
Storage Space Reduction of Biometric Iris Databases by Successive Images Differences and

Quadtree Decomposition

Asaad Noori Hashim1 , Marwa Fadhel Jassim2 , Ashwaq T. Hashim2*

1 Faculty of Computer Science and Mathematics, University of Kufa, Najaf 54001, Iraq
2 Control and Systems Engineering Department, University of Technology-Iraq, Baghdad 10011, Iraq

Corresponding Author Email: ashwaq.t.hashim@uotechnology.edu.iq

https://doi.org/10.18280/mmep.100518 ABSTRACT

Received: 16 January 2023

Revised: 15 April 2023

Accepted: 2 May 2023

Available online: 27 October 2023

 In recent years, the rise of biometric applications, particularly those centered around

iris-based systems, has been significant. High data volumes inherent in these

applications and the potential vulnerability of network links necessitate data

compression in certain instances. The advantage of lossless compression methods is

twofold: they maintain recognition performance without degradation while

necessitating fewer computations for differentiation compared to their lossy

counterparts. This study proposes a novel approach for lossless/lossy compression of

iris biometric sample data across various public iris databases. Initially, the differences

between successive images within each class are calculated, leveraging the strong

correlation of images within each class. Subsequently, these differences are compressed

using quadtree decomposition. This methodology was tested on six renowned iris

databases: CASIA V1, CASIA V3, MMU1, MMU2, and UBIRIS Iris, all of which

contain 8-bit grayscale images. The results indicate that the proposed strategy offers

superior compression performance across different iris databases in comparison to

existing methods. Notably, the results suggest that this method can be effectively

integrated into an iris biometric recognition system, providing efficient iris image

compression, especially when applied in its lossless form.

Keywords:

biometric, iris database, iris compression,

quadtree, Huffman coding

1. INTRODUCTION

Each individual's iris, the delicate, ring-shaped portion of

the eye uniquely patterned and nestled between the sclera and

pupil, functions much like an immutable, organic password.

While fingerprints, facial features, and voice patterns have

long been utilized as identifiers [1], the iris's pattern offers

superior reliability, non-invasiveness, and a higher precision

rate in recognition. Remarkably, the iris pattern remains

largely unchanged throughout an individual's lifetime, with the

left and right eyes each boasting distinct patterns [2]. The high

degree of individuality inherent to each eye's iris [3] affords

iris recognition advantages over other recognition systems [4].

Among biometric identifiers, iris recognition stands as one

of the most precise for human identification, and its

application is expanding globally. The rise of portable systems

using iris recognition is particularly noticeable in law

enforcement applications. Many of these applications

necessitate a portable device capable of transmitting an iris

image or template over a limited bandwidth communication

channel. To ensure accurate recognition results, a full-

resolution image (e.g., VGA) is typically required to provide

sufficient pixel density across the iris [5].

While Iris Code templates are substantially smaller (600

times) than standard iris images, there is a practical preference

for storing, transmitting, and integrating iris data using images

rather than templates [6]. Image compression can effectively

reduce the file size of an iris image, thereby decreasing the

transfer time for large data volumes over narrow bandwidth

communication channels [4].

In 2007, Matschitsch et al. [7] explored the impact of

several lossy compression algorithms on the accuracy of iris

recognition systems. They found that the PSNR, accurately

predicted by JPEG2000 and SPIHT compression algorithms,

was aptly suited for iris recognition systems. Fractal

compression was found to be least appropriate for the

considered recognition system, while PRVQ compression

performed remarkably well, delivering the best matching

scores in one scenario despite ranking third in PSNR

performance.

Later, in 2010, Ives et al. [8] studied the influence of JPEG-

2000 image compression on the performance of recognition

systems employing Daugman's algorithm. Their findings

suggested that recognition performance was minimally

impacted despite significant compression.

In 2015, Shaikh and Mukane [9] used a compression

scheme combining region-of-interest isolation with JPEG

compression at various qualities to compress iris images. Their

investigation into the scheme's effect on recognition

performance revealed minimal impact when using compressed

iris images.

Similarly, in 2015, Ramadan [10] introduced an automated

3D iris compression and recognition system using spherical

wavelet coefficients rooted in effective 3D iris representation.

The results demonstrated that spherical wavelet coefficients

yield impressive compression abilities with minimal features.

Čorić et al. in 2014 [11] applied Classified Vector

Quantization (CVQ) and ordinary Vector Quantization (V.Q.)

Mathematical Modelling of Engineering Problems
Vol. 10, No. 5, October, 2023, pp. 1683-1689

Journal homepage: http://iieta.org/journals/mmep

1683

https://orcid.org/0000-0002-4592-3218
https://orcid.org/0000-0003-4046-5737
https://orcid.org/0000-0002-3282-6419
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.100518&domain=pdf

to compress grayscale iris images sourced from a public iris

image database. Their findings confirmed that, given the

uniformity and low contrast levels of iris images, both

compression methods are markedly more efficient when

applied to them than to standard images from everyday

environments.

Shaikh and Mukane in 2015 [12], utilized JPEG

compression for iris images and studied its impact on

recognition performance.

In 2017, Kapoor and Rawat [13] proposed a scheme that

combines ROI (region-of-interest) isolation with JPEG 2000

compression at varying levels. They concluded that JPEG

2000 compression yields superior results with iris images

normalized using the Biomechanical model, with minimal

impact on recognition performance.

Al-Khafaji and Ali [14] introduced a method in 2019 for

compressing biometric iris grayscale images, combining the

DWT base's multiresolution scheme and the zipper

transformation base techniques. Further, in 2022, Jalilian et al.

[15] examined the feasibility of a deep learning-based

compression model for iris data compression.

Lossy image compression can significantly reduce the space

and bandwidth requirements for image storage and

transmission, a feature highly sought after by developers of iris

recognition systems. While deep learning techniques, with

their various methods, are rapidly emerging as the preferred

tool for general image compression tasks, their application for

iris image compression demands meeting specific critical

quality criteria. These include high perceptual quality, spatial

accuracy of the images, and storage space efficiency.

In this paper, we examine and evaluate the effectiveness of

a method grounded in successive image differencing, quadtree

decomposition, and post-compression Huffman coding. When

compared to its performance with familiar and broadly used

lossy compression methods, this approach could offer efficient

compression without substantial data loss. We conduct a

comprehensive comparison and analysis of compression and

recognition results to pinpoint the optimal compression

algorithm for iris recognition systems.

The remainder of this paper is structured as follows: Section

2 will delve into the concept of quadtree decomposition.

Section 3 will outline the steps of the proposed system. Section

4 will detail the experimental framework, testing, and analysis.

Finally, Section 5 will conclude the paper.

2. QUADTREE

Using recursion, the quadtree approach divides an image

into blocks or regions [16]. The blocks that have been

partitioned are organized using a hierarchal tree structure. The

subdivided blocks are known as the child blocks, while the

root blocks are known as the parent blocks. Each of the four

(quad) equal-sized subblocks that make up the parent block is

exposed for testing. If a block passes the homogeneity

condition, no further division takes place, the node is left

undivided, and it is referred to as a leaf node. Divide the block

into four subblocks or regions and reapply the test criteria if

the criterion is not met. This process is repeated up until each

sub-block is subject to the conditions, this process is repeated.

Consequently, each node/parent has no children or four

children. The last block size is variable and relies on the

application's requirements. The decomposing last until the

quadtree reaches its minimum size [17]. decomposition. The

root node represents the entire image, and if it fails to meet the

homogeneity criteria, it is divided into four equal-sized sub-

blocks. The leaf node indicates that a block meets the

homogeneity requirements [18], Figure 1 depicts a tree

structure as well as a quadtree, and Figure 2 shows some

examples from utilised dataset.

Figure 1. Quadtree: Sample image and Quadtree

decomposition structure [18]

Figure 2. Samples of iris images from different databases

3. PROPOSED METHOD

At first, the different images are found for each class in the

iris dataset by subtracting the successive images of a person

from the first image in the same class. Then the quadtree

decomposition is employed to compress these different images

due to the close correlation of images belonging to each class.

The Huffman encoding is used for extra compression to

compress the quadtree data result.

3.1 Image differences

Image differencing is used in image processing to detect

differences between images. The difference between two

images is calculated by subtracting the pixels in each image

and then producing an image based on the result.

The following are the differences between the two images:

𝐼𝑚𝑔𝐷𝑖𝑓𝑓(𝑖, 𝑗, 𝑘) = 𝑓𝑖𝑟𝑠𝑡𝑖𝑚𝑔 (𝑖, 𝑗, 1) − 𝑖𝑚𝑔𝑘(𝑖, 𝑗, 𝑘)

𝑓𝑜𝑟 𝑖 = 1, . . , 𝑤, 𝑓𝑜𝑟 𝑗 = 1, . . , ℎ, k=2...,5
(1)

where, firstimg is the first image belonging to each class in the

iris dataset, w and h are the dimensions of the iris image, and

k is the number of iris images in each class.

Figure 3 shows the five images for 'chualsr' from the MMU1

database. Figure 4 shows the differences between the first and

the remaining four images.

1684

Figure 3. Class from MMU1 database [1]

Figure 4. Successive differences: (a) The first and second

images difference; (b) The first and the second image

difference; (c) The first and the third image; (d) The first and

fourth image difference

3.2 A negative/positive map

By this step, the complication resulting from negative

values is removed. These negative values are continually

modified to positive by applying the following mapping

equation:

𝑋𝑖 = {
2𝑋𝑖 𝑖𝑓 𝑋𝑖 ≥ 0
−2𝑋𝑖 − 1 𝑖𝑓 𝑋𝑖 < 0

 (2)

where, Xi is a negative number, by the above equation, the

negative values are changed to be odd while all positive values

become even in the difference image ImgDiff.

To return the numbers (Xi) to their original signs, perform

the following inverse equation:

𝑋𝑖 = {
 𝑋𝑖 𝑑𝑖𝑣 2 𝑖𝑓 𝑋𝑖 𝑖𝑠 𝑒𝑣𝑒𝑛

−(𝑋𝑖 + 1) 𝑑𝑖𝑣2 𝑖𝑓 𝑋𝑖 𝑖𝑠 𝑜𝑑𝑑
 (3)

where, 𝑋𝑖 is the ith element, the above equation converts all

odd values to negative while converting even values to

positive.

3.3 Quadtree decomposition

The quadtree decomposition is done with the Mean of each

block in the image as a measure. The Mean of a block such as

the following:

𝜇(𝑋) =
1

𝑛
∑ 𝑋𝑖

𝑛
𝑖=1 (4)

where, Xi is the ith element and n is the number of elements.

At first, the 𝜇(𝑥) of the parent block is computed first, and

the max value in each block is found. Then the breakup

children's blocks are specified separately. Now find the

maximum value of the separate block; if it is more than its

Mean block 𝜇, further resolve the child block. Or else, if there

is no further division, the block/node is left as a leave—the

division results in decomposing the image with unequal size

partitioned blocks. Figure 5 shows the homogeneous and

inhomogeneous quadrants of a decomposed quadtree image,

and the minimum block size is 4×4 and th=0 (i.e., lossless

compression). Because non-homogeneous quadrants have

more than one luminance value, individually saving each pixel

(total of 16 pixels in a minimum size quadrant) is not valuable.

As we note, there are a lot of regions with equal or close

intensity values, and with quadtree decomposition, we can

exhaust to compress. The result after Huffman coding for extra

compression is shown in Figure 6.

Figure 5. Quadtree decomposition and the minimum block

size is 4×4 for Figure 3 (a-d)

Figure 6. Huffman coding for Figure 5

Figure 7 depicts the proposed compression flowchart based

on quadtree decomposition and Huffman coding.

Figure 7. The flowchart of the proposed compression method

In the suggested system, a regular quadrant is a segment in

which all values are different by a minimal amount (max

difference MaxDiff)<=1,2) if the quadrant is lossy or the same

if it is lossless (MaxDiff=0). The output from the quadtree is a

list of block sizes, (x, y) coordinates, and the means of

quadrants. After that, the list is compressed using Huffman

1685

coding. The details of all steps of the proposed method are

explained in the algorithm 1.

Algorithm 1: Encoding

Input

 ImgDiff, // The difference between two images

 w, h, // width and height of ImgDiff

Output

 COMP // Compressed data

Step 1: If the size of the sub-image ImgDiff is not square, then

the borders of ImgDiff are padded with 0's. Assume

that J is the padded image with size w′×h′.

Step 2: Determine the minimum block size BkSize quadtree

decomposition's threshold. Then if BkSize=4, the

minimum block size became 4×4.

Step 3: Specify a threshold for divided blocks th.

Step 4: Compute the max value of the block elements MaxDiff.

 If MaxDiff > th then

 ImgDiff image is split into four blocks.

 Else

 Store in H.Q. the following:

(i) The quadrant size is because the dimensions of

a quadrant (i.e., height and width) are all the

time equal, so only one value is desired to store.

(ii) (x, y) coordinates of the quadrant's upper left

corner.

(iii) Mean of the quadrant.

The threshold th represents the bare minimum (0 for lossless

encoding). Because the quadrants have many equivalent sizes,

a list of sizes is created to ensure adequate storage capacity for

each list item, regarding (ii) and (iii) for all quadrants whose

size is equal to the corresponding component in the list. It is

not necessary to store the data of any quadrant in J that is

entirely outside of the original image I. It is simple to

determine by comparing the coordinates of the quadrant's

upper left corner with the values of w and h.

Step 5: Huffman encodes H.Q. to obtain COMP.

The decoding by Huffman is applied to COMP for

retrieving the homogeneous quadrants H.Q., and then the

inverse of mapping is performed by the following equation:

3.4 Decoding phase

The inverse of the encoding phase is used in the decoding

stage. To retrieve the difference images, the inverse of

quadtree decomposition is used. Algorithm 2 illustrates the

steps of the encoding phase.

Algorithm 2: Decoding

Input

 H.Q., w′, h′.

Output:

 ImgDiff′.

Step 1: Inverse the quadtree decomposition on the H.Q. by

performing the sub-steps such as:

 Step 1.1: Form an image of zeros called ImgDiff' of

size w′×h′. The size of ImgDiff ′ is

equivalent to the padded image J.

 Step 1.2: Fill the homogeneous quadrants of

ImgDiff′ using the Means of each

homogeneous quadrant block saved in step

4 of the encoding process in H.Q., besides

its size and coordinates.

Step 2: Resize the ImgDiff' to size w×h, i.e., equal to the size

of the original sub-image of ImgDiff and then generate

the decoded image.

3.5 Image addition

All the successive differences images are added with the

first image firtimg for each class to reveal the original images.

The following is the image addition:

𝑖𝑚𝑔𝑘 = 𝑓𝑖𝑟𝑡𝑖𝑚𝑔(𝑖, 𝑗) + 𝐼𝑚𝑔𝐷𝑖𝑓𝑓′(𝑖,𝑗)

𝑓𝑜𝑟 𝑖 = 1, . . , 𝑤, 𝑓𝑜𝑟 𝑗 = 1, . . , ℎ, 𝑘 = 2, . .5
(5)

4. EXPERIMENTAL RESULTS

In all experiments, 8-bit grayscale images are used in BMP

format. The RGB images were converted to the YUV format.

Channel Y is used as a grayscale image.

4.1 Dataset

Images of irises utilized in this research are accessible from

the National Institute of Standards and Technology (NIST).

Iris image databases are used:

• The CASIA V1 dataset [19] contained 756 8-bit

grayscale images with a 320×280 pixels resolution. All

were in .bmp, and 756 polar iris images were extracted.

• The CASIA V3 Interval dataset contained 2639 8-bit

grayscale images with a 320×280 pixels resolution. All

were in .jpeg format, and 2638 polar iris images were

extracted.

• The MMU dataset [20] contained 457 24-bit grayscale

images with a 320×240 pixels resolution. All were

in .bmp format, and 439 polar iris images were extracted.

• The MMU2 dataset contained 996 24-bit grayscale

images with 320×238 pixels resolution. All were in.bmp

format, and 981 polar iris images were extracted.

• The UBIRIS dataset [21] contained 1876 24-bit

grayscale images with 200×150 pixels resolution. All

were in jpeg format, and 614 polar iris images were

extracted.

Table 1 illustrates the description of the iris datasets which

are tested.

Table 1. Details of the iris dataset

Database Name Number of Images Resolution

CASIA V1 756 320×280

CASIA V3 Interval 2639 320×280

MMU1 457 320×240

MMU2 996 320×238

UBIRIS 1876 200×150

Table 2 shows the simulation results of the proposed

method for sample images for 'chualsr' from the MMU1

dataset regarding Compression Ratio (C.R.) and PSNR. The

proposed method is applied with the Losselsess version with

th=0 and with th=10 and th=30 for the lossy version.

1686

Table 2. The C.R. and PSNR were achieved for iris images

from the MMU1 dataset

th Image PSNR CR

0

chualsr1 Inf 1.0694

Difference between fionar1 and Inf 2.9712

Difference between fionar1 and Inf 3.3700

Difference between fionar1 and Inf 3.1207

Difference between fionar1 and Inf 2.9546

20

chualsr1 36.016 2.0099

Difference between fionar1 and 35.738 4.4117

Difference between fionar1 and 36.502 4.3251

Difference between fionar1 and 37.178 4.7813

Difference between fionar1 and 37.848 3.9854

30

chualsr1 33.301 4.919

Difference between fionar1 and 30.388 5.3473

Difference between fionar1 and 30.356 5.6932

Difference between fionar1 and 31.295 5.8243

Difference between fionar1 and 32.769 4.8912

Table 3 shows the C.R. of the lossless version of the

proposed system applied to all iris images in the selected iris

dataset, while Table 4 shows the C.R. and PSNR for the lossy

version of the proposed approach.

Table 3. Compression ratio of the proposed system for the

lossless version of the iris dataset

Database Name CR

CASIA V1 2.9716

CASIA V3 Interval 3.1265

MMU1 3.0136

MMU2 3.9872

UBIRIS 2.8391

Table 4. Compression ratio and PSNR of the proposed

system for the lossy version of the iris datasets

Database Name
C.R.

th=20
PSNR

CR

th=30
PSNR

CASIA V1 3.1265 40.05 5.7321 33.54

CASIA V3 Interval 2.9716 41.87 4.8569 34.65

MMU1 3.0136 42.42 5.3283 33.82

MMU2 3.9872 42.40 5.3217 33.61

UBIRIS 2.8391 40.56 4.8192 33.12

4.2 Setting and compression method

To practically assessed the proposed lossy version method,

it must be first compared its performance with well-known and

popular lossless compression methods, including:

• JPEG-LS IrfanView used JPEG-LS relied on Median

edge detection, subsequent predictive, and Golumb

encoding (in two modes: on and normal) [22].

• PNG is also used by the XN-View application, with

an LZSS encoding variant and a compression

strength of 6.

• JPEG2000 Image magick used JPEG2000 Part 1, a

lossy-to-lossless transform coder based on wavelets.

[23].

Tables 5 and 3 present the results of compression quality in

terms of C.R. measure belonging to each database (averaged

of the entire images) applying the various lossless

compression algorithms. As noticed, the proposed method

displays superior performance across all other algorithms.

Table 5. Lossless compression algorithms for each database

with corresponding achieved C.R.

Method Database CR

JPEG-LS

CASIA V1 1.75

CASIA V3 Interval 2.25

MMU1 1.85

MMU2 3.40

UBIRIS 1.50

JPEG2000

CASIA V1 1.72

CASIA V3 Interval 2.23

MMU1 1.82

MMU2 2.24

UBIRIS 1.50

PNG

CASIA V1 1.75

CASIA V3 Interval 1.85

MMU1 1.50

MMU2 1.65

UBIRIS 1.20

The performance of the proposed lossy version is further

compared with some of the most common and state-of-the-art

lossy compression methods, including:

• SPIHT lossy-to-lossless Zerotree-based wavelet

transform codec5 [24].

• JPEG XR FuturixImager6 applied this most current

ISO still image coding standard based on the

Microsoft H.D. format [25]. Table 6 shows the C.R.

for compression methods for each used dataset.

Table 6. Lossy compression algorithms for each database

with corresponding achieved C.R.

Method Database CR

SPIHT

CASIA V1 0.02

CASIA V3 Interval 2.25

MMU1 1.85

MMU2 3.40

UBIRIS 1.50

JPEG XR

CASIA V1 1.72

CASIA V3 Interval 2.23

MMU1 1.82

MMU2 2.24

UBIRIS 1.50

JPEG 2000

CASIA V1 0.27

CASIA V3 Interval 1.85

MMU1 1.50

MMU2 1.65

UBIRIS 1.20

Tables 6 and 4 show the correlated outcomes of each

database (averaged over all images) regarding C.R. after

performing lossy compression methods. The outstanding

fulfilment of the proposed system, more than other algorithms,

is also shown in these results.

5. CONCLUSIONS

The technique proposed depends on successive image

differences, quadtree decomposition, and Huffman coding

post-compression. We examined and evaluated the

practicability of the proposed method. Comparing the

performance of the proposed approach to that of well-known

and popular lossy compression methods of large databases,

such as Iris-based identification databases presently used for

personal identification, the proposed method demonstrated

effective reduction without significant data loss. The quadtree

1687

decomposition effectively divides an image into quadrants that

are evaluated based on the correlation between their data. We

use the difference to determine the abrupt data change. If

MaxDiff is high, the block is uncorrelated and must be

decomposed; otherwise, it is correlated, and the mean is

sufficient for storage. The quadtree output is further

compressed using Huffman encoding. On an open iris image

database, various lossless and lossy image algorithms are

tested to compare the efficiency for iris images that can be

anticipated from the most popular and recent lossless image

coding algorithms for still images. The proposed system's

results depend on the database, which is generally regarded as

the most effective technique.

REFERENCES

[1] Hafeez, H., Zafar, M.N., Abbas, C.A., Elahi, H., Ali,

M.O. (2022). Real-time human authentication system

based on iris recognition. Eng, 3(4): 693-708.

https://doi.org/10.3390/eng3040047

[2] Daugman, J., Downing, C. (2001). Epigenetic

randomness, complexity and singularity of human iris

patterns. Proceedings of the Royal Society of London.

Series B: Biological Sciences, 268(1477): 1737-1740.

https://doi.org/10.1098/rspb.2001.1696

[3] Jeong, D.S., Hwang, J.W., Kang, B.J., Park, K.R., Won,

C.S., Park, D.K., Kim, J. (2010). A new iris segmentation

method for non-ideal iris images. Image and Vision

Computing, 28(2): 254-260.

https://doi.org/10.1016/j.imavis.2009.04.001

[4] Szewczyk, R., Grabowski, K., Napieralska, M.,

Sankowski, W., Zubert, M., Napieralski, A. (2012). A

reliable iris recognition algorithm based on reverse

biorthogonal wavelet transform. Pattern Recognition

Letters, 33(8): 1019-1026.

https://doi.org/10.1016/j.patrec.2011.08.018

[5] Sangeetha, M., Betty, P., Kumar, G.N. (2017). A

biometrie iris image compression using LZW and hybrid

LZW coding algorithm. In 2017 International

Conference on Innovations in Information, Embedded

and Communication Systems (ICIIECS), Coimbatore,

India, pp. 1-6.

https://doi.org/10.1109/ICIIECS.2017.8275906

[6] Daugman, J., Downing, C. (2008). Effect of severe image

compression on iris recognition performance. IEEE

Transactions on information Forensics and Security, 3(1):

52-61. https://doi.org/10.1109/TIFS.2007.916009

[7] Matschitsch, S., Tschinder, M., Uhl, A. (2007).

Comparison of Compression Algorithms’ Impact on Iris

Recognition Accuracy. In: Lee, SW., Li, S.Z. (eds)

Advances in Biometrics. ICB 2007. Lecture Notes in

Computer Science, vol. 4642. Springer, Berlin,

Heidelberg. https://doi.org/10.1007/978-3-540-74549-

5_25

[8] Ives, R.W., Bishop, D.A., Du, Y., Belcher, C. (2010). Iris

recognition: The consequences of image compression.

EURASIP Journal on Advances in Signal Processing,

2010: 1-9. https://doi.org/10.1155/2010/680845

[9] Shaikh. I.J, Mukane S.M. (2015). Iris image compression

using JPEG & its effect on recognition performance.

International Journal of Scientific & Engineering

Research, 6(2).

[10] Ramadan, R.M. (2015). Iris compression and recognition

using spherical geometry image. International Journal of

Advanced Research in Artificial Intelligence (IJARAI),

4(6). https://doi.org/10.14569/IJARAI.2015.040605

[11] Čorić, M., Lušić, Z., Gudelj, A. (2014). Classified vector

quantization and its application on compression of iris

images in the safety of marine systems. Promet–Traffic

& Transportation, 28(2): 125-131.

https://doi.org/10.7307/ptt.v28i2.1707

[12] Paul, A., Khan, T.Z., Podder, P., Ahmed, R., Rahman,

M.M., Khan, M.H. (2015). Iris image compression using

wavelets transform coding. In Proceedings of the 2nd

International Conference on Signal Processing and

Integrated Networks, Noida, India, pp. 544-548.

https://doi.org/10. 1109/SPIN.2015.7095407

[13] Kapoor, P., Rawat, P. (2017). Comparison of detection

accuracy and effect of JPEG2000 compression on iris

recognition. International Journal of Computer

Applications, 162(4): 37-42.

https://doi.org/10.5120/ijca2017913281

[14] Al-Khafaji, G., Ali, N. (2019). Fourier transform coding-

based techniques for lossless iris image compression.

Iraqi Journal of Science, 60(11): 2506-2511.

https://doi.org/10.24996/ijs.2019.60.11.23

[15] Jalilian, E., Hofbauer, H., Uhl, A. (2022). Iris image

compression using deep convolutional neural networks.

Sensors, 22(7): 2698. https://doi.org/10.3390/s22072698

[16] Jagadeesh, P., Nagabhushan, P., Kumar, R.P. (2013). A

novel image scrambling technique based on information

entropy and quad tree decomposition. International

Journal of Computer Science Issues (IJCSI), 10(2 Part 1):

285-294.

[17] Marquez, G.R.C., Escalante, H.J., Sucar, L.E. (2010).

Simplified quadtree image segmentation for image

annotation. Proceedings of the 1st Automatic Image

Annotation and Retrieval Workshop, 1(1): 24-34.

[18] Revanna, C.R., Keshavamurthy, C. (2020). A new partial

image encryption method for document images using

variance based quad tree decomposition. International

Journal of Electrical and Computer Engineering, 10(1):

786-800. http://doi.org/10.11591/ijece.v10i1.pp786-800

[19] BIT. CASIA Iris Image Database.

http://biometrics.idealtest.org/, accessed on Dec. 20,

2016.

[20] Multimedia-University. MMU Database.

http://pesona.mmu.edu.my/~ccteo, accessed on Dec. 20,

2016.

[21] Proença, H., Alexandre, L.A. (2005). UBIRIS: A Noisy

Iris Image Database. In: Roli, F., Vitulano, S. (eds)

Image Analysis and Processing – ICIAP 2005. ICIAP

2005. Lecture Notes in Computer Science, vol. 3617.

Springer, Berlin, Heidelberg.

https://doi.org/10.1007/11553595_119

[22] Weinberger, M.J., Seroussi, G., Sapiro, G. (2000). The

LOCO-I lossless image compression algorithm:

Principles and standardization into JPEG-LS. IEEE

Transactions on Image Processing, 9(8): 1309-1324.

https://doi.org/10.1109/83.855427

[23] Taubman, D.S., Marcellin, M.W., Rabbani, M. (2002).

JPEG2000: Image compression fundamentals, standards

and practice. Journal of Electronic Imaging, 11(2): 286-

287. https://doi.org/10.1117/1.1469618

[24] Krishnan, S., Sathe, P.M. (2013). Comparison of IRIS

image compression using JPEG 2000 and SPIHT

algorithm. IOSR Journal of Electronics and

1688

https://doi.org/10.24996/ijs.2019.60.11.23

Communication Engineering (IOSR-JECE), 4(4): 5-9.

[25] Horvath, K., Stögner, H., Uhl, A., Weinhandel, G. (2011).

Lossless compression of polar iris image data. In: Vitrià,

J., Sanches, J.M., Hernández, M. (eds) Pattern

Recognition and Image Analysis. IbPRIA 2011. Lecture

Notes in Computer Science, vol. 6669. Springer, Berlin,

Heidelberg. https://doi.org/10.1007/978-3-642-21257-

4_41

1689

