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The research into theory for analytic univalent as well as multivalent functions is an
ancient subject for mathematics, especially in complex analysis, which has attracted a
great number for scholars due to utter elegance of the its geometrical characteristics as
well as numerous research opportunities. The study of univalent functions is one of
most important areas of complex analysis for only one and many variables. Researchers
have been interested in the traditional study of this subject since at least 1907. During
this time until now many researchers in the field of complex analysis, including as
Euler, Gauss, Riemann, Cauchy, and many others, have developed. Geometric function
theory is a combination or interplay of geometry and analysis. The main goal of this
article is to investigate the principle for dependence as well as add an additional subset
for polyvalent functions with a different operator that is related to derivatives of higher
order. As a result, the findings were important in terms of various geometric properties,
including coefficient estimation, distortion as well as growth borders, radii for

starlikeness, convexity, as well as close-to-convexity.

1. INTRODUCTION

The main driving force behind this line of believed is the
renowned conjecture known to be the Bieberbach conjecture
as well as coefficient problem, and these offered enormous
scope over development about 1916 until a positive settlement
within 1985 through De Branges, during which innumerable
results derived from this problem emerged. Since then,
Geometric Function Theory is being studied separately.
Geometric Function Theory is a popular topic. Despite this, it
continues to find new uses for a variety of fields range for
fields, including modern mathematical physics, engineering,
medical, as well as others, more traditional physics topics like
fluid dynamics, nonlinear integrable systems theory, as well as
others partial differential equation theory. In complex analysis,
a geometric function is a function whose range describes
specific geometries.

The research aim is ability to study a new class for
multivalent functions established through the new linear
operator and start investigating a new linear operator by using
Hadamard product of the basic higher-order derivatives of
differential subordination of multivalent functions. Using
generalized hypergeometric function and the properties of the
generalized derivative operator will have obtaining A number
of findings over higher-order derivatives about differential
subordination within an open unit disk are presented.

We used the properties of the generalized derivative
operator, derive certain subordination and superordination
properties, as well as examine the characteristics about
variations subordination for analytic univalent functions over
an open unit the disc. Furthermore, its findings have shedding
illumination on geometric features that include coefficient
inequality and Hadamard product characteristics. Certain
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fascinating findings to feed higher-order derivatives,
variations subordination, as well as superordination about
analytic univalent functions were recently installed. Following
that, employing the convolution formed by two linear
operators, specific findings for differential subordination
comprising linear operators have been presented. Multiple
findings to feed higher-order differential subordination within
the open unit disk employing a generalized hypergeometric
function are being discussed employing the convolution
operator.

Allowg (w) to serve as an anaytic function an open unit
discL ={w e C:|w| <1} In the event the equation v =
g(w) possesses fewer compared to p-solutions through L,
then g(w) is said to be p-valent through L. 5. “The class of all
analytic p -valent functions is denoted by A,, where g is

expressed of the forms”

[oe]

g(w) = wP — Z aw', (welcrL),

1=p+1

(1

and p,t € N ={1,2,3,...}. The Hadamard product from two
functions in A, which means

[ee]

k(w) =wP — cwt, Welr )
is provided by
gw) = k(w) = wP — Z acw. (wWe L) 3)

1=p+1


https://orcid.org/0000-0003-0726-3180
https://orcid.org/0000-0002-8741-2176
https://orcid.org/0000-0001-8236-6900
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.100508&domain=pdf

The theory about harmonic as well as analytic [1] univalent
functions for (bi or just multi-types) [2-6] constitutes a few
about the most significant ideas associated with complex
analysis. Thus, a few unique elements are described within this
theory to establish novel interesting certain groups or just sub-
classes [7-9] for special functions associated to multiple
operators [10-14] that could have maximized as well as
maximized a number real problem via a certain functional
relative that results via the theory of conventional functions by
way of a few characteristics for complex functions [15, 16].

Especially, this area of study has piqued the interest for a

number of applied science researchers in a variety of situations.

Furthermore, these principles play an important role in
determining the exact solution for mathematical modeling,
especially in the analysis for physical, chemical, as well as
building domains [17-19].

2. BASIC PROPERTIES

We allow g(w) as well as k(w) be analytic function in L.
The function g(w) is said to be subordinate to a function
k(w) or k(w) is said to be superordinate to g (w), if and only
if there exists a Schwarz function z(w) analytic in £, with
z(0) = 0and |z(w)| < 1, (w € L), such that,

g(w) = k(z(w))
written as
g <korgw)<k(w),(weL

Furthermore, if the function k is univalent in £, then we get
the following equivalence g(w) < k(w) if and only if
g¢(0) = k(0) and g¢(£) c k(L) [20-22]. A function g(w) is
called starlike (convex) in L if satisfies the following

condition:

wgw’(w)} } { { zg/’(w)} }
Re >0,g(w)#0¢,{Rel+ >0
{ { gy § = oW /W)
respectively [20]. The linear multiplier fractional ¢-

differintegral operator L7 introduced by studies [15, 23]
defined as follows:

Lyzgw) = g(w),
LEgw) = (1 - DLEgw) +
™w (L)?,Tg(w)) ,(=0),
Lyzgw) = Lyt (Lyigw)),
Lprgw) = Litg (L7 'gw)), (nen)

(4)

and with the following form:

gw) =w= ) la|w!

1=p+1

®)
then by Eqgs. (4) as well as (5), we get:

. ~ o (5,2 - L+ 1)
Lyrgw) =wP — Z (FV(Z)F)/([ +1—-a)

[1—‘[

t=p+1

’ ©6)
+ [L]yr]) A%

1567

where,

(7

L,2-ar,+1
y: <y( L, +1)

L)L, +1—a) [1-7+ [‘]VT])

By Egs. (6)-(7), then we have:

Lgw) =wP = ) pflaw

1=p+1

a,

Note that, if we put @ = 0 the operator [,yf decreases into
the operator studied through Al-Oboudi [24] as well as for a =
0, T =1, we as a species get the operator introduced through
Salagean [25]. As a higher order derivatives g-differintegral
operator is described below:

(oo}

gOw) =pw? = >t wt?

1=p+1
[oe)

p! _ t! _
) - p-k _ E « -k
1=p+1

®)

where,p = k,p € Nand k € N U {0}.

Definition 2.1 When a function g(w) compared to A, is
within the class K(a,A,n,y,7,D,E), if it satisfies the
following:

k+1
w (LE g (w)) 1+ Dw
1+ — B < 9
an 1+Ew
(Ly,"r g’(W))
(-1<E<D<10<pB<1),and let,
k+1
w (L g(w) 1+ Dw
Bw)=1+ P =<1y s, (1O
(cergw))
then we get:
1+ DY(w)
PO = T v awy
where, Y (w) is Schwarz function [26, 27], thus:
Bw)(1+EY(w)) =1+ DY(w)
v = 2L nd vl <1
Y= BBy Y
then, we obtain,
k+1
w (L5 g(w))
an k B
(Ly,'r g’(W))
s <1, wer (11
( w (L2 "g) >
D-E|1+ ——B
(c5rgw)




3. MAIN RESULTS

This section investigates and demonstrates the necessary
conditions for differential subordination for the class
K(a,A,n,v,7,D,E). A few fascinating findings to feed
differential subordination as well as superordination about
analytic univalent functions were recently installed.
subsequently employing the convolution formed by two linear
operators, specific outcomes about differential subordination
including linear operators were presented.

Theorem 3.1 When a function g(w) € A, about a given
type (1) falls into the class K(a, 4,n,y,t, D, E) if it satisfies
the following condition:

Z((l—D)+(1 E)ﬁ)[ o

=p+1
(!

_(lT.—l)!]Mﬂatl

<(@-1

!
+(E_1)ﬁ)[(p—Z—1)!

(12)

p! ]
(- k)
fora,AneNg7<n+1y =20and-1<E<D<1.

Proof. If g(w) € K(a, A4, n,vy,7,D, E), then by Eqg. (11), we
obtain:

w (L“””g(w))"“
(cergw))"
o (1 v (Li‘,?’”g(W)ZkH B ﬁ)
(£g7aw))
| wlgrew) " s (grew) |

|(D —(1-PE) (L;‘_'fg(w))k —WE (1:;‘#'"9(w))k+1

—-B

<1

<1

! k-
-2 p+1mﬂlaal wik 1)

p!
@—k-—D!"

lo-a-pp (W

W

|w

(!
1= p+1mﬂt atwl k)

! _ o (! -
| ﬁ (ﬁw - Zt:p+1(l_—k)!tutaal wt k)
! ke o ! ke
wE (G =t = X o pyan ™ Y)
<1

Hence, when w — 1, we obtain:

p! p!
(p—k—l)!‘(p—k)!)

+ Z ((t —L!k)!_(t—kl!— 1)!)(/’)

+1)/1 Ial<

a+p)(
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(D +BE) ((p—i!— D @ f!k)l)
+ Z ((L—k)' = —1)'>(
+BE)ul la,l.
Then
Z (A=) + (= ) [y — ey
=p+1

<((D-1D+E-1B) [m

p! ]
-
Thus, g(w) €K(a, 4, n, y, 7, D, E). The evidence is therefore
complete.
The following result establishes the associated class's
distortion and growth theorem [12].

Theorem 3.2 If g(w) about a given type (1) falls into the
classK(a,A,n,y,t,D, E), then for |[w| = r < 1, we have,

) [w|P+t (13)
(-1 + (E-1p) [(p k=D~ - k)] — (14)
Na-mra-on) e -—=r

_1)| .uL
The equality in Egs. (13)-(14) is achieved to feed the
function g(w) provided by:

IWlp

((D_1)+(E—1)ﬁ)[(p ==y - k)]

(((1—D)+(1 E)B)[(t I —1)']’“
< lgw)l

and

lgW)| < [wl?

gw)=v \
p! p:
((0-D+(E-DB) [(p K=1)1 (p k)'] writ (15)
((1 -D)+(1—-E)B) [(t N —k— 1)'] ui

Proof. Via Theorem 3.1, we have,

—D ]ul |a,|

s((@-D+(E-DB) [m

Z((l—D)+(1 E)[)’)[ ol G

1=p+1

"@?@J

Then, for |w| = r < 1, we get,

(e} [ee]
gl =77 = > a1 = 1P =2t ) g |

1=p+1 1=p+1
>rP
|

(@-D+E-1h) [(p R ]
(=) + (- B) [~ =

rP+1,

=




also,

w w
lgw)| <rP + Z la, | rP*1 < 7P 4 rPHL Z la, |
1=p+1 1=p+1

DO-D+E-DB
ol lotm-gtal),
(a-p)+-B8) [t~ = _1)!]/4

The evidence is therefore complete.
Growth  theorem  for  the
K(a,A,n,y,1,D,E) is given by.

considered

Theorem 3.3 If g(w) about a given type (1) falls into the
classK (a,A,n,y,t,D, E), then for |w| = r < 1, we have

pre!t
((D—1)+(E—1)ﬁ)[(p'(p_k_—li)'_(zf!(p_lg)'] P
UG- de—k=-1) ' (10
((1—D)+(1—E)ﬂ)[(l k— m)l —k-— m—l)‘]
<lg'Wl,
and
lg' W)l
<prp!
(-1 +E- 1)ﬁ)[(p'(p_k_—1i)' (p'(p ]7:”)1)'] .
+ UG- ”(‘ -1
((1—D)+(1—E)ﬁ)[(l = m): k- m—l)']”‘

The equality within Egs. (16)-(17) is achieved to feed the

function g(w) provided by,

g'w) = pw?™?

pLp—k—1) p!(p—k)
<((D D+ E- 1)ﬁ)[( e VR m)l])wp

(a-0+@a- E)ﬁ)[(ll (;( ]:,)l)l (lll(;( 1;1 11)'}“‘

Proof. Since

lg' W)l < plwlP~* — tlaJlwl

1=p+1

Form Theorem 3.1, we obtain,

Z (a-D)+a-B) [

1=p+1 (_

<(@-D+(E-DB) [(p+!_1)!

ll
k_l)!]M?IaLI

‘@—@J
Then, for |w| = r < 1, we obtain,

=)

¢/ = prot = ) |

>prp . 1=p+1
(@-1+ @ -1p) [ZE= k__11)), 2= ]2)']
\a-p+a- E)/?)[([‘ (fc T ['(;c m_—li)']ﬂ‘

We can get in a similar way,

<)

¢ <prrter ) e

Sprp ) =p+1
((D—1)+(E—1)ﬁ)[(p @ _k__li)r()f L 12)

+ e [I(L -1)
(A-D)+Q- E)ﬁ)[(l-k ml =k = m—D]“‘

So, we have finished the proof of the theorem.

The following result shows that, based on the study [2], the
function g (w) meets the radii about starlikeness, convexity
as well as close-to-convexity to convexity.

class

Theorem 3.4 Allow g¢(w) € K(a, A,n,y,t,D, E). Then the
function g is of starlikeness order g in |w| < r;, where

r(a,An,y,t,D,E, 0)

1
(G ) (a-0)+a-00) [ E - =i ||
72\ -+ -0 g=f=-5Em

Proof. We must prove that,

wg'(w)
<1-o,
g(w) (19)
(17) (P_1)|W|p _Zi‘ip+1([_ 1)|aL||WL| _
WP — X2, ala llwt] -
From Eq. (19) holds if,
(= DWwP = ) (= Dla,Iw'
1=p+1
18 N
1o <a- a)<|w|p - e, ||wl|>.
1=p+1
Then,
(t+0-2) —
mml [lw|*? < 1. (20)
t=p+1

From Theorem 3.1, we obtain,

(1-D+@a- E),B’)[(L ol = _1),]11[
P! la,| (21)
1=p+1 ((D_l)"'(E_l)ﬁ)[(p_k_l)!_ ]

(p—K)!
<1

Using Egs. (20) and (21), we have,

(t+o0-2)

(p+a 2)

((1 D)+(1- E)ﬁ)[(l k)' (= —1)']”‘
(-1 +(E- 1)3)[@ k=D~ - k)']

that is,

lw|™P

lw|=P

i «
_(+o-2) (A-D)+a- E)ﬁ)[(l k)' (L—k—l)!]’u‘
(L+0’—2)

(D-D+(E- 1)ﬁ)[(p = ! (pflk)!]
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Therefore,

lwl

! ! . =
<{(p+a_2)<((1—D)+(1—E)B)[(L_‘k)!—(L_kl_l)!]ut)} ’

CremP\ (@-v+E-vp) [(p—il— DI~ f!k)!]

The subsequent theorem demonstrates the concave shape
property found in the thought about subclass functions.

Theorem 35 Allow gW) € K(a,A,n,y,7,D,E).
Afterwards the function g possesses a convex order ¢ within
lw| < r,, where,

rz(a,/lln,y,T,D,E,o')
1
p! ( -p
o — L — 1) p— k—o+ 2)
kD¢ k=9)

L
(@-D)+1-E)p) [(z —l!k)! (- kl!— 1)1] |

(D-D+E-DB) [(p - z!_ DI E!k)!]

inf

Proof. We must prove that,

wh'(w)
‘h(w) <l-g¢

where,

hw) = w (£8P mgw)) T and A (w)
_opllp—-k) .
a (p—k—m)!wp ’
ol (t—kK) ke
T L - k—mi ™Y (22)

1=p+1

p! p-k 0 u -k
m(p—k—1)|w| —Zl=p+1m(l—k—1)|al|lw|

! . (! _
m [w|p=F — EL:pﬂmM [lw|=k

<l-o

From Eq. (22) holds if,

-k - Dl
p—k-—1!7

[ee]

- Z #!_1)!(! —k = Dla,[lw|*

1=p+1

STCI) e L——
< o (p—k—l)!w

o |
- 70_,:_ 5 |atl|w|t-k>

=p+1

Then,

|
i Eome ko)

p!
L:p+1m(73 —k—-0+2)

From Theorem 3.1, we obtain,

la, |w]"P <1 (23)

(24)

i <((1 -D)+(1-E)B) [(l _[!k)! = k[!_ 1)!]117)' I
al

(D-D+(E-DB) [(p — il_ DI E!k)!]
<1

=p+1

Using Eqgs. (23) and (24), we have

t!

k= k-0

o lw|*=P
m(p —k—0+ 2)

(A-D)+ A -E)p) [(L —”k)! G- k”— 1)!] a

] I
(@=D+E =) |m=F=m~Gom
p—-k—-—0+2)

p!
p—-k-1!
(L—Ié!—l)!(L_k_U)
(@=D)+ 1 ~E)B) [(t —t!k)! U= = 1)!] a

! !
(@-1+E-08) [ =~ 52w

X

lw|*™? <

Hence,

1

| -p
t!

k-t k=9

{(((1 ~0)+ (-0 [ e 1)!]/1:‘)}5

(@-D+E -0 [g=h=m~ 5w

X

lw| <

since a consequence, the proof has been complete.
Close-to-convexity property that characterizes the thought
about subclass functions can be seen within the paragraphs that

follow theorem.

Theorem 3.6 Allow gW) € K(a,A,n,y,t,D,E).
Afterwards the function g possesses a close-to-convex order
o within |w| < r3, where,

(plwlP — 2 - 0))}“” «

r3(alllnly}TlD) E, 0‘) = I'nf{ llwlp—Z

1

=P

(1-D)+ (1 —-E)B) [(l _‘!k)! = ,é!_ 1)!] i

1 i
(D-1+(E-1p) [(p - z'— DI E.k)!]

inf

Proof. We must prove that,

lg'w)—1l<1-0

that is,
lg'(w) — 1] < plw|P~ — Z da, |wl-1=1<1-0
1=p+1

[ee]

lg' (W) — 1] < plw|P~ — Z a, wlt <2 0o

1=p+1

From Theorem 3.1, we obtain,
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| |
(@-v+ -8 5= -5l

|al | < L'
St (1-D)+ (1 -E)B) [([ P 1)!] wt
where, ¢ = p + 1, then,
hd ((1 D)+(@1- E),B) [(t k)' (—k-1D)! ]ML
p, |a1| (25)
S\ (0 =D+ (E-1F) [(p—k—l)!‘(p—k)!]
<1
Observe that Eq. (25) is true if,
l|W|L—2—p+p
plw|P~t — (2 —0)
t! t! «
5 (A =D)+ (1 -E)p) [([—k)! ‘(L—k—1)!]“t
= p! p!
(@=0+E-08) [g=f =2 w1
that is,
w]P < (plw|p-t _p_(zz -0)) (@-n+a- E)ﬁ)[ k)' (1171)] a
tlw| (0-D+(E-DB) [m—m]
Hence,

1
(plwlPt =2 - P
[wl| S{ w2 } X
1

t! —p

((1—D)+(1 E)ﬁ)[ k)' (l_kl_ 1)!]11{1
!
(0 =1+ (E-DB) [(p syl rre k)!]

since a consequence, the proof has been complete.

4. CONCLUSION

We've shown that higher-order derivatives of multivalent
functions are correlated with subclass. There are a lot of
fascinating findings about harmonic multivalent functions
defined by differential operators. The investigation focused on
a subclass for analytical univalent function linked to the notion
differential subordination. We investigated a few differential
subordination along with superordination results including a
specific class defined upon the dimension for univalent
meromorphic functions within the open unit disc.

Gain geometric properties such as coefficient border,
coefficient disparities, distortion theorem, closing theorem,
severe points, starlikeness radii, convexity, near-perfect
convexity, as well as integration principles. We studied
neighbourhood property by using differential subordination.

We obtained a few differential subordination leads to
including a linear operator, as well as certain ones sandwich
theorems. As a several convolution operators, we presented a
few uses of the differential subordination notion upon
subclasses about univalent functions. That was obtained some
important results differential subordination and differential
superordination of second order of meromorphic analytical
univalent function by using linear operator. Finally, by using
the convolution operator, we give some results for Second
order differential subordination within the open unit disk
including a general hypergeometric function.
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5. FUTURE STUDY

The following is a breakdown of the future study:

- Using generalized hypergeometric function and the
properties of the generalized derivative operator will
have obtaining multiple findings to feed fourth order
different subordination within the open unit disk

- Can develop two novel bi-univalent function subclasses
and obtain estimates for the concepts for class of
functions.

- Ability to study a new class of multivalent functions
characterized by a fresh linear operator and start
investigating a new linear operator by using Hadamard

product of the basic hypergeometric function as well as
the Mittag-Leffler function of meromorphic functions.
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