
Enhanced π Approximation Through MIMD Parallel Computing: An Efficiency Analysis 

Utilizing Raspberry Pi 

Yuggo Afrianto1 , Viddi Mardiansyah2 , Ritzkal1* , Fakhri Sofwan Ramadhan1 , Arthur Dida Batistuta1 , 

Berlina Wulandari1 , Wahyu Tisno Atmojo3  

1 Informatics Department, Science & Engineering Faculty, Universitas Ibn Khaldun Bogor, Bogor 16162, Indonesia 
2 Informatics Department, Engineering Faculty, Widyatama University, Bandung 40125, Indonesia 
3 Information System, Pradita University, Tanggerang 15810, Indonesia 

Corresponding Author Email: ritzkal@ft.uika-bogor.ac.id

https://doi.org/10.18280/mmep.100515 ABSTRACT 

Received: 19 May 2023 

Revised: 20 August 2023 

Accepted: 5 September 2023 

Available online: 27 October 2023 

Multiple Instruction Multiple Data is one of the parallel computing architectures in 

Flynn’s taxonomy, where cores can execute independent sets of instructions on 

independent sets of data. Parallel computing could be used in scientific subfields such 

as mathematics to approximate the number pi. One of the methods to approximate π is 

the Gregory-Leibniz method, which proposes the expansion of the arctan x series, 

which can then be used as an algorithm to approximate π. This method requires lots of 

term calculations to obtain the accurate digits of π, hence why parallel computing is 

needed. Building a cost-effective parallel computing architecture from standard desktop 

computers is difficult due to the high cost and space requirements. This study will build 

an MIMD parallel computing done by three Raspberry Pi 3Bs, small and affordable 

credit card sized single board computer, connected through a message-passing interface 

to get the performance analysis of MIMD parallel computing. The performance analysis 

shows that with three Raspberry Pis, there is a huge speedup of 6,2953020 and a faster 

time of 1.49 seconds compared to 9.38 seconds at 5 million terms. As a result of this 

discovery, the Raspberry Pi could be used in further projects to develop an affordable 

parallel computing architecture. 
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1. INTRODUCTION

Parallel computing, a process that enables the simultaneous 

execution of computations across multiple computers, has 

been widely recognized as an effective method for processing 

large tasks [1]. These tasks are subdivided into smaller 

components, each comprising a series of instructions executed 

concurrently across various processors [2]. Flynn’s taxonomy, 

proposed by Michael J. Flynn in the 1970s, offers a simplified 

and categorized framework for understanding parallel 

computing [3]. The taxonomy delineates four categories based 

on the behavior of systems in instruction and data flow: Single 

Instruction Single Data (SISD), Multiple Instruction Single 

Data (MISD), Single Instruction Multiple Data (SIMD), and 

Multiple Instruction Multiple Data (MIMD) [4]. 

SISD corresponds to the conventional von Neumann 

architecture where a singular data stream is processed by a 

single sequential processing unit [5]. In contrast, MISD 

involves the execution of multiple instructions on a single data 

stream [6]. SIMD allows for multiple threads to execute the 

same operation across multiple data elements, and can be 

implemented at various levels, including core, thread, and 

instruction [7]. MIMD, on the other hand, maps multiple 

instructions to multiple data points, with each processing core 

handling its unique set of instructions and data points [8]. This 

category is often employed in the creation of parallel 

architectures, including parallel machines such as workstation 

clusters and computer clusters [3]. Cluster computers, which 

enhance processing capability through the simultaneous 

operation of multiple computing units, exemplify this 

approach [9]. 

The mathematical constant π, defined as the ratio of a 

circle's circumference to its diameter, has long captivated 

mathematicians [10]. Physical measurements of a circle's 

circumference and diameter to determine the value of π are 

prone to errors and hence, not considered the most precise 

method [11]. Mathematicians James Gregory and Gottfried 

Wilhelm Leibniz proposed several formulas to approximate 

the value of π [12]. While neither used exhaustion as π was not 

the value being calculated, their shared series for π/4 can be 

utilized to determine π's value through the inverse tangent 

function, specifically arctan(1). The relevance of π extends 

beyond geometry into engineering, as noted by several authors 

[13]. 

The application of computational tools for π estimation 

based on fundamental mathematical principles has emerged as 

a compelling topic within the domain of applied scientific 

computing [14]. The requirement for processing vast volumes 

of data necessitates innovative computational methods aimed 

at accelerating the process [15]. Parallel computing offers one 

such technique, promising enhanced computational capacity 

[16]. However, the construction of cost-effective parallel 

computing architectures from personal computers presents 

challenges due to their high costs and substantial space 

requirements. 

Multi-node communication in large-scale parallel 
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computing applications is typically facilitated through the 

Message-Passing Interface (MPI) [17]. The MPI standard, 

established by the MPI Forum, provides a foundation for 

message-passing libraries [16]. Since its introduction in 1994 

as a method for code parallelization, MPI has remained a 

cornerstone of parallel code execution on high-performance 

computing platforms [18]. MPICH, an implementation of MPI, 

serves as the basis for the majority of MPI implementations 

[19]. Mpi4py, a Python binding for MPI, complies with the 

MPI standard [19]. In this study, the MPI implementation will 

rely on MPICH and mpi4py. 

The Raspberry Pi, a highly popular single-board computer 

(SBC) developed by the Raspberry Pi Foundation at the 

University of Cambridge, UK, was first introduced in 

February 2012 [20]. The Raspberry Pi employs a system on a 

chip (SoC) from Broadcom BCM2387, eschewing a hard disk 

in favor of an SD card for boot processes and long-term data 

storage [21]. The relatively low cost and small dimensions of 

the Raspberry Pi 3B suggest that constructing a cluster of Pis 

could be more cost-effective and space-efficient than using 

conventional computers [9, 22, 23]. 

By addressing these issues, this study seeks to explore the 

potential of MIMD parallel computing on a Raspberry Pi for 

the concurrent approximation of π. The ultimate objective of 

this research is to utilize MIMD parallel computing on a 

Raspberry Pi for the parallel approximation of π. 

 

 

2. RESEARCH METHODS 

 

As can be seen in the Figure 1, the conventional procedure 

for this study was used [24]. 

 

 
 

Figure 1. Research methods 

 

2.1 Analysis 

 

Analysis is the skill of breaking complex issues or 

knowledge down into simpler, more understandable 

components. Parallel computing divides and executes big 

tasks simultaneously. Each little portion is broken into 

instructions, which are executed simultaneously on various 

processors. The implementation of parallel architecture is 

evaluated based on its performance in terms of speedup and 

efficiency and then compared to sequential computation [25, 

26]. The formulae for speedup and efficiency are as follows: 

 

𝑆 =
𝑇𝑠

𝑇𝑝
 (1) 

 

𝐸 =
𝑆

𝑝
 (2) 

The Gregory-Leibniz method converges very slowly; it 

takes approximately 5000 terms to compute π to three 

significant digits. In order to obtain more precise digits of π, it 

is necessary to perform a large number of term calculations in 

parallel computing [12]. 

 

2.2 Design 

 

At this point, it will be detailed how the overall system 

design, the network topology employed for this study, and the 

specifics of each component. The network topology will be 

using regular star topology on a local area network with a 

switch mode mikrotik router Rb951series. High Level Design 

will be made as the premise for selecting the architecture to be 

implemented based on a variety of factors, including the use 

of each Raspberry Pis, the relationship between each 

Raspberry Pis, with the specifics of the employed technology 

[27] such as MPICH and MPI4Py [19]. The Low Level Design 

will be used to specify the MIMD parallel computing 

architecture that will be implemented in greater depth [28]. 

 

2.3 Implementation 

 

All procedures that have been developed will be used in this 

application phase, including software and hardware 

implementation [29]. The operating system used for the 

Raspberry Pis will be Raspbios Buster armhf. The Raspberry 

Pis with the mikrotik will be connected with an RJ45 cable. 

The configuration of mpich is required for the Raspberry Pis 

to recognize one another, and mpi4py will be installed so that 

Python programs can take advantage of MPI [30]. The 

command sudo apt install mpich must be entered in a terminal 

in order to install MPICH. The Gregory-Leibniz method uses 

arctan x series, the value of π could be calculated using the 

inverse tangent function, specifically arctan (1). The serial 

program would be calculate a certain ammount of terms of the 

arctan (1) series sequentially on one core of a processor. 

Meanwhile the parallel program will divide each of terms 

calculation to each core provided in the parallel computing 

architecture. 

 

2.4 Testing 

 

Table 1 describes the test scenarios that will be carried out 

in this study. The Gregory-Leibniz method of calculating Pi 

involves determining the infinite series of arctan x. Terms 

refers to the repetition of calculations based on the number of 

series. The greater the number of series, the more precise the 

Pi value achieved. The program will be performed on serial 

and parallel computers with the terms specified in Table 1. The 

program's execution time will be documented, and the findings 

will be used in the speedup and efficiency analysis parameters. 
 

Table 1. Testing scenario 
 

No. Scenarios Terms Parameters 

1 Serial (1 core) 100,000; 

500,000; 

1,000,000; 

5,000,000; 

10,000,000; 

20,000,000; 

30,000,000; 

40,000,000; 

50,000,000 

Speedup (S), 

Efficiency 

(E) 

2 
Parallel with 1 Raspberry Pi 

(4 Core) 

3 
Parallel with 2 Raspberry Pi 

(8 Core) 

4 
Parallel with 3 Raspberry Pi 

(12 Core) 
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In order to get findings that give a performance 

improvement by approximating the value of π in parallel, tests 

were conducted in this study utilizing some parameters. In 

studies [25, 26], the performance analysis of parallel 

computing uses two parameters namely speedup and 

efficiency. Speedup represents a metric for determining how 

much faster a parallel algorithm is compared to its sequential 

counterpart [3]. Speedup is defined as the ratio between the 

time required when employing a single processor core and the 

time measured when employing a specified number of 

processor cores. Efficiency is defined as the ratio of speedup 

to the number of cores utilized. Efficiency assesses the 

effectiveness with which a number of computers or CPUs are 

used in parallel computing [26]. The test conducted would 

include few scenarios, which are: executing and counting the 

time for each serial and parallel program with a calculated 

number of data or terms. The above table describes the test 

scenarios in greater detail: 

 

 

3. RESULT 

 

This step refers to the outcome of each step that came before 

it and was performed successfully. The test results will include 

details on the execution of sequential and parallel programs, 

the time required for each program to complete, and 

performance improvement metrics like speedup and efficiency. 

These are the outcomes of the research’s conclusions. 

 

3.1 Analysis 

 

Insofar as necessary, the study will touch on current events. 

Tables 2 and 3 show that the needs analysis stage calls for 

supporting tools in order to do research on the subjects that 

will be covered. 

 

Table 2. Hardware 

 
No. Hardware Function 

1 Raspberry Pi 3B 
As a node in the MIMD parallel 

computing cluster system 

2 Raspberry Pi 3B+ 
As a node in the MIMD parallel 

computing cluster system 

3 
Mikrotik Routerboard 

RB951series 

As a medium connecting one local 

network for each node and laptop 

 

Table 3. Software 

 
No. Software Function 

1 
Raspbios Buster 

Armhf 

The operating system used in 

carrying out the research. 

2 Balena Etcher 
Applications used to install the 

operating system 

3 PuTTY 
Application to remote access 

Raspberry Pi via SSH 

4 MPICH MPI Implementation 

 
3.2 Design 

 
The design phase entails setting up a study setting that will 

support the goals and duties of the analysis phase while 

facilitating data collecting. In the design draft, the network 

topology and the MIMD parallel computing system are both 

described in general terms. An overview of the physical 

topology, high-level design, and low-level design are intended 

to be given at this design stage. The list appears below: 

 

3.2.1 Network topology design 

The routers, laptop clients, servers, and access points used 

in this study are depicted below. 

The admin laptop has a dynamic IP address, whereas the 

Raspberry Pi that is linked has a static one. The access point 

router and the attached device communicate using a class C IP 

address. 

 

 
 

Figure 2. Network topology design 

 

Based on Figure 2, it is shown that the physical topology 

describes the design of the computer network structure within 

the scope of this research. Mikrotik RB951 series used with 

switch mode and access point as admin laptop access to the 

Raspberry Pi. Raspberry Pi node master is connected to the 

Mikrotik on port eth2. Raspberry Pi node slave1 is connected 

to the Mikrotik on port eth3. Raspberry Pi node slave2 is 

connected to the Mikrotik on port eth4. While connecting with 

the admin laptop, the Mikrotik is used in access point mode. 

 

3.2.2 High level design 

The system’s overall design is covered in this phase of the 

research process. 

 

 
 

Figure 3. High level design 

 

In Figure 3, the Multiple Instruction form carried out on the 

Raspberry Pi Node Master will have three instructions for each 

data processed, namely sending data, receiving data, and 

processing data again. Meanwhile, the Raspberri Pi Node 

Slave1 and Slave2 will receive data from the Node Master, 

process it, and send it back to the Node Master. 

 

3.2.3 Low level design 

This stage covers a thorough explanation of the system 

design, including how to use MIMD parallel computing to 

parallelize an π value calculation application. 
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Figure 4. Low level design 

 

Figure 4 describes the design of the MIMD parallel 

computing structure applied to the Raspberry Pi. On the 

Raspberry Pi Node Master, the first instruction stage is to send 

the slice value to be processed on the Raspberry Pi Nodes 

Slave 1 and Slave 2. On Raspberry Pi Nodes Slave1 and Slave 

2, the first instruction performed on the data is to receive data 

from the Node Master. After the data is received, the second 

instruction is to process the data according to the Gregory-

Leibniz calculation method, and the last instruction is to send 

the processed data to the Raspberry Pi Node Master. The 

second instruction on the Raspberry Pi Node Master is to 

receive data that has been processed from the Raspberry Pi 

Node Slave 1 and Slave 2, then the third instruction is that the 

data received will be processed again so that the Pi value is 

obtained, and the last instruction is to display the Pi value 

obtained on the terminal. 

 

3.3 Implementation 

 

The analytical and design stages that were completed earlier 

continue with the implementation step. Researchers have 

broken this stage down into various sections. 

 

3.3.1 Operating system installation 

BalenaEtcher program is used to install the operating 

system, which in this case is Raspberry Pi OS, into the SD 

Card. 

 

 
 

Figure 5. Operating system installation 

 

Figure 5 shows the process of BalenaEtcher installing the 

operating system on the SD card. To install the operating 

system onto the SD card, download the operating system file 

from the official Raspberry Pi page, then select the target SD 

card that will be used as the operating system storage medium, 

and finally click the Flash button and wait until the Flash 

process is complete. 

 

 
 

Figure 6. Setting display 

 

Figure 6 shows when the Raspberry Pi first boots with the 

operating system successfully installed on the SD card. The 

Raspberry Pi must then be turned on until the first setup 

display appears, at which point users can change the factory-

set password and enter information for the current location, 

language, and time zone. 

 

3.3.2 MPICH installation 

In order to enable message carrying interfaces in MIMD 

parallel computing, Message passing Interface (MPICH) was 

built as part of this research [18]. 

 

 
 

Figure 7. MPICH installation 

 

Figure 7 shows the steps of MPICH installation. Installing 

MPICH is done by typing sudo apt install mpich on the 

terminal, then confirming by typing Y, then pressing the enter. 

 

3.3.3 MPI4Py installation 

Researchers employ the Python programming language, 
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which necessitates the use of a library initially. MPI4Py serves 

as the Python programming language’s Message Passing 

Interface binding. Any Python application can leverage many 

processors with the aid of MPI bindings [19]. Install the 

Python MPI library first by running sudo apt install python-

pip python-dev libopenmpi-dev in the terminal and pressing 

enter. Once you’re done, execute sudo pip install mpi4py and 

hit enter. 

 

 
 

Figure 8. MPI library installation 

 

Figure 8 shows the steps of installing the Python MPI 

library by running sudo apt install python-pip python-dev 

libopenmpi-dev in the terminal and pressing enter. 

 

 
 

Figure 9. MPI4Py installation 

 

Figure 9 shows the steps of installing the MPI4Py by 

running sudo apt install mpi4py in the terminal and pressing 

enter 

 

3.3.4 Sequential program implementation 

The Gregory-Leibniz formula is adjusted in this study to 

account for the estimated value of pi. James Gregory and 

Gottfried Wilhelm Leibniz, two prominent mathematicians 

from the 16th century, are known as Gregory-Leibniz. They 

developed the method for computing the value of π using an 

infinite series [10]. The arctan formula, developed by 

Gregory-Leibniz, is as follows: 

arctan 𝑥 = 𝑥 −
𝑥3

3
+

𝑥5

5
−

𝑥7

7
+⋯  (3) 

 

By using x=1 in the formula above, the Gregory-Leibniz π 

value formula is obtained as follows: 

 
π

4
= 1 −

1

3
+

1

5
−

1

7
+⋯  (4) 

 

Thus, an approximate value of π is obtained: 

 

π = 4(1 −
1

3
+

1

5
−

1

7
+⋯)  (5) 

 

To approximate the value of π with a sequential program, 

the calculation is carried out by one processing unit 

sequentially based on each term of repetition of the calculation 

performed [24]. Table 4 shows the several Iteration of terms 

were carried out in this study. 

 

Table 4. Sequential program test scenarios 

 
No. Number of Processors Iteration/Terms 

1 1 100,000 

2 1 500,000 

3 1 1,000,000 

4 1 5,000,000 

5 1 10,000,000 

6 1 20,000,000 

7 1 30,000,000 

8 1 40,000,000 

9 1 50,000,000 

 

3.3.5 Parallel program implementation 

This study utilizes MIMD parallel computing to do a 

parallel calculation of the estimated value of π using the 

Gregory-Leibniz formula. The phases of parallelization are as 

follows: 

 

 
 

Figure 10. Parallelization phases 
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Figure 10 shows the phases of parallel π estimation. 

Parallelization is done by dividing the calculation task of each 

iteration among the slave nodes. 

Table 5 shows the numerous scenarios were carried out 

according to the iteration/terms [24] to estimate the value of π 

with a parallel program 

 

Table 5. Parallel program test scenarios 

 
No. Parallel Scenarios Terms 

1 1 Raspberry Pi (4 Core) 100,000; 500,000; 1,000,000; 

5,000,000; 10,000,000; 

20,000,000; 30,00,000; 

40,000,000; 50,000,000 

2 2 Raspberry Pi (8 Core) 

3 3 Raspberry Pi (12 Core) 

 

3.4 Testing 

 

The output of the program used to estimate π value in 

sequential and parallel runs will now be discussed. 

 

3.4.1 Sequential approximation and time recording 

Utilizing the python gregory_leibniz-serial.py command, a 

sequential program may be run. The outcomes of running the 

program sequentially are showed in Figure 11. 

 

 
 

Figure 11. Sequential program 

 

The program is run nine times in accordance with the preset 

Terms, and the results are as follows: 

Table 6 shows the recorded program execution time for each 

scenario. It can be seen that as the number of terms increases, 

the more time it takes to execute the program. 

 

Table 6. Sequential program test results 

 
No. Terms Time (Ts) 

1 100,000 0,22 

2 500,000 0,95 

3 1,000,000 1,88 

4 5,000,000 9,38 

5 10,000,000 18,77 

6 20,000,000 37,64 

7 30,000,000 56,31 

8 40,000,000 75,40 

9 50,000,000 95,52 

 

To make the comparison of program execution times 

simpler to grasp, Figure 12 shows a chart created using the 

previous table. 

 

3.4.2 Parallel approximation and time recording 

The mpi4py-n xx-machinefile machinefile gregory_leibniz-

parallell.py command enables the execution of a parallel 

program. The outcomes of the parallel program execution are 

showed in Figure 13. 

 
 

Figure 12. Sequential program time chart 

 

 
 

Figure 13. Parallel program 

 

The program is run nine times in accordance with the preset 

terms, and the results are as follows: 

 

Table 7. Parallel program test results 

 
No. Parallel Scenarios Terms Time (Tp) 

1 

1 

100,000 0,11 

2 500,000 0,55 

3 1,000,000 1,10 

4 5,000,000 5,49 

5 10,000,000 10,96 

6 20,000,000 21,90 

7 30,000,000 33,37 

8 40,000,000 48,24 

9 50,000,000 64,52 

10 

2 

100,000 0,12 

11 500,000 0,28 

12 1,000,000 0,52 

13 5,000,000 2,44 

14 10,000,000 4,84 

15 20,000,000 9,69 

16 30,000,000 14,86 

17 40,000,000 22,84 

18 50,000,000 40,54 

19 

3 

100,000 0,14 

20 500,000 0,26 

21 1,000,000 0,36 

22 5,000,000 1,49 

23 10,000,000 3,64 

24 20,000,000 6,28 

25 30,000,000 9,60 

26 40,000,000 12,84 

27 50,000,000 16,08 

 

Table 7 shows the documented program execution time for 

each parallel program execution scenario. It can be seen that 

as the number of Rapsberry Pi used increases, the less time it 

takes to execute the program. 
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To help with comprehension of the comparison of program 

execution times, Figure 14 shows chart may be created using 

the created table: 

 

 
 

Figure 14. Comparison of program execution time 

 

3.4.3 Speedup and efficiency testing 

In order to compare the performance gain achieved, here is 

the speedup graph: 

 

 
 

Figure 15. Speedup comparison chart 

 

Figure 15 shows how speedup compares. On one Raspberry 

Pi running a parallel program. At 100,000 terms, the best 

speedup reached is 2. The best speedup in a parallel program 

running on two Raspberry Pis is 3.884416925 at 20,000,000 

terms. The best speedup in a parallel program running on three 

Raspberry Pis is 6.295302013 at 5,000,000 terms. This means 

that when five million terms are calculated using three 

Raspberry Pis, the best speedup is obtained. The more 

Raspberry Pis and the more processing core is used the better 

speedup will be obtained. 

 

 
 

Figure 16. Efficiency comparison chart 

Based on Figure 16 The efficiency corresponse to the 

speedup can be seen as follows: The best efficiency at the level 

of efficiency attained in the parallel program with one 

Raspberry Pi is 0.5 at 100,000 iterations. At the 20,000,000th 

iteration, the parallel program running on two Raspberry Pis 

achieved an efficiency level of 0.485552116. The best 

efficiency gained is 0.524608501 at the level of efficiency 

attained in the parallel program using three Raspberry Pis, and 

at iteration 5,000,000. The Raspberry Pi requires less 

electricity consumption than regular-sized desktop computers. 

This means sustainable energy sources, such as solar power 

[31] or wind power [32], could also be employed to provide 

electricity. 

 

 

4. CONCLUSION  

 

The findings of this research enable the drawing of several 

key conclusions: 1) The approximation of π values can indeed 

be parallelized, a process successfully demonstrated within 

this study. 2) The feasibility of employing Multiple Instruction 

Multiple Data (MIMD) parallel processing with a Raspberry 

Pi has been convincingly established. 3) A clear performance 

gain was observed when employing three Raspberry Pis, with 

the parameters of performance improvement exhibiting an 

increase corresponding to the number of Raspberry Pis utilized. 

A notable speedup of 6.2953020 was achieved, reducing the 

processing time from 9.38 seconds to 1.49 seconds at 5 million 

terms when three Raspberry Pis were in use. This discovery 

paves the way for further explorations of the Raspberry Pi in 

the development of cost-effective parallel computing 

architectures. 
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NOMENCLATURE 

 

E Efficiency (dimensionless) 

p 
Number of parallel computing devices 

being used (dimensionless) 

S Speedup (dimensionless) 

Tp Parallel program execution time (second) 

Ts Sequential program execution time (second) 

π Mathematical constant that is the ratio of a 

circle's circumference to its diameter 
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