the cardiac pulses from the face using video imaging and 

separate the mixing channels; and FFT was used for the proper 

component after artifacts reduction from the separation 

channels [30, 31]. Another work used color magnification to 

amplify the color changes in facial skin [32]. 

There were artifact noise rejections, such as changes in the 

ambient lighting conditions and sudden motions of the 

participant [33]. We propose cardiac pulse signal detection 

using color RGB separation with artifact reduction, and we 

detect cardiac pulses from the green channel. FFT is used to 

obtain the frequency of the heart rate and then compares the 

results of cardiac pulses with a reference result from a 

commercial pulse oximeter, as shown in Figure 1. 

 

 
 

Figure 1. Real face detection based on cardiac pulse signal 

from input video of face 

 

The rest of this paper is organized as follows. Section 2 

describes the work, experimental setup and the database used 

for this study. Section 3 describes the method for cardiac pulse 

signal detection and artifact reduction for the green component 

and red-green component, and then describes the method for 

real face detection. Section 4 presents the experimental results 

and the effectiveness of the proposed work in real face 

detection and spoofing printed face detection, and then 

discusses the results. Finally, Section 5 concludes the paper 

and discusses future recommendations. 

 

 

2. WORK DESCRIPTION 
 

In this study, we enrolled 20 participants with varying 

demographic characteristics, including 16 males and 4 

females, aged between 18-35 years, and from different ethnic 

backgrounds, including Malay, Arabic, Pakistani, and Chinese 

participants. To ensure diversity, participants were selected 

based on their varying skin colors. The video recording 

sessions were conducted at different times of the day and were 

recorded using a basic mobile camera. The videos were 

captured in color (24-bit RGB with 3 channels×8 bits/channel) 

at 30 frames per second (fps) with a pixel resolution of 

720×404. The videos were saved in AVI format on a laptop 

for analysis in MATLAB. The lighting conditions during 

video capture were maintained as natural as possible, and the 

participants were asked to maintain a neutral facial expression 

while sitting in a comfortable posture. The video content 

focused on the participants' faces and upper bodies. All 

participants were seated on a chair in front of the mobile 

camera at a distance of approximately 0.7 m from the camera. 

Two 20-second videos were recorded for each participant. 

The first video was captured while the participants were 

instructed to maintain a neutral facial expression and a steady 

gaze at a mobile camera. In the second 20-second video, 

participants printed faces on an A4 size paper. In addition, we 

recorded 4-second videos for all participants to demonstrate 

the capability of our method with reduced processing time. 

The region of interest (ROI) for all participants was selected 

as the small rectangular-shaped area of the nose and cheeks 

between the eyes and the mouth, excluding the regions 

covered by facial hair for some participants. The ROI selection 

was based on the Viola and Jones algorithm for nose detection, 

and 3/4th of the detected nose was added to both sides of the 

nose coordinates to yield our ROI, as shown in Figure 2 [34]. 

The RGB signals were calculated from the 24-bit color 

images, and the thresholds for signal identification were set 

based on the average pixel intensities in the ROI.  
 

 
 

Figure 2. ROI selection for RGB extraction 
 

2.1 RGB channels decomposition 
 

In this study, the source signal of interest is the 

cardiovascular pulse wave that propagates throughout the 

body. For the real face from the first video, volumetric changes 

in the ROI of the facial blood vessels during the cardiac cycle 

modified the path length of the incident ambient light such that 

the subsequent changes in the amount of reflected light 

indicated the timing of the cardiac pulse events, while there 

were no changes in the amount of reflected light for the printed 

face on the A4 size paper. Therefore, from this feature of 

changes, according to the cardiovascular events from real 

human facial skin, we set some thresholds to recognize the real 

face from the printed face. By recording a video of the facial 

region with a mobile camera, the RGB color sensors pick up a 

mixture of the reflected signal. Each color sensor records a 

mixture of the original source signals with slightly different 

weights. To obtain the red, blue, and green weights for every 

frame, we summed all the pixel values separately in the ROI 

of each channel, resulting in 600 frame yields with r(t), g(t), 

and b(t), respectively. Next, three component signals were 

recovered by applying an enhancement technique to the RGB 

traces. This technique allowed for distinguishing between the 

real face and the printed face based on the resulting signals. 

Specific thresholds were set based on the cardiovascular 

events from real human facial skin, and these were compared 

to the RGB traces obtained from the printed face. Figure 3(a) 

shows face detection and the cropped ROI.  
 

 
 

Figure 3. (a) The region of interest (ROI) is automatically 

cropped after being detected; (b) The ROI decomposed into 

the RGB channels; (c) The raw RGB traces. An enhancement 

is applied on the RGB traces to recover; (d) Three component 

signals 
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There are three RGB channels from the decomposed ROI 

(Figure 3(b)), and (Figure 3(c)) shows a three component 

signals obtained from the RGB channels. Then, three 

component signals were recovered by an applied enhancement 

on the RGB traces (Figure 3(d)). 

 

 

3. DETECTION METHODOLOGY 

 

Postprocessing of both the videos for real faces and printed 

faces was performed using demo software written in 

MATLAB version 2017b (The MathWorks, Inc.). 

Specifically, we used MATLAB's Signal Processing Toolbox 

to process and analyze the video data. This toolbox provides a 

comprehensive set of algorithms and tools for signal 

processing and data analysis. An overview of the main steps 

in this method to obtain the blood pulse from the real face 

video is outlined in Figure 3, and both signals from both videos 

are analyzed to set some thresholds to distinguish between the 

real face and fake face. 

First, an automated face detector was used to detect the face 

within the video frames and localize the measurement region 

of interest (ROI) for every video frame. In this work, we used 

the face detector and nose detector based on the Viola and 

Jones algorithm for object detection [19], the algorithm returns 

the x- and y-coordinates along with the height and width that 

yields a box around the face for each face detected in the first 

fame for the input videos. From this box, we crop the center of 

the box by nose detection as an ROI for the subsequent 

calculations stated in Figure 2. The same coordinates of the 

selected region (ROI) are used for the entire sequence of 

frames in the input video.  

To avoid face detection errors, if the face was not detected 

in the first frame, the face box coordinates from the next frame 

were used. If more than one face was detected, then the method 

takes the face box coordinates that were the closest to the box 

from the next frame. Some thresholds are set from the 

calculations for the ROI of all the frames, and our 

demonstration software shows a green box around the face 

with the label “Real Face” if the face is real in the input video, 

and shows a red box around the face with the label “Fake face” 

if the face is a spoof printed face on paper in the second input 

video. 

 

3.1 Cardiac pulse signal detection and enhancement 

 

A sum over all the pixel weights for every RGB channel in 

the ROI for each frame yields three components, r(t), g(t) and 

b(t) for red, green and blue, respectively, from all the video 

frames. The observed changes in the component plotting are 

based on the cardiovascular change events, as stated in Figure 

4(a) for the g(t) component; always, the g(t) component is the 

best component for a cardiac pulse rate measurement [15]. 

The RGB sensors pick up other sources of fluctuation noise 

in the light with the cardiac pulse signals during video 

recordings of the participants due to artifacts such as changes 

in ambient lighting conditions and sudden motions of the 

participant, as plotted by the high amplitude changes of the red 

line in Figure 5(a). In this work, we used RGB sensors to detect 

cardiovascular changes in video recordings of participants. To 

process the RGB signals and reduce artifacts, we developed 

the following algorithm: 

(1) Partition the green component of the acquired signal (20 

sec video) into 40 partitions, as in Figure 5(a).  

(2) Calculate the mean value of each partition, using the 

formula below: 

 

𝑋̅ =  
∑ 𝑝𝑔(𝑡)𝑖

𝑛
𝑖=1

𝑛
 (1) 

 

where, g(t)=Green Component, pg(t)=partition. 

(3) Shift the samples of every partition to the mean level, 

using the equation:  

 

𝑠𝑔(𝑡) = 𝑝𝑔(𝑡) − 𝑋̅ (2) 

 

where, sg(t)=Shifted partition. 

(4) Repeat steps 2-3 above for all the partitions and then 

recombine the partitions to yield a cardiac pulse signal 

with a reduction in artifacts using the Eq. (3) and shown 

in Figure 5(b). 

 

G(t)=[sg(t)1 sg(t)2 sg(t)3.………sg(t)60] (3) 

 

where, G(t)= recombined partitions. 

(5) Use low-pass filter of (5 Hz) for the final enhancement 

as shown in Figure 5(c). 

 

 
 

Figure 4. Real face video: (a) Green component and (b) 

Red‒green component with enhancements 

 

 
 

Figure 5. (a) Partitioning the signal from the green 

component and then (b) Shifting all partitions to the mean 

level; (c) Final Enhancement with low-pass filter 

 

Therefore, we have provided a detailed explanation of the 

steps involved in our algorithm. By partitioning the green 

component into 40 partitions and shifting the samples to the 

mean level, we were able to reduce the effects of artifacts and 

obtain a cardiac pulse signal with enhanced accuracy. We also 

applied a low-pass filter of 5 Hz for the final enhancement. 

We believe that our algorithm is effective in reducing 

artifacts and enhancing the accuracy of the cardiac pulse signal. 
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We have carefully selected the parameter values based on our 

analysis of the data. 

In this work, there are four extraction components for each 

video, the red component, green component, blue components 

and (red + green) component. We use all the steps in Figure 5 

of the enhancement of all the components (real face video and 

printed face video) for all the subjects, and then from this 

enhancement and artifact reduction, we can set accurate 

thresholds to distinguish between the real face and printed face. 

 

3.2 Thresholds 

 

The first threshold (T1) was set at a difference of 12 for the 

green components, while the second threshold (T2) was set at a 

difference of 18 for the red + green components. If the 

difference between the max and min weights for a vector 

exceeded these thresholds, we considered it to be a real face; 

otherwise, we classified it as a printed face. We also set an 

additional threshold of 100, which triggers a retest if the 

differences exceed this value, as shown in Table 1. 

In addition, we also set a third threshold (T3) for the green 

components based on the number of pulses of any 4 sec with 

amplitudes greater than 12, with a minimum of 3 pulses required 

to classify a signal as a real face. 

 

Table 1. Detection thresholds 

 
Real Face Printed Face Re-Test 

DGC>12 DGC<12 DGC>100 

DRGC>18 DRGC<18 DRGC>100 
*DGC: Difference between max and min in the green component. 
*DRGC: Difference between max and min in the red + green component. 

 

The specific threshold values used in our study were 

informed by previous research that investigated the 

cardiovascular events that occur in real human facial skin during 

the cardiac cycle [12]. We also considered factors such as the 

video capture equipment and lighting conditions. To validate 

our threshold setting method, we tested it on a sample of 20 

participants with varying skin colors and ages, and compared 

the results to the ground truth obtained from manual inspection 

of the video data. The three final results were fused to the 

decision-maker for real face detection. For real face detection, 

the values of the results must be more than our thresholds. The 

three final results were fused to the decision-maker for real 

face detection. 

 

 

4. EXPERIMENTAL RESULTS 

 

4.1 Cardiac pulse signals 

 

The green component extraction from the 600 frames for 20 

s shows the heart pulses but is not accurate enough with the 

different peaks, and enhancement is still needed to yield clear 

pulse signals. The first stage of the results is based on our five-

step enhancement method for the cardiac pulse signal by 

partitioning the green component and red-green component 

into 40 partitions and using steps 2, 3 and 4 and then 

recombining again, as shown in Figure 4. 

The results of the obtained signals after step 4 show the 

accurate difference measurements between the max and min 

in the green and red-green components. We can clearly count 

the pulses in any 4 sec from the obtained signal of step 5 for 

the green component. Real faces were detected based on the 

three results, DGC, DRGC and Pulse. 

To compare the results of the cardiac pulse rate obtained 

from our method, we used a commercial pulse oximeter as a 

reference to measure the pulses in 30 sec, during the same time 

we recorded video for the participant’s face. Figure 6 shows 

the use of FFT for the signal obtained from the enhanced green 

component. The frequency with a high peak obtained from 

FFT was clearly close to the reference frequency. 

Table 2 shows the measurement of the cardiac pulse rate of 

five selected subjects. The results obtained from video imaging 

closely matched when compared to the reference pulse oximeter 

measurements. 

 

 
 

Figure 6. Use the FFT to the green component and the high 

peak in frequency domain for the heart rate 

 

Table 2. Cardiac pulses rate measurements 

 
From Video (FFT) Pulse Oximeter 

55 58 

72 76 

63 63 

88 86 

83 81 

 

4.2 Real face detection 

 

Figure 7 shows the real face detection and fake printed face 

detection results for one subject with both videos (20 s) for the 

real face video and the printed face video. 

 

 
 

Figure 7. Real face and printed face detection for one 

participant 
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Table 3 shows the results of the difference between the max 

and min in the green component (DGC), the difference 

between the max and min in the red–green component 

(DRGC) and the cardiac pulses in the first 4 sec. Table 3 shows 

the results of real face videos, and Table 4 shows the DGC and 

DRGC for the videos of printed faces on A4 size paper. The 

results in both tables are for 20 different subjects. The three 

final results for every subject are fused to the decision-maker 

based on the thresholds, and then used to decide the final 

decision for the detection of liveness in the real face or the 

spoof in the printed face. 

 

Table 3. Results of real face videos (600f-20 Sec) 

 
Thresholds (T1=12, T2=18, T3=3) 

Subjects DGC DRGC Pulses Fusion Real Face 

1 20 35 5 

DGC>T1 

& 

DRGC>T2 

& 

Pulse>T3 

Detected 

2 21 34 5 Detected 

3 19 41 5 Detected 

4 29 42 6 Detected 

5 20 37 5 Detected 

6 19 39 6 Detected 

7 23 40 4 Detected 

8 22 37 6 Detected 

9 18 39 5 Detected 

10 18 27 6 Detected 

11 26 32 4 Detected 

12 17 31 4 Detected 

13 20 39 5 Detected 

14 22 41 4 Detected 

15 23 34 6 Detected 

16 20 38 5 Detected 

17 25 47 4 Detected 

18 20 36 5 Detected 

19 21 29 6 Detected 

20 29 60 4 Detected 

 

Table 4. Results of printed face videos (600f-20 sec) 

 

Thresholds (T1=12, T2=18, T3=3) 

Subjects DGC DRGC Pulses Fusion Printed Face 

1 6 8 2 

DGC<T1 

& 

DRGC<T2 

& 

Pulse<T3 

Detected 

2 4 7 0 Detected 

3 7 6 1 Detected 

4 5 5 2 Detected 

5 5 9 0 Detected 

6 5 8 1 Detected 

7 5 8 1 Detected 

8 5 5 0 Detected 

9 5 4 0 Detected 

10 5 8 0 Detected 

11 6 11 1 Detected 

12 6 11 2 Detected 

13 5 7 1 Detected 

14 6 9 2 Detected 

15 6 10 2 Detected 

16 4 11 0 Detected 

17 6 12 2 Detected 

18 4 8 1 Detected 

19 6 6 2 Detected 

20 7 13 1 Detected 

 

All the results of DGC and DRGC obtained from the real 

face videos are clearly more than T1=12 and T2=18, and the 

results of DGC and DRGC obtained from the printed face 

videos are sharply less than T1=12 and T2=18, as shown in 

Figure 8 and Figure 9, respectively. 

 
 

Figure 8. Results of DGC for the real face (RF) videos and 

printed face (PF) videos 

 

 
 

Figure 9. Results of DRGC for the real face (RF) videos and 

printed face (PF) videos 

 

4.3 The results of the proposed method within the (4s) 

video 

 

The show the capability of this proposed work for real face 

detection within short-time video recording (4 sec) only. We 

recorded a 4 s video for the same participants within the same 

field of view. The final results were accurate enough to detect 

the liveness in the real face and to detect the spoof in the 

printed face based on the three obtained results (DGC, DRGC 

and pulse) from the short cardiac pulse signals within 120 

frames. Table 5 shows the results of real face detection and 

spoof face detection within the 4 sec video recording. 
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Table 5. Results of real face detection within short time video recording (4 sec)/Thresholds (T1=12, T2=18, T3=3) 

 

Subjects 
Real Face Videos Printed Face Videos 

DGC DRGC Pulses DGC DRGC Pulses 

1 20 35 5 6 7 0 

2 20 36 6 4 5 0 

3 22 40 5 6 7 0 

4 19 31 6 5 5 0 

5 20 36 5 4 5 0 

6 19 31 7 4 7 0 

7 22 40 4 5 9 0 

8 17 27 6 4 5 0 

9 16 24 5 5 6 0 

10 18 26 5 5 6 0 

11 26 31 4 5 9 0 

12 18 26 6 5 11 0 

13 17 22 5 5 3 0 

14 19 38 4 5 6 0 

15 21 31 6 7 6 1 

16 20 37 5 4 7 0 

17 18 29 4 5 4 0 

18 19 33 5 5 9 0 

19 17 27 5 6 6 0 

20 17 46 4 6 11 1 

 DGC>T1 DRGC>T2 Pulses>T3 DGC<T1 DRGC<T2 Pulses<T3 

 Real Face Detected Printed Face Detected 

 

 

5. DISCUSSION 

 

The main use of this proposed work for liveness detection 

in face recognition systems is to access secure areas. Fake 

printed face detection must be rapidly improved to enhance 

facial biometric systems. We detected liveness in the real faces 

based on cardiac pulse rhythms. We extracted the cardiac 

pulse signal using the method detailed in Sections 2 and 3. 

The strongest color change information in the ROI 

corresponding to the cardiac events was in the green 

component and red-green component. For some participants, 

the forehead is covered by a scarf or hair, and the chin region 

is covered by a beard. A small rectangular-shaped part of the 

nose and cheeks was selected as an ROI to reduce the 

computation time and complexity, and this ROI was used to 

avoid noise from eye blinking and from mouth motions. The 

experiments were performed at different times of day with 

different illumination ranges. We did not address how the 

proposed algorithm will work in a low lighting environment. 

Due to the small range of artifacts in our experiments from the 

motion and illumination changes, our proposed methodology 

can easily overcome these artifacts. 

For further artifacts from rapid head movement, alternative 

artifact rejection could be used for improvements in future 

works [35, 36]. In addition, for this work, the video recording 

time was not short enough, future work still needs further 

reduce the video recording time to enable detection of real face 

liveness with less time. 

 

 

6. CONCLUSIONS 

 

We have demonstrated a simple low-cost new methodology 

for detecting liveness in real faces based on cardiac pulse 

rhythms obtained from the video imaging of human faces 

using a simple mobile camera for data collection in normal 

daylight illumination. The technique showed the ability to 

detect spoofing faces, including printed face photos and 

masked faces. Furthermore, we have shown that this method 

can easily work within a short recording video (4s). This 

technique is under development and extension to use in robust, 

accurate face recognition access systems. Creating a real-time 

detection system based on multiple vital sign parameters, such 

as cardiac pulse rhythms and respiratory movements, to detect 

liveness in real faces, and the use of better classifications will 

be the next topics for future work. 
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