
Enhanced π Approximation Through MIMD Parallel Computing: An Efficiency Analysis

Utilizing Raspberry Pi

Yuggo Afrianto1 , Viddi Mardiansyah2 , Ritzkal1* , Fakhri Sofwan Ramadhan1 , Arthur Dida Batistuta1 ,

Berlina Wulandari1 , Wahyu Tisno Atmojo3

1 Informatics Department, Science & Engineering Faculty, Universitas Ibn Khaldun Bogor, Bogor 16162, Indonesia
2 Informatics Department, Engineering Faculty, Widyatama University, Bandung 40125, Indonesia
3 Information System, Pradita University, Tanggerang 15810, Indonesia

Corresponding Author Email: ritzkal@ft.uika-bogor.ac.id

https://doi.org/10.18280/mmep.100515 ABSTRACT

Received: 19 May 2023

Revised: 20 August 2023

Accepted: 5 September 2023

Available online: 27 October 2023

Multiple Instruction Multiple Data is one of the parallel computing architectures in

Flynn’s taxonomy, where cores can execute independent sets of instructions on

independent sets of data. Parallel computing could be used in scientific subfields such

as mathematics to approximate the number pi. One of the methods to approximate π is

the Gregory-Leibniz method, which proposes the expansion of the arctan x series,

which can then be used as an algorithm to approximate π. This method requires lots of

term calculations to obtain the accurate digits of π, hence why parallel computing is

needed. Building a cost-effective parallel computing architecture from standard desktop

computers is difficult due to the high cost and space requirements. This study will build

an MIMD parallel computing done by three Raspberry Pi 3Bs, small and affordable

credit card sized single board computer, connected through a message-passing interface

to get the performance analysis of MIMD parallel computing. The performance analysis

shows that with three Raspberry Pis, there is a huge speedup of 6,2953020 and a faster

time of 1.49 seconds compared to 9.38 seconds at 5 million terms. As a result of this

discovery, the Raspberry Pi could be used in further projects to develop an affordable

parallel computing architecture.

Keywords:

algorithm, efficiency, gregory-leibniz, Multiple

Instruction Multiple Data, parallel computing,

performance analysis, raspberry pi, speedup

1. INTRODUCTION

Parallel computing, a process that enables the simultaneous

execution of computations across multiple computers, has

been widely recognized as an effective method for processing

large tasks [1]. These tasks are subdivided into smaller

components, each comprising a series of instructions executed

concurrently across various processors [2]. Flynn’s taxonomy,

proposed by Michael J. Flynn in the 1970s, offers a simplified

and categorized framework for understanding parallel

computing [3]. The taxonomy delineates four categories based

on the behavior of systems in instruction and data flow: Single

Instruction Single Data (SISD), Multiple Instruction Single

Data (MISD), Single Instruction Multiple Data (SIMD), and

Multiple Instruction Multiple Data (MIMD) [4].

SISD corresponds to the conventional von Neumann

architecture where a singular data stream is processed by a

single sequential processing unit [5]. In contrast, MISD

involves the execution of multiple instructions on a single data

stream [6]. SIMD allows for multiple threads to execute the

same operation across multiple data elements, and can be

implemented at various levels, including core, thread, and

instruction [7]. MIMD, on the other hand, maps multiple

instructions to multiple data points, with each processing core

handling its unique set of instructions and data points [8]. This

category is often employed in the creation of parallel

architectures, including parallel machines such as workstation

clusters and computer clusters [3]. Cluster computers, which

enhance processing capability through the simultaneous

operation of multiple computing units, exemplify this

approach [9].

The mathematical constant π, defined as the ratio of a

circle's circumference to its diameter, has long captivated

mathematicians [10]. Physical measurements of a circle's

circumference and diameter to determine the value of π are

prone to errors and hence, not considered the most precise

method [11]. Mathematicians James Gregory and Gottfried

Wilhelm Leibniz proposed several formulas to approximate

the value of π [12]. While neither used exhaustion as π was not

the value being calculated, their shared series for π/4 can be

utilized to determine π's value through the inverse tangent

function, specifically arctan(1). The relevance of π extends

beyond geometry into engineering, as noted by several authors

[13].

The application of computational tools for π estimation

based on fundamental mathematical principles has emerged as

a compelling topic within the domain of applied scientific

computing [14]. The requirement for processing vast volumes

of data necessitates innovative computational methods aimed

at accelerating the process [15]. Parallel computing offers one

such technique, promising enhanced computational capacity

[16]. However, the construction of cost-effective parallel

computing architectures from personal computers presents

challenges due to their high costs and substantial space

requirements.

Multi-node communication in large-scale parallel

Mathematical Modelling of Engineering Problems
Vol. 10, No. 5, October, 2023, pp. 1657-1664

Journal homepage: http://iieta.org/journals/mmep

1657

https://orcid.org/0000-0002-7456-877X
https://orcid.org/0000-0002-8653-9087
https://orcid.org/0000-0002-6619-3402
https://orcid.org/0009-0008-6636-7020
https://orcid.org/0009-0001-3061-5319
https://orcid.org/0009-0008-0201-9262
https://orcid.org/0000-0003-3849-1688
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.100515&domain=pdf

computing applications is typically facilitated through the

Message-Passing Interface (MPI) [17]. The MPI standard,

established by the MPI Forum, provides a foundation for

message-passing libraries [16]. Since its introduction in 1994

as a method for code parallelization, MPI has remained a

cornerstone of parallel code execution on high-performance

computing platforms [18]. MPICH, an implementation of MPI,

serves as the basis for the majority of MPI implementations

[19]. Mpi4py, a Python binding for MPI, complies with the

MPI standard [19]. In this study, the MPI implementation will

rely on MPICH and mpi4py.

The Raspberry Pi, a highly popular single-board computer

(SBC) developed by the Raspberry Pi Foundation at the

University of Cambridge, UK, was first introduced in

February 2012 [20]. The Raspberry Pi employs a system on a

chip (SoC) from Broadcom BCM2387, eschewing a hard disk

in favor of an SD card for boot processes and long-term data

storage [21]. The relatively low cost and small dimensions of

the Raspberry Pi 3B suggest that constructing a cluster of Pis

could be more cost-effective and space-efficient than using

conventional computers [9, 22, 23].

By addressing these issues, this study seeks to explore the

potential of MIMD parallel computing on a Raspberry Pi for

the concurrent approximation of π. The ultimate objective of

this research is to utilize MIMD parallel computing on a

Raspberry Pi for the parallel approximation of π.

2. RESEARCH METHODS

As can be seen in the Figure 1, the conventional procedure

for this study was used [24].

Figure 1. Research methods

2.1 Analysis

Analysis is the skill of breaking complex issues or

knowledge down into simpler, more understandable

components. Parallel computing divides and executes big

tasks simultaneously. Each little portion is broken into

instructions, which are executed simultaneously on various

processors. The implementation of parallel architecture is

evaluated based on its performance in terms of speedup and

efficiency and then compared to sequential computation [25,

26]. The formulae for speedup and efficiency are as follows:

𝑆 =
𝑇𝑠

𝑇𝑝
 (1)

𝐸 =
𝑆

𝑝
 (2)

The Gregory-Leibniz method converges very slowly; it

takes approximately 5000 terms to compute π to three

significant digits. In order to obtain more precise digits of π, it

is necessary to perform a large number of term calculations in

parallel computing [12].

2.2 Design

At this point, it will be detailed how the overall system

design, the network topology employed for this study, and the

specifics of each component. The network topology will be

using regular star topology on a local area network with a

switch mode mikrotik router Rb951series. High Level Design

will be made as the premise for selecting the architecture to be

implemented based on a variety of factors, including the use

of each Raspberry Pis, the relationship between each

Raspberry Pis, with the specifics of the employed technology

[27] such as MPICH and MPI4Py [19]. The Low Level Design

will be used to specify the MIMD parallel computing

architecture that will be implemented in greater depth [28].

2.3 Implementation

All procedures that have been developed will be used in this

application phase, including software and hardware

implementation [29]. The operating system used for the

Raspberry Pis will be Raspbios Buster armhf. The Raspberry

Pis with the mikrotik will be connected with an RJ45 cable.

The configuration of mpich is required for the Raspberry Pis

to recognize one another, and mpi4py will be installed so that

Python programs can take advantage of MPI [30]. The

command sudo apt install mpich must be entered in a terminal

in order to install MPICH. The Gregory-Leibniz method uses

arctan x series, the value of π could be calculated using the

inverse tangent function, specifically arctan (1). The serial

program would be calculate a certain ammount of terms of the

arctan (1) series sequentially on one core of a processor.

Meanwhile the parallel program will divide each of terms

calculation to each core provided in the parallel computing

architecture.

2.4 Testing

Table 1 describes the test scenarios that will be carried out

in this study. The Gregory-Leibniz method of calculating Pi

involves determining the infinite series of arctan x. Terms

refers to the repetition of calculations based on the number of

series. The greater the number of series, the more precise the

Pi value achieved. The program will be performed on serial

and parallel computers with the terms specified in Table 1. The

program's execution time will be documented, and the findings

will be used in the speedup and efficiency analysis parameters.

Table 1. Testing scenario

No. Scenarios Terms Parameters

1 Serial (1 core) 100,000;

500,000;

1,000,000;

5,000,000;

10,000,000;

20,000,000;

30,000,000;

40,000,000;

50,000,000

Speedup (S),

Efficiency

(E)

2
Parallel with 1 Raspberry Pi

(4 Core)

3
Parallel with 2 Raspberry Pi

(8 Core)

4
Parallel with 3 Raspberry Pi

(12 Core)

1658

In order to get findings that give a performance

improvement by approximating the value of π in parallel, tests

were conducted in this study utilizing some parameters. In

studies [25, 26], the performance analysis of parallel

computing uses two parameters namely speedup and

efficiency. Speedup represents a metric for determining how

much faster a parallel algorithm is compared to its sequential

counterpart [3]. Speedup is defined as the ratio between the

time required when employing a single processor core and the

time measured when employing a specified number of

processor cores. Efficiency is defined as the ratio of speedup

to the number of cores utilized. Efficiency assesses the

effectiveness with which a number of computers or CPUs are

used in parallel computing [26]. The test conducted would

include few scenarios, which are: executing and counting the

time for each serial and parallel program with a calculated

number of data or terms. The above table describes the test

scenarios in greater detail:

3. RESULT

This step refers to the outcome of each step that came before

it and was performed successfully. The test results will include

details on the execution of sequential and parallel programs,

the time required for each program to complete, and

performance improvement metrics like speedup and efficiency.

These are the outcomes of the research’s conclusions.

3.1 Analysis

Insofar as necessary, the study will touch on current events.

Tables 2 and 3 show that the needs analysis stage calls for

supporting tools in order to do research on the subjects that

will be covered.

Table 2. Hardware

No. Hardware Function

1 Raspberry Pi 3B
As a node in the MIMD parallel

computing cluster system

2 Raspberry Pi 3B+
As a node in the MIMD parallel

computing cluster system

3
Mikrotik Routerboard

RB951series

As a medium connecting one local

network for each node and laptop

Table 3. Software

No. Software Function

1
Raspbios Buster

Armhf

The operating system used in

carrying out the research.

2 Balena Etcher
Applications used to install the

operating system

3 PuTTY
Application to remote access

Raspberry Pi via SSH

4 MPICH MPI Implementation

3.2 Design

The design phase entails setting up a study setting that will

support the goals and duties of the analysis phase while

facilitating data collecting. In the design draft, the network

topology and the MIMD parallel computing system are both

described in general terms. An overview of the physical

topology, high-level design, and low-level design are intended

to be given at this design stage. The list appears below:

3.2.1 Network topology design

The routers, laptop clients, servers, and access points used

in this study are depicted below.

The admin laptop has a dynamic IP address, whereas the

Raspberry Pi that is linked has a static one. The access point

router and the attached device communicate using a class C IP

address.

Figure 2. Network topology design

Based on Figure 2, it is shown that the physical topology

describes the design of the computer network structure within

the scope of this research. Mikrotik RB951 series used with

switch mode and access point as admin laptop access to the

Raspberry Pi. Raspberry Pi node master is connected to the

Mikrotik on port eth2. Raspberry Pi node slave1 is connected

to the Mikrotik on port eth3. Raspberry Pi node slave2 is

connected to the Mikrotik on port eth4. While connecting with

the admin laptop, the Mikrotik is used in access point mode.

3.2.2 High level design

The system’s overall design is covered in this phase of the

research process.

Figure 3. High level design

In Figure 3, the Multiple Instruction form carried out on the

Raspberry Pi Node Master will have three instructions for each

data processed, namely sending data, receiving data, and

processing data again. Meanwhile, the Raspberri Pi Node

Slave1 and Slave2 will receive data from the Node Master,

process it, and send it back to the Node Master.

3.2.3 Low level design

This stage covers a thorough explanation of the system

design, including how to use MIMD parallel computing to

parallelize an π value calculation application.

1659

Figure 4. Low level design

Figure 4 describes the design of the MIMD parallel

computing structure applied to the Raspberry Pi. On the

Raspberry Pi Node Master, the first instruction stage is to send

the slice value to be processed on the Raspberry Pi Nodes

Slave 1 and Slave 2. On Raspberry Pi Nodes Slave1 and Slave

2, the first instruction performed on the data is to receive data

from the Node Master. After the data is received, the second

instruction is to process the data according to the Gregory-

Leibniz calculation method, and the last instruction is to send

the processed data to the Raspberry Pi Node Master. The

second instruction on the Raspberry Pi Node Master is to

receive data that has been processed from the Raspberry Pi

Node Slave 1 and Slave 2, then the third instruction is that the

data received will be processed again so that the Pi value is

obtained, and the last instruction is to display the Pi value

obtained on the terminal.

3.3 Implementation

The analytical and design stages that were completed earlier

continue with the implementation step. Researchers have

broken this stage down into various sections.

3.3.1 Operating system installation

BalenaEtcher program is used to install the operating

system, which in this case is Raspberry Pi OS, into the SD

Card.

Figure 5. Operating system installation

Figure 5 shows the process of BalenaEtcher installing the

operating system on the SD card. To install the operating

system onto the SD card, download the operating system file

from the official Raspberry Pi page, then select the target SD

card that will be used as the operating system storage medium,

and finally click the Flash button and wait until the Flash

process is complete.

Figure 6. Setting display

Figure 6 shows when the Raspberry Pi first boots with the

operating system successfully installed on the SD card. The

Raspberry Pi must then be turned on until the first setup

display appears, at which point users can change the factory-

set password and enter information for the current location,

language, and time zone.

3.3.2 MPICH installation

In order to enable message carrying interfaces in MIMD

parallel computing, Message passing Interface (MPICH) was

built as part of this research [18].

Figure 7. MPICH installation

Figure 7 shows the steps of MPICH installation. Installing

MPICH is done by typing sudo apt install mpich on the

terminal, then confirming by typing Y, then pressing the enter.

3.3.3 MPI4Py installation

Researchers employ the Python programming language,

1660

which necessitates the use of a library initially. MPI4Py serves

as the Python programming language’s Message Passing

Interface binding. Any Python application can leverage many

processors with the aid of MPI bindings [19]. Install the

Python MPI library first by running sudo apt install python-

pip python-dev libopenmpi-dev in the terminal and pressing

enter. Once you’re done, execute sudo pip install mpi4py and

hit enter.

Figure 8. MPI library installation

Figure 8 shows the steps of installing the Python MPI

library by running sudo apt install python-pip python-dev

libopenmpi-dev in the terminal and pressing enter.

Figure 9. MPI4Py installation

Figure 9 shows the steps of installing the MPI4Py by

running sudo apt install mpi4py in the terminal and pressing

enter

3.3.4 Sequential program implementation

The Gregory-Leibniz formula is adjusted in this study to

account for the estimated value of pi. James Gregory and

Gottfried Wilhelm Leibniz, two prominent mathematicians

from the 16th century, are known as Gregory-Leibniz. They

developed the method for computing the value of π using an

infinite series [10]. The arctan formula, developed by

Gregory-Leibniz, is as follows:

arctan 𝑥 = 𝑥 −
𝑥3

3
+

𝑥5

5
−

𝑥7

7
+⋯ (3)

By using x=1 in the formula above, the Gregory-Leibniz π

value formula is obtained as follows:

π

4
= 1 −

1

3
+

1

5
−

1

7
+⋯ (4)

Thus, an approximate value of π is obtained:

π = 4(1 −
1

3
+

1

5
−

1

7
+⋯) (5)

To approximate the value of π with a sequential program,

the calculation is carried out by one processing unit

sequentially based on each term of repetition of the calculation

performed [24]. Table 4 shows the several Iteration of terms

were carried out in this study.

Table 4. Sequential program test scenarios

No. Number of Processors Iteration/Terms

1 1 100,000

2 1 500,000

3 1 1,000,000

4 1 5,000,000

5 1 10,000,000

6 1 20,000,000

7 1 30,000,000

8 1 40,000,000

9 1 50,000,000

3.3.5 Parallel program implementation

This study utilizes MIMD parallel computing to do a

parallel calculation of the estimated value of π using the

Gregory-Leibniz formula. The phases of parallelization are as

follows:

Figure 10. Parallelization phases

1661

Figure 10 shows the phases of parallel π estimation.

Parallelization is done by dividing the calculation task of each

iteration among the slave nodes.

Table 5 shows the numerous scenarios were carried out

according to the iteration/terms [24] to estimate the value of π

with a parallel program

Table 5. Parallel program test scenarios

No. Parallel Scenarios Terms

1 1 Raspberry Pi (4 Core) 100,000; 500,000; 1,000,000;

5,000,000; 10,000,000;

20,000,000; 30,00,000;

40,000,000; 50,000,000

2 2 Raspberry Pi (8 Core)

3 3 Raspberry Pi (12 Core)

3.4 Testing

The output of the program used to estimate π value in

sequential and parallel runs will now be discussed.

3.4.1 Sequential approximation and time recording

Utilizing the python gregory_leibniz-serial.py command, a

sequential program may be run. The outcomes of running the

program sequentially are showed in Figure 11.

Figure 11. Sequential program

The program is run nine times in accordance with the preset

Terms, and the results are as follows:

Table 6 shows the recorded program execution time for each

scenario. It can be seen that as the number of terms increases,

the more time it takes to execute the program.

Table 6. Sequential program test results

No. Terms Time (Ts)

1 100,000 0,22

2 500,000 0,95

3 1,000,000 1,88

4 5,000,000 9,38

5 10,000,000 18,77

6 20,000,000 37,64

7 30,000,000 56,31

8 40,000,000 75,40

9 50,000,000 95,52

To make the comparison of program execution times

simpler to grasp, Figure 12 shows a chart created using the

previous table.

3.4.2 Parallel approximation and time recording

The mpi4py-n xx-machinefile machinefile gregory_leibniz-

parallell.py command enables the execution of a parallel

program. The outcomes of the parallel program execution are

showed in Figure 13.

Figure 12. Sequential program time chart

Figure 13. Parallel program

The program is run nine times in accordance with the preset

terms, and the results are as follows:

Table 7. Parallel program test results

No. Parallel Scenarios Terms Time (Tp)

1

1

100,000 0,11

2 500,000 0,55

3 1,000,000 1,10

4 5,000,000 5,49

5 10,000,000 10,96

6 20,000,000 21,90

7 30,000,000 33,37

8 40,000,000 48,24

9 50,000,000 64,52

10

2

100,000 0,12

11 500,000 0,28

12 1,000,000 0,52

13 5,000,000 2,44

14 10,000,000 4,84

15 20,000,000 9,69

16 30,000,000 14,86

17 40,000,000 22,84

18 50,000,000 40,54

19

3

100,000 0,14

20 500,000 0,26

21 1,000,000 0,36

22 5,000,000 1,49

23 10,000,000 3,64

24 20,000,000 6,28

25 30,000,000 9,60

26 40,000,000 12,84

27 50,000,000 16,08

Table 7 shows the documented program execution time for

each parallel program execution scenario. It can be seen that

as the number of Rapsberry Pi used increases, the less time it

takes to execute the program.

1662

To help with comprehension of the comparison of program

execution times, Figure 14 shows chart may be created using

the created table:

Figure 14. Comparison of program execution time

3.4.3 Speedup and efficiency testing

In order to compare the performance gain achieved, here is

the speedup graph:

Figure 15. Speedup comparison chart

Figure 15 shows how speedup compares. On one Raspberry

Pi running a parallel program. At 100,000 terms, the best

speedup reached is 2. The best speedup in a parallel program

running on two Raspberry Pis is 3.884416925 at 20,000,000

terms. The best speedup in a parallel program running on three

Raspberry Pis is 6.295302013 at 5,000,000 terms. This means

that when five million terms are calculated using three

Raspberry Pis, the best speedup is obtained. The more

Raspberry Pis and the more processing core is used the better

speedup will be obtained.

Figure 16. Efficiency comparison chart

Based on Figure 16 The efficiency corresponse to the

speedup can be seen as follows: The best efficiency at the level

of efficiency attained in the parallel program with one

Raspberry Pi is 0.5 at 100,000 iterations. At the 20,000,000th

iteration, the parallel program running on two Raspberry Pis

achieved an efficiency level of 0.485552116. The best

efficiency gained is 0.524608501 at the level of efficiency

attained in the parallel program using three Raspberry Pis, and

at iteration 5,000,000. The Raspberry Pi requires less

electricity consumption than regular-sized desktop computers.

This means sustainable energy sources, such as solar power

[31] or wind power [32], could also be employed to provide

electricity.

4. CONCLUSION

The findings of this research enable the drawing of several

key conclusions: 1) The approximation of π values can indeed

be parallelized, a process successfully demonstrated within

this study. 2) The feasibility of employing Multiple Instruction

Multiple Data (MIMD) parallel processing with a Raspberry

Pi has been convincingly established. 3) A clear performance

gain was observed when employing three Raspberry Pis, with

the parameters of performance improvement exhibiting an

increase corresponding to the number of Raspberry Pis utilized.

A notable speedup of 6.2953020 was achieved, reducing the

processing time from 9.38 seconds to 1.49 seconds at 5 million

terms when three Raspberry Pis were in use. This discovery

paves the way for further explorations of the Raspberry Pi in

the development of cost-effective parallel computing

architectures.

REFERENCES

[1] Widayat, I.W., Irmawati, I., Syahrir, S.A.Q. (2017).

Analisis sistem komputasi paralel pada infrastruktur grid

computing. Jurnal Teknologi Elekterika, 14(1): 26.

https://doi.org/10.31963/elekterika.v14i1.1213

[2] Rajpoot, V., Patel, A., Manepalli, P.K., Saxena, A.

(2021). Deep learning and edge computing solution for

high-performance computing. Deep Learning and Edge

Computing Solutions for High Performance Computing,

1-18. https://doi.org/10.1007/978-3-030-60265-9_1

[3] Agapito, G., Guzzi, P.H., Cannataro, M. (2021). Parallel

and distributed association rule mining in life science: A

novel parallel algorithm to mine genomics data.

Information Sciences, 575: 747-761.

https://doi.org/10.1016/j.ins.2018.07.055

[4] Adamov, A.Z. (2020). Computation model of data

intensive computing with mapreduce. In 2020 IEEE 14th

International Conference on Application of Information

and Communication Technologies (AICT), 1-5.

https://doi.org/10.1109/AICT50176.2020.9368841

[5] Schmidt, B., González-Domínguez, J., Hundt, C.,

Schlarb, M. (2018). Modern architectures. Parallel

Programming, 47-75. https://doi.org/10.1016/B978-0-

12-849890-3.00003-4

[6] Marinescu, D.C. (2018). Parallel and distributed systems.

Cloud Computing (Second edition), 113-150.

https://doi.org/10.1016/B978-0-12-812810-7.00005-4

[7] Pandey, R., Badal, N. (2019). Understanding the role of

parallel programming in multi-core processor based

1663

https://www.researchgate.net/journal/Jurnal-Teknologi-Elekterika-2656-0143?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://doi.org/10.1016/j.ins.2018.07.055
https://doi.org/10.1109/AICT50176.2020.9368841
https://doi.org/10.1016/B978-0-12-849890-3.00003-4
https://doi.org/10.1016/B978-0-12-849890-3.00003-4
https://www.sciencedirect.com/science/book/9780128128107
https://doi.org/10.1016/B978-0-12-812810-7.00005-4

systems. In Proceedings of 2nd International Conference

on Advanced Computing and Software Engineering

(ICACSE).

[8] Song, C.X. (2021). Analysis on heterogeneous

computing. Journal of Physics: Conference Series, 2031:

012049. https://doi.org/10.1088/1742-

6596/2031/1/012049

[9] Doucet, K., Zhang, J. (2019). The creation of a low-cost

raspberry pi cluster for teaching. In Proceedings of the

Western Canadian Conference on Computing Education,

7: 1-5. https://doi.org/10.1145/3314994.3325088

[10] Swain, M. (2021). Two famous series for pi. At Right

Angles, 10: 81-83.

[11] Damini, D.B., Dhar, A. (2020). How Archimedes

showed that π is approximately equal to 22/7. arXiv

Preprint arXiv: 2008.07995.

https://doi.org/10.48550/arXiv.2008.07995

[12] Berggren, L., Borwein, J.M., Borwein, P.B. (1997). Pi: A

source book. New York: Springer.

https://doi.org/10.1007/978-1-4757-4217-6

[13] Alzer, H. (2019). A series representation for π. Elemente

der Mathematik, 74(4): 176-178.

https://doi.org/10.4171/em/395

[14] Dey, S. (2023). Some naive and computationally

polished techniques to approximate π. Methodology,

1(2): 4. https://doi.org/10.13140/RG.2.2.10583.96167

[15] Nurmawati, E., Pangaribuan, R.H., Santoso, I. (2021).

Comparison of serial and parallel computation on

predicting missing data with EM algorithm. Jurnal

Matematika, Statistika dan Komputasi, 18(1): 22-30.

https://doi.org/10.20956/j.v18i1.14003

[16] Kanagachidambaresan, G.R. (2020). Role of edge

analytics in sustainable smart city development:

challenges and solutions. Scrivener Publishing LLC,

273-288. https://doi.org/10.1002/9781119681328

[17] DeFreez, D., Bhowmick, A., Laguna, I., Rubio-González,

C. (2020). Detecting and reproducing error-code

propagation bugs in MPI implementations. In

Proceedings of the 25th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, 187-

201. https://doi.org/10.1145/3332466.3374515

[18] McDaniel, B., Lemley, E. (2022). Extended precision

multiplication using a message passing interface (MPI).

Journal of Computing Sciences in Colleges, 37(7): 62-69.

[19] Dalcin, L., Fang, Y.L.L. (2021). Mpi4py: Status update

after 12 years of development. Computing in Science &

Engineering, 23(4): 47-54.

https://doi.org/10.1109/MCSE.2021.3083216

[20] Friadi, R., Junaidhi, J. (2019). Raspberry pi-based

greenhouse light intensity, temperature, and humidity

control system. Journal of Technopreneruship and

Information Systems, 30-37.

https://doi.org/10.36085/jtis.v2i1.217

[21] Putra, R.A., Sujana, A.P. (2019). Implementation of the

cluster server on the raspberry pi using load balancing.

Komputika: Jurnal Sistem Komputer, 8(1): 37-44.

https://doi.org/10.34010/komputika.v8i1.1623

[22] Alex David, S., Ravikumar, S., Rizwana Parveen, A.

(2018). Raspberry Pi in computer science and

engineering education. In Intelligent Embedded Systems:

Select Proceedings of ICNETS2, Springer Singapore, 11-

16. https://doi.org/10.1007/978-981-10-8575-8_2

[23] Penyala, H., Ibrahim, S., El Mesalami, A. (2020). The

raspberry pi education mine: for teaching engineering

and computer science students concepts like, computer

clusters, parallel computing, and distributed computing.

In 2020 IEEE International Conference on Electro

Information Technology (EIT), 624-628.

https://doi.org/10.1109/EIT48999.2020.9208242

[24] Rohman, E.F., Ritzkal, R., Afrianto, Y. (2020). Fail path

analysis on openflow network using floyd-warshall

algorithm. Jurnal Mantik, 4(3): 1546-1550.

https://doi.org/10.35335/mantik.Vol4.2020.959.pp1546-

1550

[25] Lumbanraja, F.R., Aristoteles, A., Muttaqina, N.R.

(2020). Analisa komputasi paralel mengurutkan data

dengan metode radix dan selection. Jurnal Komputasi,

8(2): 77-93.

https://doi.org/10.23960%2Fkomputasi.v8i2.2662

[26] Wibawa, I.P.A.P., Giriantari, I.D., Sudarma, M. (2018).

Parallel computing using the message passing model on

sim rs (hospital management information system).

Makalah Ilmiah Teknologi Elektro, 17(3): 439-444.

https://doi.org/10.24843/MITE.2018.v17i03.P20

[27] Kurniawan, D., Rustiati, E.L., Irawati, A.R., Muchlas,

Z.Z.I. (2022). Pemantauan mentok rimba (asarcornis

scutulata) berbasis sistem informasi geografis di taman

nasional way kambas. Jurnal Pepadun, 3(1): 54-63.

https://doi.org/10.23960/pepadun.v3i1.104

[28] Rahman, I.A., Ikbal, I. (2019). Perancangan litespeed

cache menggunakan metode ppdioo di pt. ABC. Jurnal

Ilmiah Komputer dan Informatika (KOMPUTA), 8(2):

62-69. https://doi.org/10.34010/KOMPUTA.V8I2.3051

[29] Pajankar, A. (2021). Introduction to raspberry pi.

Practical Linux with Raspberry Pi OS: Quick Start, 1-34.

https://doi.org/10.1007/978-1-4842-6510-9_1

[30] Wazir, S., Ikram, A.A., Imran, H.A., Ullah, H., Ikram,

A.J., Ehsan, M. (2019) Performance comparison of

mpich and mpi4py on raspberry pi-3b beowulf cluster.

arXiv Preprint arXiv: 1911.03709.

https://doi.org/10.48550/arXiv.1911.03709

[31] Abutaha, M., Amar, I., AlQahtani, S. (2022). Parallel and

practical approach of efficient image chaotic encryption

based on message passing interface (MPI). Entropy,

24(4): 566. https://doi.org/10.3390/e24040566

[32] Brungs, L., Kötter-Lange, K., Kottmeier, J., Poersch, R.,

Schweizer-Ries, P. (2021). How to foster fruitful

collaborations – the impact of sustainability science.

International Journal of Energy Production and

Management, 6(4): 347-358.

https://doi.org/10.2495/EQ-V6-N4-347-358

NOMENCLATURE

E Efficiency (dimensionless)

p
Number of parallel computing devices

being used (dimensionless)

S Speedup (dimensionless)

Tp Parallel program execution time (second)

Ts Sequential program execution time (second)

π Mathematical constant that is the ratio of a

circle's circumference to its diameter

1664

https://doi.org/10.1145/3314994.3325088
https://arxiv.org/search/math?searchtype=author&query=B.,+D+D
https://doi.org/10.20956/j.v18i1.14003
https://doi.org/10.1145/3332466.3374515
https://doi.org/10.1109/MCSE.2021.3083216
https://ojs.unikom.ac.id/index.php/komputika/index
https://doi.org/10.1109/EIT48999.2020.9208242
https://doi.org/10.23960%2Fkomputasi.v8i2.2662
https://doi.org/10.23960/pepadun.v3i1.104
https://doi.org/10.3390/e24040566

