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 In recent years, the rise of biometric applications, particularly those centered around 

iris-based systems, has been significant. High data volumes inherent in these 

applications and the potential vulnerability of network links necessitate data 

compression in certain instances. The advantage of lossless compression methods is 

twofold: they maintain recognition performance without degradation while 

necessitating fewer computations for differentiation compared to their lossy 

counterparts. This study proposes a novel approach for lossless/lossy compression of 

iris biometric sample data across various public iris databases. Initially, the differences 

between successive images within each class are calculated, leveraging the strong 

correlation of images within each class. Subsequently, these differences are compressed 

using quadtree decomposition. This methodology was tested on six renowned iris 

databases: CASIA V1, CASIA V3, MMU1, MMU2, and UBIRIS Iris, all of which 

contain 8-bit grayscale images. The results indicate that the proposed strategy offers 

superior compression performance across different iris databases in comparison to 

existing methods. Notably, the results suggest that this method can be effectively 

integrated into an iris biometric recognition system, providing efficient iris image 

compression, especially when applied in its lossless form. 
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1. INTRODUCTION

Each individual's iris, the delicate, ring-shaped portion of 

the eye uniquely patterned and nestled between the sclera and 

pupil, functions much like an immutable, organic password. 

While fingerprints, facial features, and voice patterns have 

long been utilized as identifiers [1], the iris's pattern offers 

superior reliability, non-invasiveness, and a higher precision 

rate in recognition. Remarkably, the iris pattern remains 

largely unchanged throughout an individual's lifetime, with the 

left and right eyes each boasting distinct patterns [2]. The high 

degree of individuality inherent to each eye's iris [3] affords 

iris recognition advantages over other recognition systems [4]. 

Among biometric identifiers, iris recognition stands as one 

of the most precise for human identification, and its 

application is expanding globally. The rise of portable systems 

using iris recognition is particularly noticeable in law 

enforcement applications. Many of these applications 

necessitate a portable device capable of transmitting an iris 

image or template over a limited bandwidth communication 

channel. To ensure accurate recognition results, a full-

resolution image (e.g., VGA) is typically required to provide 

sufficient pixel density across the iris [5]. 

While Iris Code templates are substantially smaller (600 

times) than standard iris images, there is a practical preference 

for storing, transmitting, and integrating iris data using images 

rather than templates [6]. Image compression can effectively 

reduce the file size of an iris image, thereby decreasing the 

transfer time for large data volumes over narrow bandwidth 

communication channels [4]. 

In 2007, Matschitsch et al. [7] explored the impact of 

several lossy compression algorithms on the accuracy of iris 

recognition systems. They found that the PSNR, accurately 

predicted by JPEG2000 and SPIHT compression algorithms, 

was aptly suited for iris recognition systems. Fractal 

compression was found to be least appropriate for the 

considered recognition system, while PRVQ compression 

performed remarkably well, delivering the best matching 

scores in one scenario despite ranking third in PSNR 

performance. 

Later, in 2010, Ives et al. [8] studied the influence of JPEG-

2000 image compression on the performance of recognition 

systems employing Daugman's algorithm. Their findings 

suggested that recognition performance was minimally 

impacted despite significant compression. 

In 2015, Shaikh and Mukane [9] used a compression 

scheme combining region-of-interest isolation with JPEG 

compression at various qualities to compress iris images. Their 

investigation into the scheme's effect on recognition 

performance revealed minimal impact when using compressed 

iris images. 

Similarly, in 2015, Ramadan [10] introduced an automated 

3D iris compression and recognition system using spherical 

wavelet coefficients rooted in effective 3D iris representation. 

The results demonstrated that spherical wavelet coefficients 

yield impressive compression abilities with minimal features. 

Čorić et al. in 2014 [11] applied Classified Vector 

Quantization (CVQ) and ordinary Vector Quantization (V.Q.) 
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to compress grayscale iris images sourced from a public iris 

image database. Their findings confirmed that, given the 

uniformity and low contrast levels of iris images, both 

compression methods are markedly more efficient when 

applied to them than to standard images from everyday 

environments. 

Shaikh and Mukane in 2015 [12], utilized JPEG 

compression for iris images and studied its impact on 

recognition performance. 

In 2017, Kapoor and Rawat [13] proposed a scheme that 

combines ROI (region-of-interest) isolation with JPEG 2000 

compression at varying levels. They concluded that JPEG 

2000 compression yields superior results with iris images 

normalized using the Biomechanical model, with minimal 

impact on recognition performance. 

Al-Khafaji and Ali [14] introduced a method in 2019 for 

compressing biometric iris grayscale images, combining the 

DWT base's multiresolution scheme and the zipper 

transformation base techniques. Further, in 2022, Jalilian et al. 

[15] examined the feasibility of a deep learning-based 

compression model for iris data compression. 

Lossy image compression can significantly reduce the space 

and bandwidth requirements for image storage and 

transmission, a feature highly sought after by developers of iris 

recognition systems. While deep learning techniques, with 

their various methods, are rapidly emerging as the preferred 

tool for general image compression tasks, their application for 

iris image compression demands meeting specific critical 

quality criteria. These include high perceptual quality, spatial 

accuracy of the images, and storage space efficiency. 

In this paper, we examine and evaluate the effectiveness of 

a method grounded in successive image differencing, quadtree 

decomposition, and post-compression Huffman coding. When 

compared to its performance with familiar and broadly used 

lossy compression methods, this approach could offer efficient 

compression without substantial data loss. We conduct a 

comprehensive comparison and analysis of compression and 

recognition results to pinpoint the optimal compression 

algorithm for iris recognition systems. 

The remainder of this paper is structured as follows: Section 

2 will delve into the concept of quadtree decomposition. 

Section 3 will outline the steps of the proposed system. Section 

4 will detail the experimental framework, testing, and analysis. 

Finally, Section 5 will conclude the paper.  

 

 

2. QUADTREE  

 

Using recursion, the quadtree approach divides an image 

into blocks or regions [16]. The blocks that have been 

partitioned are organized using a hierarchal tree structure. The 

subdivided blocks are known as the child blocks, while the 

root blocks are known as the parent blocks. Each of the four 

(quad) equal-sized subblocks that make up the parent block is 

exposed for testing. If a block passes the homogeneity 

condition, no further division takes place, the node is left 

undivided, and it is referred to as a leaf node. Divide the block 

into four subblocks or regions and reapply the test criteria if 

the criterion is not met. This process is repeated up until each 

sub-block is subject to the conditions, this process is repeated. 

Consequently, each node/parent has no children or four 

children. The last block size is variable and relies on the 

application's requirements. The decomposing last until the 

quadtree reaches its minimum size [17]. decomposition. The 

root node represents the entire image, and if it fails to meet the 

homogeneity criteria, it is divided into four equal-sized sub-

blocks. The leaf node indicates that a block meets the 

homogeneity requirements [18], Figure 1 depicts a tree 

structure as well as a quadtree, and Figure 2 shows some 

examples from utilised dataset. 

 

 
 

Figure 1. Quadtree: Sample image and Quadtree 

decomposition structure [18] 

 

 
 

Figure 2. Samples of iris images from different databases 
 

 

3. PROPOSED METHOD 

 

At first, the different images are found for each class in the 

iris dataset by subtracting the successive images of a person 

from the first image in the same class. Then the quadtree 

decomposition is employed to compress these different images 

due to the close correlation of images belonging to each class. 

The Huffman encoding is used for extra compression to 

compress the quadtree data result. 

 

3.1 Image differences 

 

Image differencing is used in image processing to detect 

differences between images. The difference between two 

images is calculated by subtracting the pixels in each image 

and then producing an image based on the result. 

The following are the differences between the two images: 

 

𝐼𝑚𝑔𝐷𝑖𝑓𝑓(𝑖, 𝑗, 𝑘) = 𝑓𝑖𝑟𝑠𝑡𝑖𝑚𝑔 (𝑖, 𝑗, 1) − 𝑖𝑚𝑔𝑘(𝑖, 𝑗, 𝑘) 

𝑓𝑜𝑟 𝑖 = 1, . . , 𝑤, 𝑓𝑜𝑟 𝑗 = 1, . . , ℎ, k=2...,5 
(1) 

 

where, firstimg is the first image belonging to each class in the 

iris dataset, w and h are the dimensions of the iris image, and 

k is the number of iris images in each class. 

Figure 3 shows the five images for 'chualsr' from the MMU1 

database. Figure 4 shows the differences between the first and 

the remaining four images. 
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Figure 3. Class from MMU1 database [1] 

 

 
 

Figure 4. Successive differences: (a) The first and second 

images difference; (b) The first and the second image 

difference; (c) The first and the third image; (d) The first and 

fourth image difference 

 

3.2 A negative/positive map 

 

By this step, the complication resulting from negative 

values is removed. These negative values are continually 

modified to positive by applying the following mapping 

equation: 

 

𝑋𝑖 =  {
2𝑋𝑖                      𝑖𝑓 𝑋𝑖  ≥ 0
−2𝑋𝑖 − 1          𝑖𝑓 𝑋𝑖  < 0

 (2) 

 

where, Xi is a negative number, by the above equation, the 

negative values are changed to be odd while all positive values 

become even in the difference image ImgDiff. 

To return the numbers (Xi) to their original signs, perform 

the following inverse equation: 

 

𝑋𝑖 =  {
 𝑋𝑖 𝑑𝑖𝑣 2                  𝑖𝑓 𝑋𝑖  𝑖𝑠  𝑒𝑣𝑒𝑛

−(𝑋𝑖 + 1) 𝑑𝑖𝑣2         𝑖𝑓 𝑋𝑖  𝑖𝑠  𝑜𝑑𝑑    
 (3) 

 

where, 𝑋𝑖  is the ith element, the above equation converts all 

odd values to negative while converting even values to 

positive. 

 

3.3 Quadtree decomposition 

 

The quadtree decomposition is done with the Mean of each 

block in the image as a measure. The Mean of a block such as 

the following: 

 

𝜇(𝑋) =
1

𝑛
∑ 𝑋𝑖

𝑛
𝑖=1   (4) 

 

where, Xi is the ith element and n is the number of elements. 

At first, the 𝜇(𝑥) of the parent block is computed first, and 

the max value in each block is found. Then the breakup 

children's blocks are specified separately. Now find the 

maximum value of the separate block; if it is more than its 

Mean block 𝜇, further resolve the child block. Or else, if there 

is no further division, the block/node is left as a leave—the 

division results in decomposing the image with unequal size 

partitioned blocks. Figure 5 shows the homogeneous and 

inhomogeneous quadrants of a decomposed quadtree image, 

and the minimum block size is 4×4 and th=0 (i.e., lossless 

compression). Because non-homogeneous quadrants have 

more than one luminance value, individually saving each pixel 

(total of 16 pixels in a minimum size quadrant) is not valuable. 

As we note, there are a lot of regions with equal or close 

intensity values, and with quadtree decomposition, we can 

exhaust to compress. The result after Huffman coding for extra 

compression is shown in Figure 6. 

 

 
 

Figure 5. Quadtree decomposition and the minimum block 

size is 4×4 for Figure 3 (a-d) 

 

 
 

Figure 6. Huffman coding for Figure 5 

 

Figure 7 depicts the proposed compression flowchart based 

on quadtree decomposition and Huffman coding. 

 

 
 

Figure 7. The flowchart of the proposed compression method 

 

In the suggested system, a regular quadrant is a segment in 

which all values are different by a minimal amount (max 

difference MaxDiff)<=1,2) if the quadrant is lossy or the same 

if it is lossless (MaxDiff=0). The output from the quadtree is a 

list of block sizes, (x, y) coordinates, and the means of 

quadrants. After that, the list is compressed using Huffman 
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coding. The details of all steps of the proposed method are 

explained in the algorithm 1. 

 

Algorithm 1: Encoding  

Input 

   ImgDiff,      //  The difference between two images 

   w, h,           //  width and height of ImgDiff 

Output 

   COMP  // Compressed data  

Step 1: If the size of the sub-image ImgDiff is not square, then 

the borders of ImgDiff are padded with 0's. Assume 

that J is the padded image with size w′×h′.  

Step 2: Determine the minimum block size BkSize quadtree 

decomposition's threshold. Then if BkSize=4, the 

minimum block size became 4×4. 

Step 3: Specify a threshold for divided blocks th.  

Step 4: Compute the max value of the block elements MaxDiff. 

                If MaxDiff > th then  

                           ImgDiff image is split into four blocks.  

               Else 

               Store in H.Q. the following: 

 

(i) The quadrant size is because the dimensions of 

a quadrant (i.e., height and width) are all the 

time equal, so only one value is desired to store.  

(ii) (x, y) coordinates of the quadrant's upper left 

corner. 

(iii) Mean of the quadrant. 

 

The threshold th represents the bare minimum (0 for lossless 

encoding). Because the quadrants have many equivalent sizes, 

a list of sizes is created to ensure adequate storage capacity for 

each list item, regarding (ii) and (iii) for all quadrants whose 

size is equal to the corresponding component in the list. It is 

not necessary to store the data of any quadrant in J that is 

entirely outside of the original image I. It is simple to 

determine by comparing the coordinates of the quadrant's 

upper left corner with the values of w and h. 

Step 5: Huffman encodes H.Q. to obtain COMP. 

 

The decoding by Huffman is applied to COMP for 

retrieving the homogeneous quadrants H.Q., and then the 

inverse of mapping is performed by the following equation: 

 

3.4 Decoding phase 

 

The inverse of the encoding phase is used in the decoding 

stage. To retrieve the difference images, the inverse of 

quadtree decomposition is used. Algorithm 2 illustrates the 

steps of the encoding phase. 

 

Algorithm 2: Decoding 

Input 

      H.Q., w′, h′. 

Output: 

     ImgDiff′. 

Step 1: Inverse the quadtree decomposition on the H.Q. by 

performing the sub-steps such as: 

                Step 1.1: Form an image of zeros called ImgDiff' of 

size w′×h′. The size of ImgDiff ′ is 

equivalent to the padded image J.  

                 Step 1.2: Fill the homogeneous quadrants of 

ImgDiff′ using the Means of each 

homogeneous quadrant block saved in step 

4 of the encoding process in H.Q., besides 

its size and coordinates. 

Step 2: Resize the ImgDiff' to size w×h, i.e., equal to the size 

of the original sub-image of ImgDiff and then generate 

the decoded image. 

 

3.5 Image addition 

 

All the successive differences images are added with the 

first image firtimg for each class to reveal the original images. 

The following is the image addition: 

 

𝑖𝑚𝑔𝑘 = 𝑓𝑖𝑟𝑡𝑖𝑚𝑔(𝑖, 𝑗) + 𝐼𝑚𝑔𝐷𝑖𝑓𝑓′(𝑖,𝑗) 

𝑓𝑜𝑟 𝑖 = 1, . . , 𝑤, 𝑓𝑜𝑟 𝑗 = 1, . . , ℎ, 𝑘 = 2, . .5 
(5) 

 

 

4. EXPERIMENTAL RESULTS  

 

In all experiments, 8-bit grayscale images are used in BMP 

format. The RGB images were converted to the YUV format. 

Channel Y is used as a grayscale image. 

 

4.1 Dataset 

 

Images of irises utilized in this research are accessible from 

the National Institute of Standards and Technology (NIST). 

Iris image databases are used: 

 

• The CASIA V1 dataset [19] contained 756 8-bit 

grayscale images with a 320×280 pixels resolution. All 

were in .bmp, and 756 polar iris images were extracted.  

• The CASIA V3 Interval dataset contained 2639 8-bit 

grayscale images with a 320×280 pixels resolution. All 

were in .jpeg format, and 2638 polar iris images were 

extracted.  

• The MMU dataset [20] contained 457 24-bit grayscale 

images with a 320×240 pixels resolution. All were 

in .bmp format, and 439 polar iris images were extracted. 

• The MMU2 dataset contained 996 24-bit grayscale 

images with 320×238 pixels resolution. All were in.bmp 

format, and 981 polar iris images were extracted.  

• The UBIRIS dataset [21] contained 1876 24-bit 

grayscale images with 200×150 pixels resolution. All 

were in jpeg format, and 614 polar iris images were 

extracted.  

 

Table 1 illustrates the description of the iris datasets which 

are tested. 
 

Table 1. Details of the iris dataset 

 
Database Name Number of Images Resolution 

CASIA V1  756 320×280 

CASIA V3 Interval 2639 320×280 

MMU1 457 320×240 

MMU2 996 320×238 

UBIRIS 1876 200×150 

 

Table 2 shows the simulation results of the proposed 

method for sample images for 'chualsr' from the MMU1 

dataset regarding Compression Ratio (C.R.) and PSNR. The 

proposed method is applied with the Losselsess version with 

th=0 and with th=10 and th=30 for the lossy version.  
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Table 2. The C.R. and PSNR were achieved for iris images 

from the MMU1 dataset 

 
th Image PSNR CR 

0 

chualsr1 Inf 1.0694 

Difference between fionar1 and  Inf 2.9712 

Difference between fionar1 and  Inf 3.3700 

Difference between fionar1 and  Inf 3.1207 

Difference between fionar1 and  Inf 2.9546 

20 

chualsr1 36.016 2.0099 

Difference between fionar1 and  35.738 4.4117 

Difference between fionar1 and  36.502 4.3251 

Difference between fionar1 and  37.178 4.7813 

Difference between fionar1 and  37.848 3.9854 

30 

chualsr1 33.301 4.919 

Difference between fionar1 and  30.388 5.3473 

Difference between fionar1 and  30.356 5.6932 

Difference between fionar1 and  31.295 5.8243 

Difference between fionar1 and  32.769 4.8912 

 

Table 3 shows the C.R. of the lossless version of the 

proposed system applied to all iris images in the selected iris 

dataset, while Table 4 shows the C.R. and PSNR for the lossy 

version of the proposed approach. 

 

Table 3. Compression ratio of the proposed system for the 

lossless version of the iris dataset 

 
Database Name CR 

CASIA V1  2.9716  

CASIA V3 Interval 3.1265 

MMU1 3.0136 

MMU2 3.9872 

UBIRIS 2.8391 

 

Table 4. Compression ratio and PSNR of the proposed 

system for the lossy version of the iris datasets 

 

Database Name 
C.R. 

th=20 
PSNR 

CR 

th=30 
PSNR 

CASIA V1  3.1265 40.05 5.7321 33.54 

CASIA V3 Interval 2.9716 41.87 4.8569 34.65 

MMU1 3.0136 42.42 5.3283 33.82 

MMU2 3.9872 42.40 5.3217 33.61 

UBIRIS 2.8391 40.56 4.8192 33.12 

 

4.2 Setting and compression method 

 

To practically assessed the proposed lossy version method, 

it must be first compared its performance with well-known and 

popular lossless compression methods, including: 

 

• JPEG-LS IrfanView used JPEG-LS relied on Median 

edge detection, subsequent predictive, and Golumb 

encoding (in two modes: on and normal) [22]. 

• PNG is also used by the XN-View application, with 

an LZSS encoding variant and a compression 

strength of 6. 

• JPEG2000 Image magick used JPEG2000 Part 1, a 

lossy-to-lossless transform coder based on wavelets. 

[23]. 

 

Tables 5 and 3 present the results of compression quality in 

terms of C.R. measure belonging to each database (averaged 

of the entire images) applying the various lossless 

compression algorithms. As noticed, the proposed method 

displays superior performance across all other algorithms. 

Table 5. Lossless compression algorithms for each database 

with corresponding achieved C.R. 
 

Method Database CR 

JPEG-LS 

CASIA V1  1.75 

CASIA V3 Interval 2.25 

MMU1 1.85 

MMU2 3.40 

UBIRIS 1.50 

JPEG2000 

CASIA V1  1.72 

CASIA V3 Interval 2.23 

MMU1 1.82 

MMU2 2.24 

UBIRIS 1.50 

PNG 

CASIA V1  1.75 

CASIA V3 Interval 1.85 

MMU1 1.50 

MMU2 1.65 

UBIRIS 1.20 
 

The performance of the proposed lossy version is further 

compared with some of the most common and state-of-the-art 

lossy compression methods, including: 
 

• SPIHT lossy-to-lossless Zerotree-based wavelet 

transform codec5 [24].  

• JPEG XR FuturixImager6 applied this most current 

ISO still image coding standard based on the 

Microsoft H.D. format [25]. Table 6 shows the C.R. 

for compression methods for each used dataset. 
 

Table 6. Lossy compression algorithms for each database 

with corresponding achieved C.R. 
 

Method Database CR 

SPIHT 

CASIA V1  0.02  

CASIA V3 Interval 2.25 

MMU1 1.85 

MMU2 3.40 

UBIRIS 1.50 

JPEG XR 

CASIA V1  1.72 

CASIA V3 Interval 2.23 

MMU1 1.82 

MMU2 2.24 

UBIRIS 1.50 

JPEG 2000 

CASIA V1  0.27 

CASIA V3 Interval 1.85 

MMU1 1.50 

MMU2 1.65 

UBIRIS 1.20 
 

Tables 6 and 4 show the correlated outcomes of each 

database (averaged over all images) regarding C.R. after 

performing lossy compression methods. The outstanding 

fulfilment of the proposed system, more than other algorithms, 

is also shown in these results. 
 

 

5. CONCLUSIONS 
 

The technique proposed depends on successive image 

differences, quadtree decomposition, and Huffman coding 

post-compression. We examined and evaluated the 

practicability of the proposed method. Comparing the 

performance of the proposed approach to that of well-known 

and popular lossy compression methods of large databases, 

such as Iris-based identification databases presently used for 

personal identification, the proposed method demonstrated 

effective reduction without significant data loss. The quadtree 
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decomposition effectively divides an image into quadrants that 

are evaluated based on the correlation between their data. We 

use the difference to determine the abrupt data change. If 

MaxDiff is high, the block is uncorrelated and must be 

decomposed; otherwise, it is correlated, and the mean is 

sufficient for storage. The quadtree output is further 

compressed using Huffman encoding. On an open iris image 

database, various lossless and lossy image algorithms are 

tested to compare the efficiency for iris images that can be 

anticipated from the most popular and recent lossless image 

coding algorithms for still images. The proposed system's 

results depend on the database, which is generally regarded as 

the most effective technique. 

 

 

REFERENCES  

 

[1] Hafeez, H., Zafar, M.N., Abbas, C.A., Elahi, H., Ali, 

M.O. (2022). Real-time human authentication system 

based on iris recognition. Eng, 3(4): 693-708. 

https://doi.org/10.3390/eng3040047  

[2] Daugman, J., Downing, C. (2001). Epigenetic 

randomness, complexity and singularity of human iris 

patterns. Proceedings of the Royal Society of London. 

Series B: Biological Sciences, 268(1477): 1737-1740. 

https://doi.org/10.1098/rspb.2001.1696 

[3] Jeong, D.S., Hwang, J.W., Kang, B.J., Park, K.R., Won, 

C.S., Park, D.K., Kim, J. (2010). A new iris segmentation 

method for non-ideal iris images. Image and Vision 

Computing, 28(2): 254-260. 

https://doi.org/10.1016/j.imavis.2009.04.001 

[4] Szewczyk, R., Grabowski, K., Napieralska, M., 

Sankowski, W., Zubert, M., Napieralski, A. (2012). A 

reliable iris recognition algorithm based on reverse 

biorthogonal wavelet transform. Pattern Recognition 

Letters, 33(8): 1019-1026. 

https://doi.org/10.1016/j.patrec.2011.08.018 

[5] Sangeetha, M., Betty, P., Kumar, G.N. (2017). A 

biometrie iris image compression using LZW and hybrid 

LZW coding algorithm. In 2017 International 

Conference on Innovations in Information, Embedded 

and Communication Systems (ICIIECS), Coimbatore, 

India, pp. 1-6. 

https://doi.org/10.1109/ICIIECS.2017.8275906 

[6] Daugman, J., Downing, C. (2008). Effect of severe image 

compression on iris recognition performance. IEEE 

Transactions on information Forensics and Security, 3(1): 

52-61. https://doi.org/10.1109/TIFS.2007.916009 

[7] Matschitsch, S., Tschinder, M., Uhl, A. (2007). 

Comparison of Compression Algorithms’ Impact on Iris 

Recognition Accuracy. In: Lee, SW., Li, S.Z. (eds) 

Advances in Biometrics. ICB 2007. Lecture Notes in 

Computer Science, vol. 4642. Springer, Berlin, 

Heidelberg. https://doi.org/10.1007/978-3-540-74549-

5_25 

[8] Ives, R.W., Bishop, D.A., Du, Y., Belcher, C. (2010). Iris 

recognition: The consequences of image compression. 

EURASIP Journal on Advances in Signal Processing, 

2010: 1-9. https://doi.org/10.1155/2010/680845 

[9] Shaikh. I.J, Mukane S.M. (2015). Iris image compression 

using JPEG & its effect on recognition performance. 

International Journal of Scientific & Engineering 

Research, 6(2). 

[10] Ramadan, R.M. (2015). Iris compression and recognition 

using spherical geometry image. International Journal of 

Advanced Research in Artificial Intelligence (IJARAI), 

4(6). https://doi.org/10.14569/IJARAI.2015.040605 

[11] Čorić, M., Lušić, Z., Gudelj, A. (2014). Classified vector 

quantization and its application on compression of iris 

images in the safety of marine systems. Promet–Traffic 

& Transportation, 28(2): 125-131. 

https://doi.org/10.7307/ptt.v28i2.1707 

[12] Paul, A., Khan, T.Z., Podder, P., Ahmed, R., Rahman, 

M.M., Khan, M.H. (2015). Iris image compression using 

wavelets transform coding. In Proceedings of the 2nd 

International Conference on Signal Processing and 

Integrated Networks, Noida, India, pp. 544-548. 

https://doi.org/10. 1109/SPIN.2015.7095407 

[13] Kapoor, P., Rawat, P. (2017). Comparison of detection 

accuracy and effect of JPEG2000 compression on iris 

recognition. International Journal of Computer 

Applications, 162(4): 37-42. 

https://doi.org/10.5120/ijca2017913281 

[14] Al-Khafaji, G., Ali, N. (2019). Fourier transform coding-

based techniques for lossless iris image compression. 

Iraqi Journal of Science, 60(11): 2506-2511. 

https://doi.org/10.24996/ijs.2019.60.11.23 

[15] Jalilian, E., Hofbauer, H., Uhl, A. (2022). Iris image 

compression using deep convolutional neural networks. 

Sensors, 22(7): 2698. https://doi.org/10.3390/s22072698 

[16] Jagadeesh, P., Nagabhushan, P., Kumar, R.P. (2013). A 

novel image scrambling technique based on information 

entropy and quad tree decomposition. International 

Journal of Computer Science Issues (IJCSI), 10(2 Part 1): 

285-294.  

[17] Marquez, G.R.C., Escalante, H.J., Sucar, L.E. (2010). 

Simplified quadtree image segmentation for image 

annotation. Proceedings of the 1st Automatic Image 

Annotation and Retrieval Workshop, 1(1): 24-34.  

[18] Revanna, C.R., Keshavamurthy, C. (2020). A new partial 

image encryption method for document images using 

variance based quad tree decomposition. International 

Journal of Electrical and Computer Engineering, 10(1): 

786-800. http://doi.org/10.11591/ijece.v10i1.pp786-800  

[19] BIT. CASIA Iris Image Database. 

http://biometrics.idealtest.org/, accessed on Dec. 20, 

2016. 

[20] Multimedia-University. MMU Database. 

http://pesona.mmu.edu.my/~ccteo, accessed on Dec. 20, 

2016. 

[21] Proença, H., Alexandre, L.A. (2005). UBIRIS: A Noisy 

Iris Image Database. In: Roli, F., Vitulano, S. (eds) 

Image Analysis and Processing – ICIAP 2005. ICIAP 

2005. Lecture Notes in Computer Science, vol. 3617. 

Springer, Berlin, Heidelberg. 

https://doi.org/10.1007/11553595_119 

[22] Weinberger, M.J., Seroussi, G., Sapiro, G. (2000). The 

LOCO-I lossless image compression algorithm: 

Principles and standardization into JPEG-LS. IEEE 

Transactions on Image Processing, 9(8): 1309-1324. 

https://doi.org/10.1109/83.855427 

[23] Taubman, D.S., Marcellin, M.W., Rabbani, M. (2002). 

JPEG2000: Image compression fundamentals, standards 

and practice. Journal of Electronic Imaging, 11(2): 286-

287. https://doi.org/10.1117/1.1469618 

[24] Krishnan, S., Sathe, P.M. (2013). Comparison of IRIS 

image compression using JPEG 2000 and SPIHT 

algorithm. IOSR Journal of Electronics and 

1688

https://doi.org/10.24996/ijs.2019.60.11.23


 

Communication Engineering (IOSR-JECE), 4(4): 5-9. 

[25] Horvath, K., Stögner, H., Uhl, A., Weinhandel, G. (2011). 

Lossless compression of polar iris image data. In: Vitrià, 

J., Sanches, J.M., Hernández, M. (eds) Pattern 

Recognition and Image Analysis. IbPRIA 2011. Lecture 

Notes in Computer Science, vol. 6669. Springer, Berlin, 

Heidelberg. https://doi.org/10.1007/978-3-642-21257-

4_41

 

1689




