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The challenges associated with diagnosing faults in three-phase induction motors 

necessitate the development of innovative, non-invasive methods that can increase 

efficiency and reduce costs. This study presents a novel approach to fault detection in 

these motors, leveraging advanced machine learning technology. The primary focus is 

the identification of faults related to the stator, including single-phase and three-phase 

faults, current interruptions, and sudden torque changes. Convolutional Neural 

Networks (CNN), inspired by the human visual nervous system, form the backbone of 

the proposed fault detection methodology. This technique utilizes external 

measurements for processing, circumventing the need for intrusive measures such as 

opening the motor or installing internal sensors. The non-intrusive nature of this method 

not only simplifies the process but also significantly reduces associated costs. The 

CNN-based approach offers superior accuracy in diagnosing faults, facilitating timely 

prevention measures and potentially saving human lives. It also reduces the time and 

effort required to identify fault types, thus minimizing motor downtime and associated 

costs. Simulations were conducted using MATLAB software, and individual fault 

scenarios were applied and analyzed. The results obtained demonstrate the efficacy of 

the CNN-based fault diagnosis method, thereby highlighting its potential for 

implementation in real-world scenarios. This study contributes to the field by providing 

a detailed exploration of a non-invasive, cost-effective, and highly accurate method for 

fault detection in three-phase induction motors. It opens avenues for further research 

into the application of machine learning techniques for fault diagnosis in other types of 

motors. 
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1. INTRODUCTION

Three-phase induction motors are integral to numerous 

industrial applications, including wood-cutting machines, 

blowers, pumps, elevators, lifters, compressors, and critical 

processes in mining, machinery, and chemical industries. 

Their popularity stems from their simple construction, high 

initial torque, robust speed regulation, and respectable 

overload capacity. However, these motors are not exempt from 

operational failings, such as motor winding burnouts, making 

it essential to detect any anomalies that could compromise 

motor health. 

Rather than resorting to replacement, it is more 

advantageous to identify the root causes of the windings' 

damage in three-phase motors. A broad spectrum of failure 

situations warrants observation, including single-phase 

burnout, overload, voltage imbalance, and voltage spikes 

common in motors controlled by variable frequency drives. 

Typical winding problems in three-phase motors range from 

shorted turns, winding shorted to frame, phase-to-phase short, 

open winding, to burned windings resulting from single-phase 

operation, submerged motors, and various rotor issues such as 

open rotor bars, open end rings, misalignment of rotor/stator 

iron, rotor dragging on the stator, and rotor looseness on the 

shaft. Notably, bearing failures account for nearly 40% of all 

faults. 

In recent years, a myriad of techniques has emerged for 

diagnosing faults in three-phase induction motors. These range 

from simple to complex methodologies, as elaborated in the 

related work section. Among the most potent tools for this 

purpose are Deep Learning (DL) and Convolutional Neural 

Network (CNN) techniques, frequently used in audio and 

visual recognition and classification, amongst other civilian 

applications. CNNs, with their capacity for autonomous 

spatial feature learning from raw data, have delivered state-of-

the-art performance in image classification and recognition. 

This study implements a CNN-based method to diagnose 

five different types of faults in three-phase induction motors. 

It facilitates various analyses on these motors under conditions 

including normal operation (NR), phase interruption (PI), 

sudden change in torque (CT), single-phase fault (SPF), and 

three-phase fault (TPF). Deep learning stands as a compelling 

technique for fault diagnosis in three-phase induction motors. 

This cutting-edge approach can interpret signals from the 

machine non-intrusively and diagnose the aforementioned 

faults accurately, thereby saving costs, preserving the machine, 

and potentially even saving lives. 
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2. RELATED WORK 
 

Various fault detection and identification techniques hinge 

on the analysis of the stator current's spectral signature. One 

such technique utilizes the power spectrum of the stator 

current for identifying broken rotor bar faults, achieved 

through the Fast Fourier Transform of the current signal [1, 2]. 

Another renowned approach engages the negative sequence 

components of the stator current to detect inter-turn short 

circuits [3, 4]. This method identifies asymmetries generated 

by a faulty motor with shorted turns in the stator winding, 

which induces a negative sequence current that can pinpoint 

the fault. The negative sequence is derived through a vector 

interpretation of unbalanced three-phase currents or voltages 

[5]. However, certain factors such as unbalanced power supply 

voltage, specific types of loads, and instrument errors can 

engender negative sequence currents even in healthy motors, 

leading to potential misclassification. Although some studies 

have considered these effects, the technique remains incapable 

of detecting faults in induction motors with inherently 

unbalanced windings, as illustrated in the study [6]. 

In their research, Yao et al. [7] employed a distinctive 

technique known as Acoustic-Based Diagnosis (ABD). This 

method, designed to diagnose gear faults, leverages a multi-

scale convolutional learning structure and attention 

mechanism. The necessity for this approach stemmed from the 

challenge of distinguishing between normal and faulty signals 

during gear fault diagnosis, as the process largely relies on 

vibration signals. 

Ngaopitakkul et al. [8] introduced a decision algorithm in 

another study. This algorithm utilizes an Artificial Neural 

Network (ANN) to diagnose faults in single-line transmission 

lines, employing the Discrete Wavelet Transform (DWT) and 

Backpropagation Neural Networks. 

Ge et al. [9] resorted to Complete Ensemble Empirical 

Mode Decomposition (CEEMD) for extracting bearing fault 

features, while diagnosis was achieved by injecting adaptive 

noise and amplifying the mode characteristic of the rotational 

machines. 

Deng et al. [10] explored bearing fault diagnosis in 

rotational machines using a method centered on opacity 

correlation classification and an empirical wavelet transform 

sub-modal hypothesis test. A comparison between ANN and 

CNN in fault diagnosis was conducted [11], revealing that 

CNN outperformed ANN in fault detection, particularly in 

environments with static motor surroundings. Additionally, 

CNN boasts a simpler structure and a shorter learning curve 

compared to ANN. 

Han et al. [12] employed a fusion of three techniques for the 

real-time fault diagnosis of induction machines, involving 

ANN, DWT, feature extraction, and a genetic algorithm (GA). 

Heydarzadeh et al. [13] used Deep Neural Networks (DNN) 

to detect gear faults by feeding three monitoring signals 

(vibration, acoustic, and torque) extracted from the discrete 

wavelet domain to precisely diagnose five types of faults. This 

study demonstrated that DNN outperforms traditional 

processing methods due to its deep data-driven approach, 

requiring minimal prior knowledge for feature extraction and 

not necessitating any specific requirements for monitoring 

signals. 

Shao et al. [14] developed a deep learning approach based 

on Deep Belief Networks (DBN) to learn features from the 

frequency distribution of vibration signals and characterize the 

working status of induction motors. This method amalgamated 

feature extraction procedures with classification tasks to 

achieve automated and intelligent fault diagnosis. The DBN 

model, constructed by stacking multiple units of a Restricted 

Boltzmann Machine (RBM), was trained using a layer-by-

layer pre-training algorithm. This technique demonstrated 

superior results compared to previous methods. The obtained 

simulated results provide a close approximation to actual 

faults. 

 

 

3. METHOD AND PROCESSING TECHNIQUES 
 

3.1 Deep learning usage in fault diagnosis 

 

Deep Learning (DL) harnesses feature characterization-

based techniques such as Recurrent Neural Networks (RNNs), 

Deep Neural Networks (DNNs), and Convolutional Neural 

Networks (CNNs) to tackle the intricacy of feature 

engineering by directly extracting feature descriptors from raw 

signals. Among these techniques, CNNs have shown 

exceptional efficacy in learning synthesized features from raw 

signals or images [15]. DL finds extensive applications in a 

wide array of fields, including computer vision, machine 

vision, and natural language processing. 

 

3.2 Artificial neural networks (NNs) 

 

In an effort to enhance the efficiency of induction machines 

and extend their lifespan commensurate with productivity 

growth, experts are fervently developing novel techniques to 

assist in fault monitoring, detection, and diagnosis [16]. Many 

of these Deep Learning (DL) approaches analyze vibration and 

stator current, given their ease and reliability of measurement 

[5]. Leveraging Neural Networks (NNs), Artificial 

Intelligence techniques are developed to detect faults in 

induction motors and furnish information regarding the root 

cause of the failure [17-21]. The DL approach is easily 

implemented by capturing process information from 

measurements and using it to train neural networks [22]. This 

method offers a significant advantage in generating 

straightforward information on fault characteristics, such as 

type and size, without the need for complex mathematical 

models. 

 

3.3 Fault classification using neural network 

 

 
 

Figure 1. Fault detection procedure 
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The fault diagnosis process can be represented by Figure 1, 

which consists of four steps: data collection, feature extraction, 

feature selection, and fault classification. In Figure 1, NR is 

the normal case, PI is phase interrupt, TPF is a three-phase 

fault and SPF is a single-phase fault. 

 

3.4 Data collection and acquisition 

 

To ensure accuracy in the diagnosis, multiple samples must 

be taken. These samples are obtained by measuring specific 

parameters such as stator current or rotor current. Typically, 

experts conduct experiments by using specialized tools to 

measure the stator current under various fault conditions, 

which are then compared. However, to obtain a meaningful 

diagnosis, a large number of samples - often exceeding 200 - 

may be required. 

 

3.5 Feature extraction 

 

Statistical parameter-based feature extraction is a technique 

used to identify faults and their types. It involves calculating 

13 parameters of the statistical samples for the current, which 

are then used as input data. The minimum group of the 

statistical sample analyzed comprises the standard deviation, 

maximum and minimum values of skewness and kurtosis 

coefficients [23]. Pearson’s coefficient of skewness can be 

given by Eq. (1). 

 

𝑔2 =
3(𝑥̅−𝑥)

𝑆𝑥
  (1) 

 

where, 𝑥̅ is the mean square value and 𝑥̃ is the average value. 

Sx is the standard deviation of the samples. Whereas the sample 

coefficient of variation is Vx given by Eq. (2). 

 

𝑉𝑥 =
𝑆𝑥

𝑥̅
  (2) 

 

Eq. (3) illustrates the moments of the sample around the 

mean value of the sample's set. 

 

𝑚𝑟 =
∑ (𝑥𝑖−𝑥)𝑟𝑛

𝑖=1

𝑛
  (3) 

 

when r=2, the calculation of m2 reflects how the sample is 

spread around its center, while m3 indicates the degree to 

which the samples are clustered around the center. Typically, 

the second, third, and fourth moments are used to measure the 

coefficient of skewness in a sample, with g3 and g4 

representing the skewness and kurtosis coefficients, 

respectively, as given by Eqs. (4)-(5). The covariance between 

two dimensions of a particular sample can be calculated by Eq. 

(6) [23]: 

 

𝑔3 =
𝑚3

(√𝑚2)3  (4) 

 

𝑔4 =
𝑚4

(√𝑚2)4  (5) 

 

𝐶𝑗𝑘 =
∑ (𝑥𝑖𝑗−𝑥𝑗̅̅ ̅)(𝑥𝑖𝑘−𝑥𝑘̅̅ ̅̅ )𝑛

𝑖=1

(𝑛−1)
  (6) 

 

3.6 Feature selection 

 

At this stage, it is crucial to select the most informative 

feature from the feature set to improve the classifier's 

performance and prevent errors during the selection process 

by disregarding irrelevant or excessive features [23]. The 

optimal feature can be selected from the primary feature set by 

applying the Principal Component Analysis (PCA) technique, 

which linearly or non-linearly converts the primary feature set 

into a smaller set, making it easier to handle and comprehend 

than the large set. This technique is commonly used as a 

conventional method of multivariable statistical analysis to 

extract the optimal features and decrease the gap between the 

original features [23]. 

 

3.7 Feature classification 

 

A neural network can be utilized to classify features by 

using the time domain vibration of the three-phase dimension 

and three-phase current as inputs, which allows for fault 

detection. This NN consists of input, output, and hidden layers 

that convert the input data into a format that is useful for the 

output layer. To regulate the hidden layers of neurons when 

the network's results are unsatisfactory, the posterior diffusion 

technique can be employed in NN. Figure 2 illustrates the 

different layers of the artificial neural network, with the three 

orange circles indicating the input layers and the red circles 

representing the output layers. The four blue and four green 

circles denote the hidden layers, and all of them contain active 

nodes [24]. 

 

 
 

Figure 2. Artificial neural network 

 

In an artificial neural network, each node is linked to the 

node of the subsequent layer, and every connection possesses 

a particular weight, representing the influence of the node on 

the subsequent layer node. By increasing the weight, the range 

of information reflection from one node to the next can be 

expanded. If the orange node's value is multiplied by its 

corresponding weight, and the resulting values are added, the 

blue node's value will be obtained. This blue node is then 

defined as an activation function that determines whether the 

node is activated and how active it will be, based on the 

summarized value [24]. 

 

3.8 Convolutional neural network 

 

The most frequently used form of deep learning, the 

convolutional neural network (CNN), derives its name from 

the mathematical process of convolution performed between 

matrices [25]. While CNNs are built upon artificial neural 

networks (ANNs) that seek to replicate the workings of the 

human brain, they feature distinct layers including the 

convolutional and fully connected layers, which contain 

parameters, and non-parameter layers like the non-linearity 

and pooling layers [26, 27]. 
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3.9 Convolution neural network construction 

 

As shown in Figure 3, the CNN architecture is divided into 

two main parts. The first part comprises the input layer, the 

convolutional layer, and the pooling layer, which work 

sequentially to extract features from the input. The second part 

is responsible for feature classification and includes the fully-

connected layer and output layer. After the final pooling layer, 

the extracted features are passed to the fully connected layer, 

which then performs the classification task [24, 27].  

 

 
 

Figure 3. Structure of CNN 

 

In the classification process, the input data is passed from 

the input layer to the convolutional layer to identify local 

features, which are then stored in a feature map [28]. As shown 

in Figure 3, the input layer and convolutional layer are 

connected through a receptive field, which is a small square 

matrix of weights that is applied to a specific input area. The 

feature map consists of nodes, with each node connected to a 

specific input area determined by the receptive field. This field 

moves across the input section over both horizontal and 

vertical axes, performing a convolution operation to identify 

features [29]. 

 

3.10 Wavelet transform 

 

Wavelet transformation methods have become increasingly 

popular in the field of fault detection due to their ability to 

extract information about a feature in both the frequency and 

time domains, making them highly efficient. Additionally, 

wavelet techniques have been shown to be more effective in 

fault diagnosis compared to other methods like the Fourier 

transform, which requires the use of a single function to make 

a linear decision across the entire frequency domain, unlike the 

wavelet transform method [30, 31]. There are several types of 

wavelet transformation methods, but the most significant ones 

include the discrete wavelet transform (DWT), which is 

represented by Eq. (7), and the continuous wavelet transform 

(CWT), which is represented by Eq. (8). The CWT is further 

divided into real wavelets and complex wavelets [32, 33].  

 

𝐷𝑊𝑇(𝑚. 𝑘) =
1

√𝑎0
𝑚

∑ 𝑥(𝑛)𝑔(
𝑘−𝑛𝑏0𝑎0

𝑚

𝑎0
𝑚 )  (7) 

 

𝐶𝑊𝑇(𝑚. 𝑁) = ∫ 𝑓(𝑡)𝜓𝑚.𝑛
∗∞

−∞
(𝑡)  (8) 

 

𝜓𝑚.𝑛(𝑡) = 2−1 2⁄ 𝜓(2−𝑚𝑡 − 𝑛) (9) 

 

𝐶𝑊𝑇𝑎.𝑏(𝑡) = |𝑎|−1 2⁄ 𝜓(
𝑡−𝑏

𝑎
)  (10) 

 

The input signal x is analyzed using the fundamental 

wavelet g, with scaling and translation parameters a and b, 

respectively. The conjugate wavelet function 𝜓𝑚.𝑛
∗ , 

represented by Eq. (9), is used when a=b=2, indicating that 

this equation is only valid for the perpendicular base of the 

wavelet transform; otherwise, Eq. (10) is used [30]. The 

waveform signal f(t) is used, with parameters m and n, to 

convert the original signal into a new signal with a smaller 

scale that matches the high-frequency components.  

Discrete wavelet transformation is a preferable option for 

digital computers, as it provides an alternative solution to the 

resolution problem [31]. The properties of wavelet 

transformation can be summarized in two main points [30-32]: 

1. The fact that if the wavelet satisfies the condition defined 

by Eq. (11), a signal with finite power can be reconstructed 

without requiring all of its analysis values [30]. 

 
|𝜓(𝜔)|2

|𝜔|
𝑑𝜔 < +∞  (11) 

 

where, ψ(ω) is the Fourier transform function of the wavelet 

transformation function ψ(t) that is used to examine signals 

and remodel them without mislaying any data.  

2. To handle the quadratic relationship between the time 

scale generated by the wavelet transform and the input signal, 

certain regularity conditions are enforced to ensure the 

smoothness and compactness of the wavelet function in both 

time and frequency domains [30]. 

The analysis can be carried out by filtering and selecting 

samples, and can also be performed with a sequential approach 

[34]. However, the total number of analysis levels (L) can be 

calculated using the following formula:  

 

𝐿 ≥
log(

𝑓𝑠
𝑓⁄ )

log(2)
+ 1  (12) 

 

Eq. (12) can be used to calculate the total number of analysis 

levels (L) in wavelet transformation, based on the sample 

frequency (fs) and the fundamental frequency (f) of the input 

signal. However, these levels cannot be altered unless new 

data with a different sampling frequency is acquired, which 

can pose a challenge for fault diagnosis in time-varying 

conditions [35]. For instance, using the values fs=1KHz and 

f=50Hz, Eq. (12) would yield six analysis levels for each 

wavelet waveform, as shown in Table 1 [30]. 

 

Table 1. Frequency bands for six levels of wavelet signals 

 

Approximation 

ai 

Frequency 

Chains 

Hz 

Details 

di 

Frequency Chains 

Hz 

a6 [0-16.125] d6 [16.125-32.250] 

a5 [0-32.250] d5 [32.250-64.500] 

a4 [0-64.500] d4 [64.500-125.00] 

a3 [0-125.00] d3 [125.00-250.00] 

a2 [0-250.00] d2 [250.00-500.00] 

a1 [0-500.00] d1 [500.00-1000.0] 
 

Eq. (13) demonstrates how the desired data can be analyzed 

using a wavelet signal, taking into account both the sampling 

frequency fs and the resolution R [30]. 

 

𝐷𝑑𝑒𝑠𝑖𝑟𝑒𝑑 = 𝑓𝑠 𝑅⁄  (13) 
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4. SIMULATION RESULTS AND DISCUSSION 

 

 
 

Figure 4. Simulation of three-phase induction motor system 

using MATLAB 

 

Figure 4 shows a Simulink model created using MATLAB 

software, which includes running code to compare five 

categories of three-phase induction motors (IMs). Each 

category has its Simulink model and code, with 100 data points 

for each category. The resulting RMS current is displayed both 

as a curve and an image, enabling the operator to understand 

and evaluate the situation. These input data are then used in 

the deep learning process, which includes a code for 

classification of the categories. In addition to the previously 

obtained results, the training process and confusion matrix 

provide an overview of the five scenarios.  

 

Table 2. Three-phase squirrel cage induction motor 

parameters 

 

No. Parameters Value 

1 P 5 hp 

2 V 460 V 

3 f 60 Hz 

4 Rs 1.115 ohm 

5 𝑅𝑟
′ 1.083 ohm 

6 Ls 0.005974 H 

7 Lr 0.005974 H 

8 Lm 0.203700 H 

 

The system depicted in Figure 4 uses a three-phase squirrel 

cage induction motor with parameters shown in Table 2. A LC 

filter is utilized in this study to smooth the output current of 

the inverter, which is used to build a control circuit to regulate 

the motor's speed. The voltage frequency control (V/F) 

technique is employed, as shown in Figure 5, which maintains 

a constant motor flux by achieving the ratio of output voltage 

to the frequency, thus preventing weak magnetic and magnetic 

saturation phenomena from occurring [36, 37]. Additionally, 

Pulse-Width Modulation (PWM), as depicted in Figure 6, is 

used in the Simulink to reduce the average power delivered by 

an electrical signal by chopping it up into discrete parts. The 

motor speed and torque in the system were calibrated to be 150 

rpm and 10 N.m, respectively, and a PI-controller is used to 

perfectly regulate the motor's speed. 

 

 
 

Figure 5. Current curve in NR-Category 

 

This research covers five categories: normal operation (NR), 

where the induction motor operates without any abnormal 

actions; change torque (CT), where the IM is operated with 

random values of torque; phase interrupts (PI) [38], where an 

outage action occurs at one of the phases on IM; single phase 

fault (SPF), where a phase-to-ground fault occurs in IM; and 

three-phase fault (TPF), which is the worst-case scenario. 

 

4.1 Generating data 

 

The first step in creating a simulation model and code is 

generating data for each fault category. This can be 

accomplished by adding various modifications to each data, 
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such as varying the duration or starting time of the fault. This 

process will generate 100 samples for each of the five 

scenarios, resulting in a total of 500 samples that can be used 

for the deep learning and training-testing processes. These 

samples will be stored and used for later analysis. 

Case 1: Normal operation 

The current output waveform of a three-phase induction 

motor during normal operation can be observed in Figure 5 in 

the time domain. As depicted in the diagram, the motor 

initially operates with a starting RMS current of 22 A for the 

first 0.3 seconds. After that, at 0.5 seconds, the motor runs with 

a rated RMS current of 4 A.  

Figure 6 represents a wavelet transformation image of the 

RMS current waveform displayed in Figure 4, depicting a 2D-

Continuous Wavelet Transform in the time-frequency domain. 

In the "NR" category of the diagram, the blue region shown in 

Figure 5, which extends from 0.5 seconds, indicates that the 

current remained within normal limits, and the system 

operated at the fundamental frequency of 50 Hz. However, the 

yellow region, which appears in the figure during the first 0.3 

seconds, signifies that the RMS current value was higher 

compared to the rated current. 

 

 
 

Figure 6. Wavelet image for the current in NR-Category 

 

Case 2: Phase interrupt 

In a three-phase IM, when an action occurs in one of the 

phases, a significant increase in current will occur during 

operation, as shown in Figure 7. In this figure, the waveform 

of the RMS current displays an abnormal current value, 

equivalent to 5 times the rated current, during the interval [2.2-

2.5] seconds. Additionally, Figure 8 illustrates the wavelet 

form of the output current, where the yellow zones indicate 

that the output current has an abnormal value during the 

operation at the intervals [0-0.2] (starting current) and [2.2-

2.5] (when one of the motor's phases is interrupted). 

 

 
 

Figure 7. Current curve in PI-Category 

 
 

Figure 8. Wavelet image for the current in PI-Category 

 

Case 3: Sudden change torque 

Figure 9 demonstrates the RMS current curve when the 

torque value suddenly changes due to a modification in rotor 

speed. The curve indicates two points with abnormal current 

values: the first region within the time interval [0-0.2] seconds, 

which is the starting current. The output current value 

gradually decreases until it reaches the rated current, followed 

by an instantaneous and abrupt rise in current value due to a 

sudden change in induced torque after one second of operation 

[39].  
 

 
 

Figure 9. Current curve in CT-Category 
 

Referring to the wavelet transformation image presented in 

Figure 10 for implementing the PI category, it is observed that 

the blue region is not entirely pure after 0.5 seconds of 

operation. In the first second, an abnormal action is visible, 

indicating a sudden change in current due to a modification in 

torque. 
 

 
 

Figure 10. Wavelet image for the current in CT-Category 
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Case 4: Single-phase fault 

A single phase to ground fault is one of the most common 

faults that occur in a three-phase IM. The current waveform 

resulting from this fault is illustrated in Figure 11, which 

shows the magnitude of the current and the duration of time 

when the fault occurred. On the other hand, Figure 12 presents 

the reflection image of this type of fault, where the yellow 

region between the time interval of 1 second and 2 seconds 

indicates the occurrence of a fault in that region with a 

frequency of 200 Hz.  

 

 
 

Figure 11. Current curve in SPF-Category 

 

 
 

Figure 12. Wavelet image for the current in SPF-Category 

 

Case 5: Three-phase fault 

 

 
 

Figure 13. Current curve in TPF-Category 

Figure 13 illustrates a three-phase fault, which is the most 

perilous fault that may occur in an IM. It is crucial to prevent 

this type of fault from happening. However, the figure 

indicates an anomalous action taking place between [2.3-2.7] 

seconds with an RMS value around 20 times higher than the 

rated current, which is an extremely high value. If the 

appropriate action is not taken swiftly to prevent it, this 

dangerous alert could potentially harm the machine. In the 

wavelet image presented in Figure 14, it is evident that the 

yellow region has an exceptionally high and abnormal 

frequency value, approximately 1000 Hz, alerting the operator 

to the presence of a very high current in that time interval.  

 

 
 

Figure 14. Wavelet image for the current in TPF-Category 

 

4.2 Fault analysis using deep learning process 

 

The second approach utilized in this research involves 

employing deep learning for fault classification using the 

neural network (NN) method. This method assists the operator 

in diagnosing the type of fault that may occur in the IM motor, 

enabling them to take appropriate actions to resolve it and 

maintain the motor's default lifespan. The running of the deep 

learning code results in two crucial processes: the training 

process and the testing process.  

The simulation model of the deep learning process used 

specific parameters as shown in Table 3. 

 

Table 3. Deep learning parameters 

 
Algorithm Network Used Googlenet 

Weight Learn Rate Factor 6 

Batch Size 30 

Epoch Size 10 

Validation Frequency 10 

Execution Environment GPU 

Training Data 70% 

Validation Data 30% 

 

4.2.1 Training- process and testing stage 

The success of the machine learning process relies heavily 

on the training and testing processes, which provide valuable 

data for operators to make informed decisions during the fault 

diagnosis process. During the training process, the system 

strives to achieve 100% accuracy to identify the type of fault, 

while the testing process indicates any errors or shortcomings 

in the system's fault specification. In this study, the simulation 

model discussed in section 4.1 generated a database that was 

utilized for the deep learning process of the training and testing 

processes. If there is a strong correlation between the features 

and labels, the database can be divided equally between the 
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training and testing processes, but if there are concerns about 

the system's success, the proportion of data used for the 

training process can be increased. The research in question 

utilized 500 sampling data, with 100 samples from each 

category, and allocated 70% of the data for the training process 

and 30% for the testing process.  

 

 
 

Figure 15. Training and testing process 

 

Figure 15 depicts the process of training and testing a 

system to identify different types of faults. The first curve of 

the figure represents the accuracy of the system during the 

training process, and the highest accuracy achieved in the 

study was 98.67%, which is a very good result. This level of 

accuracy was obtained in a time of 57 seconds. On the other 

hand, the first curve of the figure also shows the testing 

process, which represents the validation of the system's ability 

to identify faults. In this case, the best validation result in the 

study was achieved at a frequency of 10 Hz. The figure also 

includes a second curve that shows the loss of the system in 

diagnosing faults. The system aims to minimize the loss to 

demonstrate its efficiency, and in this study, the value of the 

loss was 0.1, which is considered satisfactory. 

 

4.2.2 Confusion matrix 

 

 
 

Figure 16. Confusion matrix 

During the training and testing process, a confusion matrix 

was created to assess the accuracy and loss of the system in 

determining the type of fault in each category and for the entire 

process. The confusion matrix is a two-dimensional table that 

shows the target class and output class to evaluate the 

performance of the deep learning algorithm. Figure 16 

displays the confusion matrix that was generated during the 

training and testing process, consisting of 5 rows and 5 

columns, with each row representing the actual class (output 

class) and each column representing the predicted class (target 

class). The diagonal of the confusion matrix indicates the 

number of input images that the system correctly identified 

and the number of input images that the system failed to 

distinguish. 

The confusion matrix, as shown in Figure 16, indicates that 

the system was able to differentiate between four categories 

with 100% accuracy and 0.0% loss. However, the system 

encountered difficulty in identifying the 30 images in the SPF 

category. Of these 30 images, the system correctly identified 

28 as SPF, but misclassified 2 as TPF, resulting in an accuracy 

of 93.3% and a loss percentage of 6.7% for this category. 

Overall, the system achieved an accuracy of 98.7% and a 

percentage error of 1.3%. 

 

 

5. CONCLUSION 

 

This study entailed the development of five simulation 

models, each accompanied by five unique codes executing 

different operational actions. Each running code generates 100 

data points, culminating in 500 samples that serve as input for 

a deep learning model. This model predicts the type of fault 

and enables operators to take the appropriate preventative 

measures. The fault diagnosis process is two-fold: it generates 

data from five distinct categories and feeds them into the deep 

learning algorithm to differentiate between fault types. The 

system also trains and processes data to align with the label of 

the targeted class. 

The results showcased a commendable accuracy rate of 

98.7% and a training process time of just 57 seconds for fault 

detection, underscoring the efficiency and predominance of 

deep learning in contemporary technology. The algorithm 

operates effectively on a cost-effective embedded processing 

system, making it ideal for real-time monitoring in industrial 

contexts. 

Utilizing deep learning theory in fault diagnosis offers two 

key advantages: It requires minimal prior knowledge for 

feature extraction and is insensitive to varying conditions, thus 

eliminating the need for specific presumptions or signal 

measurements. 
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NOMENCLATURE 

CWT Continuous wavelet transform 

𝐷𝑑𝑒𝑠𝑖𝑟𝑒𝑑 Desired data 

DWT Discrete wavelet transform 

f fundamental frequency 

fs Sample frequency 

g Pearson’s coefficient of skewness 

L Total number of analysis levels 

R Resolution  

Sx Standard deviation 

Vx Sample coefficient of variation 

𝑥̃ Average value 

𝑥̅ Mean square value 

Greek symbols 

𝜓𝑚.𝑛
∗ Conjugate wavelet function 

𝜓𝑚.𝑛 Wavelet function 

𝜓(𝜔) Fourier transform function 

𝜓(𝑡) Wavelet transformation function 
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