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Non-prismatic beams, which serve crucial roles in mechanical engineering applications, 

are subjected to both static and dynamic loads. Hence, their thorough analysis—

particularly under free vibration—is of significant importance. This research undertakes 

an in-depth investigation into the free vibration characteristics of non-prismatic Euler-

Bernoulli beams that exhibit linear variations in both width and height. These beams 

were studied under two distinct boundary conditions: simple support and clamped-

clamped scenarios. The study's approach was twofold: analytical and numerical. The 

analytical method entailed computing the equivalent area and the equivalent second 

moment of area, thereby enabling an exploration of how variations in the second 

moment of inertia and cross-sectional area affect the natural frequencies and mode 

shapes of non-prismatic beams. Conversely, the numerical method employed the finite 

element method through ANSYS APDL software (version 17.2). The study's findings 

revealed that as the height and width of the beam decrease, natural frequencies decline 

and the maximum amplitude of the mode shapes escalates. It should be noted that the 

rate of decrease is more pronounced with changes in height than with alterations in 

width. Furthermore, the diminishing rate of natural frequencies and the decreasing 

maximum amplitude of the mode shape became more pronounced with the increase in 

mode number when the beam's height and width decreased. The results derived from 

the analytical procedure were validated against those from finite element analysis and 

other literature sources, demonstrating the reliability of the current method. The 

proposed analytical methodology, in its simplicity of use and accuracy, demonstrates 

considerable promise in comparison to numerical results. 
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1. INTRODUCTION

Beams, integral structural constituents in numerous 

mechanical, civil, and architectural applications, provide 

essential support and stability. Non-prismatic beams, due to 

their superior strength and mass distribution compared to 

prismatic beams, are particularly adept at fulfilling specialized 

functional requirements in a range of sectors. These include 

architecture, rotor blades, aircraft wings, robotics, arch bridges, 

sports arenas, and other intriguing engineering applications. 

Often, the unique demands of these applications necessitate 

the employment of beams with non-uniform cross-section 

areas and non-uniform material distribution along their length. 

This non-uniformity is leveraged to enhance key structural 

attributes such as buckling resistance, load capacity, and the 

fine-tuning of modal characteristics. Beams are subjected to a 

wide array of static and dynamic loads, and under certain 

conditions, the frequency of the dynamic load coincides with 

the beam's natural frequency. Consequently, resonance can 

cause the beam to vibrate until it fails. 

Given its critical importance in diverse engineering fields, 

the vibration behavior of beams with non-uniform cross-

section areas and material distribution has been a focal point 

in numerous research papers.  

Several papers used the approximate solutions of partial 

differential equations to analyse the vibration behavior of non-

prismatic beams. Each approximate solution made 

assumptions to overcome the nonlinearity generated in partial 

differential equations due to the change in geometry and 

material. Some of these approximate methods are the 

Frobeniucs method [1-7], Adomian decomposition method [8, 

9], Galerkin method [10-12], finite element method [13-40], 

and Rayleigh-Ritz method [41-51].  

The finite element technique was applied by Rossi and 

Laura [35] to simulate and investigate the dynamic behavior 

of the tapered homogeneous beams. Also, Alansari et al. [27] 

considered the finite element technique by using the ANSYS 

software to calculate the natural frequency of tapered 

cantilever beams. They studied the effect of the width ratio on 

the natural frequency ratio. Srikarrao et al. [28] calculated the 

natural frequency of the beam by employing the finite element 

technique and Regression method, and they compared the 

results of the two methods and found a good agreement 

between them. 

In the same way, Jawad [29] applied the finite element 

technique to analyse the free vibration behavior of the tapered 

Euler-Bernoulli beam. He compared his results with those 

given in the available literature, and he found that the degree 

of flexural stiffness and tapered parameter causes decreasing 

in the natural frequency of tapered beams.  
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The Rayleigh-Ritz method was used in several studies 

involving non-prismatic beams. The Rayleigh-Ritz method 

was improved by Popplewell and Chang [47] by introducing 

discontinuities in the assumed deflection's second and third 

derivatives. Jaworski and Dowell [16] used the Rayleigh-Ritz 

method based on Bernoulli beam theory to study the free 

vibration behavior of multiple cross-section steps cantilevered 

beam. They compared their experimental results with 

theoretical results obtained by Rayleigh-Ritz and finite 

element methods. Alansari et al. [27, 32] applied the Classical 

Rayleigh and Modified Rayleigh methods to calculate the 

natural frequency of the tapered beam. They compared the 

results of natural frequency obtained by the Classical and 

Modified Rayleigh methods in addition to the finite element 

method (ANSYS software). Ghani et al. [52] used the classical 

Rayleigh method and modified the Rayleigh method to study 

the natural frequency of non-homogenous cantilever beams 

with square and circular cross-sections. They compared the 

natural frequencies obtained by classical and modified. They 

compared the results obtained by the Rayleigh method with 

those obtained by ANSYS software and discovered that the 

classical Rayleigh method and ANSYS had a good agreement 

for regions with lengths greater than half the beam length and 

an excellent agreement for regions with lengths less than half 

the beam length.  

In previous papers, special cases of non-prismatic beams 

were studied. In other words, no general solution for non-

prismatic beams was presented in previous literature. 

Currently, there are no reliable analytical methods for solving 

linear differential equations with variable coefficients. 

In this work, analytical and numerical methods were used 

to calculate the natural frequencies of non-prismatic beams 

with linear changes in height, width, and both height and width 

simultaneously. The analytical method is based on the 

calculation of equivalent area and equivalent second moment 

of area and then applying these equivalent values to the 

solution of the Euler–Bernoulli equation in order to find 

general solution of non-prismatic beams. The new analytical 

method is simple and agrees well with the numerical results. 

The major contribution of this study is a simple solution to free 

vibration of non-prismatic beam using the equivalent second 

moment of area approach. The numerical method is based on 

the finite element method using ANSYS APDL version 17.2. 

This paper is organized into the following sections: In 

Section 2, the basic mathematical equations of dimensions for 

non-prismatic beams are described. In Section 3, the natural 

frequency equations of uniform beams based on Euler–

Bernoulli beam theory are displayed. In Section 4, the 

calculating methods of equivalent area and equivalent second 

moment of area of non-prismatic beams are illustrated. The 

finite element model is described in Section 5. The accuracy 

of the present methods is checked in Section 6. Finally, the 

results and conclusions are displayed in Sections 7 and 8. 

 

 

2. NON-PRISMATIC BEAM MODEL DESCRIPTION 

 

The homogenous beam with a linear and nonlinear variation 

of cross-section area along the beam length is used in this work. 

The linear variation of the cross-section area is done by 

assuming the linear variation of width (b) or height (or 

thickness) (h) of the beam according to the following 

equations (see Figure 1): 

 

𝑏(𝑥) = 𝑏0 (1 + 𝛼𝑏 ∗ (
𝑥

𝐿
))  (1) 

  

ℎ(𝑥) = ℎ0 (1 + 𝛼ℎ ∗ (
𝑥

𝐿
))  (2) 

 

Here: 𝛼𝑏 = (
𝑏0

𝑏1
) − 1;𝛼ℎ = (

ℎ0

ℎ1
) − 1. 

According to Eq. (1) and Eq. (2), the variation of cross-

section area (A(x)) is linear too. 

 

 
 

Figure 1. The dimensions of the non-prismatic beam 

 

𝐴(𝑥) =

{
 
 

 
 ℎ0 ∗ 𝑏0 (1 + 𝛼𝑏 ∗ (

𝑥

𝐿
)) 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ℎ𝑒𝑖𝑔ℎ𝑡

𝑏0 ∗ ℎ0 (1 + 𝛼ℎ ∗ (
𝑥

𝐿
)) 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑤𝑖𝑑𝑡ℎ

 (3) 

 

While the variation of second moment of area ((x)) is linear 

when the height of beam is constant and nonlinear when the 

width of beam is constant, it can be described as: 

 

𝐼(𝑥) =

{
 
 

 
 𝑏0 (1 + 𝛼𝑏 ∗ (

𝑥

𝐿
)) ∗ (ℎ0)

3/12 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ℎ𝑒𝑖𝑔ℎ𝑡

𝑏0 ∗ (ℎ0 (1 + 𝛼ℎ ∗ (
𝑥

𝐿
)))

3

/12 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑤𝑖𝑑𝑡ℎ

 (4) 

 

On other side, when the width and height are changed 

together, the cross-section and the second moment of area are: 

 

𝐴(𝑥) = 𝑏0 (1 + 𝛼𝑏 ∗ (
𝑥

𝐿
)) ∗ ℎ0 (1 + 𝛼ℎ ∗ (

𝑥

𝐿
))  (5) 

  

𝐼(𝑥) = 𝑏0 (1 + 𝛼𝑏 ∗ (
𝑥

𝐿
)) ∗ (ℎ0 (1 + 𝛼ℎ ∗ (

𝑥

𝐿
)))

3

/12  (6) 

 

As shown in Eqs. (3)-(6), the cross-section area changes 

linearly when the width and height of the beam are changed 

separately, and if the width and height of the beam vary 

together, the cross-section area changes nonlinearly. At the 

same time, the second moment of the area changes linearly if 

the width of the beam changes only. The linear and nonlinear 

variation in the second moment of area and cross-section area 

affect the free vibration behavior of the beam that is described 

by the following partial differential equation [53-55]: 

 
𝜕2

𝜕𝑥2
(𝐸𝐼(𝑥)

𝜕2𝑤

𝜕𝑥2
) + 𝜌𝐴(𝑥)

𝜕2𝑤

𝜕𝑡2
= 0  (7) 

 

From Eq. (7), the variation in the second moment of area 

and cross-section area greatly affects the natural frequency and 

mode shape. 
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3. FREE VIBRATION OF UNIFORM BEAM 

 

For uniform and homogenous beams, the analytical 

solutions of the partial differential equation (Eq. (7)) with 

various boundary conditions are found in vibration textbooks 

[53-55]. The analytical solutions found the values of natural 

frequencies and mode shapes, and equations that describe 

natural frequencies and mode shapes with various boundary 

conditions are shown in studies [53-55]. 

 

3.1 Simply supported beam 

 

The natural frequency equation is [53]: 

 

𝜔𝑖 = (𝛽𝑖𝑙)√
𝐸𝐼

𝜌𝐴𝑙4
2

= (𝑖2𝜋2)√
𝐸𝐼

𝜌𝐴𝑙4
2

, (i=1, 2, …) (8) 

 

3.2 Clamp-Clamp beam 

 

The natural frequency equation is [53]: 

 

𝜔𝑖 = (𝛽𝑖𝑙)
2 (

𝐸𝐼

𝜌𝐴𝑙4
)
1/2

, 𝑐𝑜𝑠 𝛽𝑖𝑙 𝑐𝑜𝑠ℎ 𝛽𝑖𝑙 − 1 = 0, (i = 1,2, … )  (9) 

 

 

4. NATURAL FREQUENCY OF NON-PRISMATIC 

BEAM  

 

This work suggests a new simple analytical solution for the 

free vibration problem of non-prismatic homogeneous beams. 

The new solution is based on the analytical solution for the 

free vibration problem of a uniform homogeneous beam. It 

uses the equivalent cross-section area and second moment of 

area to overcome the problem of the non-prismatic beam. 

 

4.1 Equivalent cross area 

 

In order to overcome the change in cross-section are the 

equivalent cross-area of the non-prismatic beam is calculated 

by the following equation: 

 

𝐴𝑒𝑞 = (𝐴(0) + 𝐴(𝐿))/2  (10) 

 

4.2 Equivalent second moment of area 

 

In order to calculate the equivalent second moment of area, 

the non-prismatic beam is divided into (n) parts (i.e. (M=N+1) 

points), and each part has uniform cross-section area and 

uniform second moment of area using the following equation: 

 

𝐼𝑛 =
𝑏𝑛∗(ℎ𝑛)

3

12
, n = 1,2,3…N  (11) 

 

Here:  ℎ𝑛 = (ℎ𝑚 + ℎ𝑚+1)/2 (New height of part); 

𝑏𝑛 = (𝑏𝑚 + 𝑏𝑚+1)/2 (New width of part) 

According to Eq. (11), the non-prismatic beam now appears 

as a stepped beam (see Figure 2). 

For clamp-free non-prismatic beam, the equivalent second 

moment of the area can be calculated as [27, 32, 52]: 

 

(𝐼)𝑒𝑞 =
(𝐿𝑡𝑜𝑡𝑎𝑙)

3

∑
(𝐿𝑛)

3−(𝐿𝑛−1)
3

(𝐼)𝑛

𝑁
𝑛=1

  (12) 

 

For simply supported or clamp-clamp non-prismatic beam, 

the equivalent second moment of the area can be calculated 

according to the following four steps: 

(i) The centroid of the non-prismatic beam is calculated 

using the following equation: 

 

�̅� =
∑𝑉∗�̅�

∑𝑉
  (13) 

 

Here: V=𝑏𝑛 ∗ ℎ𝑛 ∗ ∆𝑥; ∆𝑥 = 𝐿/𝑁 

(ii) According to the centroid, the non-prismatic beam is 

divided into two parts, left and right. The number of 

segments on the left side is (NL), and the number of 

segments on the right side is (NR), where (NL+ 

NR=N+1). The left and right sides are considered two 

cantilevers stepped beams, and the start point of the two 

beams is the centroid of the non-prismatic beam (see 

Figure 3). 

 

 
 

Figure 2. Non-prismatic beam transfers into stepped beam 

 

 
 

Figure 3. Configuration of stepped S-S&C-C beam 

 

(iii) The equivalent second moment of area on left and right 

sides is calculated using the following equations: 

 

(𝐼𝑒𝑞)𝐿 =
𝐿𝐿
3

∑
𝑙𝑛
3−𝑙𝑛−1

3

𝐼𝑛

𝑁𝐿𝑒𝑓𝑡
𝑛=1

  (14) 

  

(𝐼𝑒𝑞)𝑅 =
(𝐿𝑅)

3

∑  
𝑙𝑛−1

3−𝑙𝑛
3

𝐼𝑛

𝑁𝑅𝑖𝑔ℎ𝑡 

𝑛=1

  (15) 

 

(iv) The equivalent second moment of area of S-S and C-C 

stepped beam is calculated by: 

 

𝐼𝑒𝑞 =
(𝐿𝑅+𝐿𝐿)∗(𝐿𝑅)

2∗(𝐿𝐿)
2

((∑  
𝑙𝑛−1

3−𝑙𝑛
3

𝐼𝑛

𝑁𝑅𝑖𝑔ℎ𝑡
𝑛=1 )∗𝐿𝑅

2)+((∑
𝑙𝑛
3−𝑙𝑛−1

3

𝐼𝑛

𝑵𝑳𝒆𝒇𝒕   

𝑛=1 )∗𝐿𝐿
2)

  
(16) 

 

 

5. FINITE ELEMENT SIMULATION OF NON-

PRISMATIC BEAM 

 

The model was created using finite elements. Using 
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ANSYS APDL version 17.2. The non-prismatic beam was 

drawn using 18 key points (9 at each end face), as shown in 

Figure 4-a. These key points are connected using lines (see 

Figure 4-b), and these lines are used to generate four solid 

bodies (see Figure 4-c). In the ANSYS model, the element 

SOLID187 is used to mesh the four bodies after gluing them. 

The properties of the SOLID187 are: "SOLID187 element is a 

higher-order 3-D, 10-node element. SOLID187 has a quadratic 

displacement behavior and is well suited to modeling irregular 

meshes (such as those produced by various CAD/CAM 

systems). The element is defined by 10 nodes with three 

degrees of freedom at each node: translations in the directions 

of the nodal x, y, and z. The element has plasticity, 

hyperelasticity, creep, stress stiffening, large deflection, and 

large strain capabilities. It also has mixed formulation 

capability to simulate deformations of nearly incompressible 

elastoplastic and fully incompressible hyperelastic materials.” 

[56, 57] (See Figure 5). 
 

  
(a) Keypoints of face ends                                          (b) Lines links to keypoints 

  
(c) Solid bodies are generated by lines 

 

Figure 4. The geometry of non-prismatic beam 
 

  
 

Figure 5. The meshing of the non-prismatic beam with SOLID187 
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6. VALIDATION 

 

In order to check the validity of the present work (i.e., 

analytical and numerical methods), the comparison between 

the dimensionless natural frequency results of the analytical 

and numerical methods and those obtained in the literature. 

The dimensionless natural frequency is shown in the study 

[58]: 

 

�̅�𝑖 = 𝜔𝑖√
𝜌𝐴(0)𝐿4

𝐸 𝐼(0)
      𝑖 = 1,2,3, ….  (17) 

 

6.1 Simply supported tapered beam 

 

Table 1. Validation results of dimensionless natural 

frequencies of S-S supported tapered beam 

 

h Methods 
Dimensionless Natural Frequency 

n=1 n=2 n=3 

0.1 

This work 9.3823 37.5291 84.4405 

ANSYS 9.3358 36.9451 81.6550 

Ref. [58] 9.3651 37.4459 84.1401 

Ref. [59] 9.3675 37.4840 84.3350 

Ref. [60] 9.3675 37.4843 84.3347 

0.5 

This work 7.3524 29.4095 66.1713 

ANSYS 7.1081 28.7106 63.7571 

Ref. [58] 7.1197 28.9219 64.8260 

Ref. [59] 7.1215 28.9520 64.9790 

Ref. [60] 7.1210 28.9496 64.9737 

0.9 

This work 4.7327 18.9307 42.5941 

ANSYS 3.8879 18.0773 45.6756 

Ref. [58] 3.8886 18.1030 39.9008 

Ref. [59] 3.8895 18.1230 40.0110 

Ref. [60] 3.8831 18.0964 39.9458 

 

Table 2. Validation results of dimensionless natural 

frequencies of C-C tapered beam 
 

h Methods 
Dimensionless Natural Frequency 

n=1 n=2 n=3 

0.1 

This work 21.2515 58.5804 114.8411 

ANSYS 21.0275 56.8848 108.8761 

Ref. [58] 21.2343 58.4803 114.4860 

Ref. [59] 21.2410 58.5500 114.7800 

Ref. [60] 21.2411 58.5503 114.7810 

0.5 

This work 16.6536 45.9062 89.9945 

ANSYS 16.2712 44.2939 85.5112 

Ref. [58] 16.3343 44.9375 87.9316 

Ref. [59] 16.3360 44.9810 88.1380 

Ref. [60] 16.3382 44.9879 88.1527 

0.9 

This work 10.7198 29.5495 57.9290 

ANSYS 9.9210 26.9871 52.3659 

Ref. [58] 9.93327 27.1150 52.8293 

Ref. [59] 9.8846 27.0080 52.7080 

Ref. [60] 9.91912 27.1025 52.8897 

 

Table 1 compares the dimensionless natural frequencies 

results of the analytical and numerical methods and that 

obtained in Nikolić and Šalinić [58], Wang and Wang [59]. 

Furthermore, Wu [60] simply supported a tapered beam for 

different values of h. From Table 1, there is a very good 

agreement between the present methods (analytical and 

numerical methods) and that obtained in Nikolić et al. [58], 

Wang and Wang [59] and Wu [60] in the second natural 

frequency when h=0.1 and 0.5 when h=0.9.  

The first natural frequency obtained by the present 

analytical method is greater than other values. At the same 

time, the third natural frequency obtained by the present 

numerical method is smaller than other values for all values of 

h. When h=0.1 and 0.5, there is a very good agreement 

between the present methods (analytical and numerical 

methods) and that obtained in Nikolić et al. [58], Wang and 

Wang [59] and Wu [60] in the first and second natural 

frequencies. When h=0.9, the first natural frequency obtained 

by the present analytical and numerical method is greater than 

other values. 

 

6.2 Clamp-clamp tapered beam 

 

Table 2 compares the dimensionless natural frequencies 

results of the analytical and numerical methods obtained in 

Nikolić et al. [58], Wang and Wang [59] and Wu [60] for the 

clamp-clamp tapered beam for different values of h.  
 

 

7. RESULTS AND DISCUSSION 
 

In this work, three main cases were considered to study the 

effect of linear variation in dimensions on the natural 

frequencies of tapered beams. The tapered beam has a 

modulus of elasticity (200 GPa), Poisson's Ratio (0.3), and 

density (7,800 kg/m3). The length of the tapered beam is (1 m), 

and the height and width of the tapered beam at x=0 are (0.05 

m). The three cases are: 

• The variation in height of beam with h=0, -0.2, -0.333, -

0.42857, -0.6667, -0.75, and -0.8. 

• The variation in width of beam with b=0, -0.2, -0.333, -

0.42857, -0.6667, -0.75, and -0.8. 

• The variation in height and width of beam with h=b=0, 

-0.2, -0.333, -0.42857, -0.6667, -0.75, and -0.8. 
 

7.1 Case one: Height variation 
 

In this case, the change in the second moment of area and 

cross-section area is illustrated in Figure 6. The cross-section 

area of the tapered beam decreases linearly (the decreasing rate 

of cross-section area=h, see Eq. (3)), while the second-

moment area decreases at a rate larger than that of the cross-

section area (see Eq. (4)). The natural frequencies will also 

change according to these changes in the second moment of 

area and cross-section area. 

Figure 7 compares the analytical and numerical results of 

C-C and S-S tapered height beams for the first, second, and 

third natural frequencies. When (h) decreases, the second 

moment of area and cross-section area decreases too, and in 

Figure 6, the decreasing rate of the second moment of area is 

greater than that of the cross-section area. Therefore, the 

dimensionless frequencies will decrease (see Eqs. (8) and (9)), 

and the decreasing rates of dimensionless frequencies will 

increase with increasing the mode number. 

Also, the agreement between analytical and numerical 

results decreases with decreasing (h) and increasing the 

mode number. The absolute discrepancy percentages between 

numerical and analytical results were (13.64, 5, and 6.9%) for 

the first, second, and third natural frequencies of S-S tapered 

beams, respectively. For C-C tapered beams, the absolute 

discrepancy percentage between numerical and analytical 

results were (6.7, 7.96, and 9.1%) for first, second, and third 

natural frequencies. 
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(a) Area 

 
(b) Second moment of area 

 

Figure 6. Area and second moment of area variation with (h) 

 

 
(a) 1st frequency of C-C (b) 1st frequency of S-S (c) 2nd frequency of C-C 

 
(d) 2nd frequency of S-S (e) 3rd frequency of C-C (f) 3rd frequency of S-S 

 

Figure 7. First three dimensionless natural frequencies of C-C and S-S tapered beams with different values of (h) 
 

7.2 Case two: Width variation 

 

In this case, the change in the second moment of area and 

cross-section area is illustrated in Figure 8. The cross-section 

area and second-moment area of the tapered beam decrease 

linearly at the same rate (b) (see Eqs. (3) and (4)), and 

According to these changes in the second moment of area and 

cross-section area, the natural frequencies will change too. 

The comparison between the analytical and numerical 

results of C-C and S-S tapered width beams for the first, 

second, and third natural frequencies is illustrated in Figure 9. 

The second moment of area and cross-section area decrease 

when (b) decreases. The decreasing rate of the second 

moment of area is the same as the cross-section area and equals 

(b) according to Figure 8. Therefore, the dimensionless 

frequencies are constant or slightly varied when (b) decreases 

for the three model numbers (see Eqs. (8) and (9)). Also, the 

agreement between analytical and numerical results decreases 

with decreasing (b) and increasing the mode number. The 

absolute discrepancy percentages between numerical and 

analytical results were (6.8, 7, and 8%) for the first, second, 

and third natural frequencies of C-C tapered beams, 

respectively. For S-S tapered beams, the absolute discrepancy 

percentage between numerical and analytical results were (3.8, 

2.76, and 4.8%) for first, second, and third natural frequencies. 

 

7.3 Case three: Width and height variation 

 

In this case, the change in the second moment of area and 

cross-section area are shown in Figure 10. The cross-section 

area of the tapered beam decreases (see Eq. (3)) while the 

second-moment area decreases at a rate larger than that of the 
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cross-section area (see Eq. (4)). According to these changes in 

the second moment of area and cross-section area, the natural 

frequencies will change too (see Eqs. (8) and (9)). Figure 11 

compares the analytical and numerical natural frequencies 

when the height and width are decreased together.  

Conversely, the agreement between analytical and 

numerical results decreases with a decrease (h), (b), and an 

increasing the mode number. The absolute discrepancy 

percentages between numerical and analytical results were 

(2.17, 4.3, and 6.1%) for the first, second, and third natural 

frequencies of C-C tapered beams, respectively. For S-S 

tapered beams, the absolute discrepancy percentages between 

numerical and analytical results were (14, 2.4, and 4%) for first, 

second, and third natural frequencies, respectively. 

Figures 7, 9, and 11, the b effect is small, approximately 

zero compared with the h effect, but the b effect appears 

when b and h are varied together. 

Finally, Figures 12, 13, and 14 depict the three 

dimensionless mode shapes of the non-prismatic beam at the 

clamped-clamped and simply supported boundary conditions 

for various (h, b and h=b) value from ANSYS APDL. The 

maximum amplitude of the mode shapes increases as the 

values of (h, b and h=b) for each case decrease. 

 

 

 
(a) Area 

 
(b) Second moment of area 

 

Figure 8. Area and second moment of area variation with (b) 

 

 
 

(a) 1st frequency of C-C (b) 1st frequency of S-S (c) 2nd frequency of C-C 

 
(d) 2nd frequency of S-S (e) 3rd frequency of C-C (f) 3rd frequency of S-S 

 

Figure 9. First three dimensionless natural frequencies of C-C and S-S tapered beams with different values of (b) 

 

1636



 

 
(a) Area 

 
(b) Second moment of area 

 

Figure 10. Area and second moment of area variation with (b=b) 
 

 
(a) 1st frequency of C-C (b) 1st frequency of S-S (c) 2nd frequency of C-C 

 
(d) 2nd frequency of S-S (e) 3rd frequency of C-C (f) 3rd frequency of S-S 

 

Figure 11. First three dimensionless natural frequencies of C-C and S-S tapered beams with different values of (h=b) 
 

 
(a) Mode shape1 of C-C 

 
(b) Mode shape1 of S-S 
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(c) Mode shape2 of C-C 

 
(d) Mode shape2 of S-S 

 
(e) Mode shape3 of C-C 

 
(f) Mode shape3 of S-S 

 

Figure 12. The first three dimensionless mode shapes of C-C and S-S tapered beams with different values of (h) 
 

 
(a) Mode shape1 of C-C 

 
(b) Mode shape1 of S-S 

 
(c) Mode shape2 of C-C 

 
(d) Mode shape2 of S-S 
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(e) Mode shape3 of C-C 

 
(f) Mode shape3 of S-S 

 

Figure 13. The first three dimensionless mode shapes of C-C and S-S tapered beams with different values of (b) 
 

 
(a) Mode shape1 of C-C 

 
(b) Mode shape1 of S-S 

 
(c) Mode shape2 of C-C 

 
(d) Mode shape2 of S-S 

 
(e) Mode shape3 of C-C 

 
(f) Mode shape3 of S-S 

 

Figure 14. The first three dimensionless mode shapes of C-C and S-S tapered beams with different values of (h=b) 
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8. CONCLUSIONS 

 

This study introduces a novel analytical method to compute 

the natural frequencies of Simply Supported (S-S) and 

Clamped-Clamped (C-C) tapered beams. This innovative 

approach considers the equivalent cross-section and 

equivalent second moment of area, applying these values to 

the solution of uniform beam free vibration behavior based on 

Euler-Bernoulli's theory. Concurrently, a 3D model was 

constructed using the finite element technique in ANSYS 

APDL Version 17.2. The investigation led us to the following 

conclusions:  

• The new analytical method is simple and agrees well with 

the numerical results. The absolute discrepancy percentage 

increases with increasing the mode number, h and b, in 

addition to the type of support. 

• The agreement between analytical and numerical results of 

the C-C tapered beam is better than that of the S-S tapered 

beam, especially for high mode number and small h and 

b. 

• The natural frequencies decrease with decreasing the 

height and width of the beam, and the decreasing rate of 

natural frequencies due to change in height is greater than 

that due to change in width. 

• When the mode number increases, the decreasing rate of 

natural frequencies with decreasing height or width of the 

beam increases too. 

• The maximum amplitude of the mode shapes increases 

with decreasing the height and width of the beam, and the 

decreasing rate of natural frequencies due to change in 

height is greater than that due to change in width. 

• When the mode number increases, the maximum 

amplitude of the mode shapes increases too. 

In future work, this new analytical method will be utilized 

to analyze the impact of nonlinear variation on the natural 

frequencies and mode shape under various boundary 

conditions. 
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NOMENCLATURE 

 

bo The width of the beam at x=0 

ho The height (or thickness) of the beam at x=0 

b1 The width of the beam at x=L 

ho The height (or thickness) of the beam at x=L 

b(x) The width of the beam at any x 

h(x) The height (or thickness) of the beam at any x 

L The length of a beam 

hn A new height of a part 

bn New width of a part 

 

Greek symbols 

 

b The rate of variation of the width of the beam 

a The rate of variation of the height (or thickness) of 

the beam 

 

Subscripts 

 

S-S Simply supported 

C-C Clamp-clamp 

 

1642




