
Comparative Analysis of SDN Controllers: A Study on Installation, Protocols Interaction,

Network Topologies Monitoring, and GUI Experience

Daniel Alberto Priano* , María Claudia Abeledo , Javier Guevara , Matías Marsicano , Fabio Sergio

Bruschetti , Iara Giniger

Centro de Investigación y Desarrollos en Informática (CIDI), Instituto de Tecnologías Emergentes y Ciencias Aplicadas

(ITECA), Escuela de Ciencia y Tecnología (ECyT), Universidad Nacional de San Martín (UNSAM), Ciudad de San Martín,

Provincia de Buenos Aires 1650, Argentina

Corresponding Author Email: dpriano@unsam.edu.ar

https://doi.org/10.18280/rces.100302 ABSTRACT

Received: 28 August 2023

Revised: 6 September 2023

Accepted: 11 September 2023

Available online: 30 September 2023

This paper analyses four SDN controllers that support this architecture not only from a

technical point of view but also from an academic point of view by including it in the

university curriculum. The integration of network controller analysis into an academic

curriculum can provide a comprehensive training in theoretical and practical aspects

related to network management and SDN technologies. The controllers analyzed were

FloodLight, HP SDN VAN Controller, ONOS (Open Network Operating System) and

AGILE SDN. Their comparison was based on criteria such as ease of installation,

interaction with other communication protocols, ability to monitor network topologies and

experience in using their graphical user interfaces. ONOS was found to be the most secure,

reliable, robust and scalable controller. Notwithstanding the above, it is important to note

that the network technology landscape is constantly evolving, so it is essential to keep

updating drivers and comparing features, performance, etc. on these platforms before

making a decision. The following are the factors that make ONOS the best choice: 1.

Flexibility and customization: ONOS is known for being highly flexible and customizable.

This means that you can adapt and customize its functionality to meet the specific needs

of your network. Extensions and custom applications can be implemented more easily in

ONOS than in some other controllers. 2. Scalability: ONOS is designed to be scalable and

can handle large networks with a large number of devices and flows. This makes it suitable

for applications in service provider and enterprise network environments. 3. multi-

technology support: ONOS is known for its ability to manage a variety of network

technologies, including OpenFlow and others. This makes it versatile in terms of support

for different network equipment and technologies.4. Active community and continuous

development: ONOS has an active community of developers and continuous development.

This means that updates and new features are more likely to be found on a regular basis.
Among the criteria used, ease of installation was chosen, allowing the controller to be

deployed quickly and efficiently, which is beneficial in terms of time and cost. On the

other hand, the ability to monitor network topologies provides visibility and control, which

is essential for network performance, efficiency and security.

Keywords:

computer networks, Software Defined

Networking, SDN, computer network

management, software tools, SDN controller,

network configuration management

1. INTRODUCTION

Software-defined networking (SDN) simplifies the design,

monitoring and management of next-generation networks by

separating a legacy network into two planes: the centralized

control plane and the data plane. The intelligent, centralized

SDN control plane manages the behavior of incoming packet

forwarding devices and provides a holistic view of the entire

network at a single point. Centralized management in SDN

networks together with the possibility to apply scheduling

algorithms facilitate the implementation of an adaptive and

automated network control model. This can be implemented

in three models: a) physically centralized, where the

configuration of the entire network resides in a single SDN

controller; b) physically distributed but logically centralized,

with multiple SDN controllers to manage the network; and c)

hybrid, where both models coexist.

Today, the installation and use of data networks is growing

rapidly. IP networks are becoming larger and more complex.

Today's large IP networks providing connectivity to a huge

number of users worldwide pose a major challenge: effective

and efficient network management.

Routers play a very important functional role in IP networks.

The routing algorithms that route traffic must meet packet

forwarding efficiency goals. These algorithms are the control

plane of the router and are often referred to as the "router

brain". The data plane of the network are the forwarding

devices known as physically interconnected switches and

routers [1].

SDNs use software-based controllers to manage network

traffic or APIs (Application Programming Interfaces) running

on specific and dedicated hardware. Traditional networks use

these hardware devices such as switches and routers to control

network traffic. In contrast, the SDN approach allows defining

the required behavior of a network on traditional non-specific

hardware through an appropriate programming language

Review of Computer Engineering Studies
Vol. 10, No. 3, September, 2023, pp. 41-47

Journal homepage: http://iieta.org/journals/rces

41

https://orcid.org/0000-0003-0155-4753
https://orcid.org/0000-0003-1490-0109
https://orcid.org/0000-0002-5802-641X
https://orcid.org/0009-0003-2355-089X
https://orcid.org/0000-0001-7516-2248
https://orcid.org/0009-0006-2527-9476
https://crossmark.crossref.org/dialog/?doi=10.18280/rces.100302&domain=pdf

(software).

Organizations today can segment one or more virtual

networks within a single physical network through

virtualization by connecting devices on different physical

networks. SDN [2] enables a new way of controlling these

virtual networks through a centralized server that manages all

the routing requirements.

According to Blial et al. [3], the controller is the central

component of an SDN infrastructure because it contains the

entire view of the network including data plane devices. The

network management software tools used for controller

development allow flow control policies to be implemented

for each and every device and resource in the data plane.

Figure 1 illustrates the SDN controller architecture and its

main components. The aim of this work is to investigate and

understand the differences between the SDN controllers

considered, their characteristics, advantages and

disadvantages, where comparing different controllers can be

fundamental. This is relevant for students, researchers and

practitioners investigating to go deeper into SDN technology

from a technical point of view.

The relevance of comparing different SDN controllers or

focusing on the use of SDN in managing large IP networks

depends on the specific objectives considered, context and

needs. There is no single answer, as both perspectives may be

relevant in different situations.

Other important components of the SDN architecture are the

Northbound and Southbound interfaces [4]. These interfaces

interact with both SDN controllers and applications (APIs) [5]

from third parties. The SDN Network Operating System (SDN

NOS) enables the performance of a network to be programmed

by abstracting the essential services and interfaces.

In the control plane, an SDN controller provides state

services, topology information, discovery and network

configuration. Some of the main features of SDN controllers

include:

• Flexible design of centralized or distributed strategies

depending on expected network traffic performance.

• East/West APIs [6] to import and export data between

controllers incorporating algorithms for data consistency,

monitoring and reporting.

• The use of programming languages with a relatively low

learning curve. Offering interoperability, multi-threaded

execution and memory access and management

capabilities.

• Support for OpenFlow and other protocols used in the

Southbound interface [7].

Figure 1. SDN controllers [8]

2. SDN CONTROLLERS

There are multiple software controllers developed for this

architecture. The literature consulted characterizes them

through the following variables:

1. Supported OpenFlow protocol version: Indicates the

features and services included in each supported version of the

OpenFlow driver. This will depend, for example, on IPv4 or

IPv6 support, use of optical links, implementation of tunneling,

among other parameters. As of the date of this document, the

current versions of the OpenFlow protocol are 1.0 to 1.5.

Always having the latest supported version of the protocol

can cause recognition and configuration errors if code changes

and enhancements are introduced in new versions. It is

therefore essential to check that the applications, transmission

equipment and controller support the same version of the

OpenFlow protocol.

2. Southbound API and Northbound API: Southbound Api

indicates which protocols the driver supports to communicate

with the data layer (network hardware). In most cases,

controllers only support some versions of the OpenFlow

protocol as well as some Ethernet network protocols such as

ARP, DHCP, BGP, IS-IS. This enables to connect equipment

with hybrid configurations such as SDN and Ethernet. This

will also allow incorporating connectivity with virtualized

networks and cloud functionalities. On the other hand,

Northbound API indicates which protocols, APIs or

programming languages are supported by the network

controller to communicate devices and provide services to the

application layer.

3. Interface type: Indicate whether it provides a basic

command line interface (CLI) or a graphical user interface

(GUI) accessible through specific applications or a simple

WEB browser (WEB GUI) [9].

4. Routing applications: Indicate which applications have

been included in the controller or developed by third parties to

provide routing services in the network such as STP [10],

DHCP, ARP, NAT [11], load balancing, etc.

5. Metering and monitoring applications: In the same way,

it indicates applications to provide metering and monitoring

services such as network monitoring, topology review,

statistics management, etc.

6. Security and trust applications: Indicates applications

that will be able to provide network security and resilience

services such as fault correction, access control, application

and user behavior tracking, etc.

7. Cloud integration and virtualization: Indicates whether

the controller supports such applications including

virtualization and network functions virtualization (NFV)

services.

8. Maximum number of supported flows: Indicates the

measured maximum number of connections supported by the

controller during the performance tests. This value varies

depending on the capacity of the hardware used in the tests.

Since tests with real network equipment are very expensive,

most of these tests have been developed using network

simulation software such as Mininet.

9. Open source or proprietary: Indicates whether the driver

software has been developed and distributed under a license

that allows users to have access to the source code to study,

modify or distribute it under the same terms and conditions as

the original license acquired.

10. Operating systems: Indicates the version of the

operating system that must be installed to run the driver

42

software.

11. Multithreading support: Indicates whether the driver

performs linear or multithreaded information processing.

Multithreaded architectures allow any task to be divided into

independent threads that will run simultaneously, reducing the

processing time of the entire task.

12. Information consistency: Indicates whether the design

of the controller software has specific functions to ensure

consistency and stability of the network information. These

functions ensure that the information is distributed and

executed simultaneously on all nodes of the network. This will

prevent possible network configuration errors when resuming

communication between the controller and the devices or

when changing the role of the controller from slave to master.

13. Usage environments: Indicates the types of networks for

which the controller is designed. For example, for small

networks with few connection flows, for networks with

applications using cloud functionalities, etc.

14. Distributed or centralized control system: Indicates

whether the controller design is centralized or not. Centralized

controllers offer high consistency of information, but at the

same time, they are a single point of failure and vulnerability

of the entire network. On the other hand, distributed

controllers allow for greater resilience to failures. In these

cases, emphasis should be placed on maintaining the

consistency of the network information located in each of the

controller instances. There are two types of controller

architectures: flat and hierarchical distribution. In flat

architecture all equipment communicates within the same

hierarchical level, and in hierarchical, controllers at a higher

hierarchical level concentrate information from controllers at

a lower hierarchical level.

15. Fault tolerance: Indicates whether the controller

supports recovery from component failure while maintaining

service with as little interruption as possible. It is also

considered whether its architecture allows redundancy to

avoid single points of failure.

16. Manufacturer: Indicates the company that developed the

controller.

17. Documentation: Indicates how complete and extensive

the driver's documentation is. It can be classified as follows: a)

Poor, when there is no information on the developer's website

and only one or two articles are published online; b) Good,

when the controller has its own website but only contains basic

configuration information and up to three articles are

published online; and c) High, when the controller has its own

website with complete and detailed information on its

configuration and use and more than three articles are

published online.

18. Type of license of use: Indicates the type of license or

permissions of use granted by the developer of the driver. Thus,

there are GPL (GNU General Public License) licenses that

allow the free use, study, modifications and distribution of the

software, but always under the same GPL license. This license

requires the publication of the modified source code.

Apache licenses [12] and BSD (Berkeley Software

Distribution) allow the same uses as the GPL license but do

not require distribution of the modified software under the

same original license or open source. The EPL (Eclipse Public

License) and the LGPL (GNU Lesser General Public License)

allow the combination of free and proprietary software by

requiring the publication of the source code only when it is

considered a derivative work of the original. Proprietary

licenses generally do not allow the study, modification or

distribution of their source code, they only allow their use

under the express conditions granted by the developer.

19. Programming language: Indicates the language used to

develop the controller. The processing speed, modularity,

integration capacity with other controllers or applications, etc.

will depend on this language.

20. Controller version: Indicates the version to follow the

evolution of the controller and to know its particular functions

and features.

21. Driver page: Indicates the URL of the driver's web page

to find basic information about the manufacturer, driver

configuration, developer contact information, etc.

22. Page update date: Indicates the last update date of the

website, which gives an idea of the project's timeline and the

dedication of its developers [13].

An SDN controller is part of the control plane of the SDN

architecture. This can be better understood in Figure 2:

Figure 2. Overview of SDN architecture with SDN

controllers [14]

3. CONTROLLERS SELECTED ON THE BASIS OF

THEIR LEVEL OF UPDATING

The following group of controllers found in the literature is

distinguished by having the most complete and updated

information together with a dedicated web page for each of the

characterization variables mentioned before. Some of these

controllers are developed based on free software and others

based on proprietary software. As an introduction, a Software-

Defined Networking (SDN) controller is a centralized piece of

software that acts as the brain of a software-defined network.

Its primary function is to manage and control network traffic,

making decisions about data routing and resource allocation.

SDN controllers separate the control plane (where decisions

are made) from the data plane (where data is sent), allowing

for more flexible and centralized management of the network.

This separation and centralization allow for greater automation,

scalability and adaptability in modern networks. We present

the following selected SDN controllers:

1. FloodLight: Created by the equipment company Big

Switch Networks as the evolution of the Beacon controller. It

was developed in JAVA and released in 2012 under the

Apache free software license supporting OpenFlow protocol

versions 1.0 to 1.5. This version is supported by programmers

from the non-governmental organization Floodlight and Big

Switch Networks itself to make the driver evolve. The Open

Network Foundation (ONF), created to support the promotion

of developments and implementations of the SDN architecture,

is leading its evolution and development.

43

This controller is used in numerous research projects

because of its good documentation and easy configuration. It

supports hybrid networks and works on physical and virtual

switches. It has a graphical interface for managing network

topology diagrams, topology monitoring, routing services,

load balancing, client isolation, fast failover, quality of service,

firewall and access control, among other features [15].

2. HP SDN VAN Controller: It was created and marketed by

equipment manufacturer Hewlett Packard in JAVA. HP

developers are working on further development,

enhancements and bug fixes to the controller. The product is

evolving rapidly with new and improved versions. The latest

2.8.8 was released in 2018 and supports OpenFlow protocol

versions 1.0 and 1.3 [16]. Hewlett-Packard (HP) has

discontinued development and support for its SDN controller

called "HP VAN SDN Controller". HP changed its approach

to SDN and stopped developing its own SDN controller.

Instead, it focused on collaborating with other SDN controller

vendors and offering SDN network solutions based on open

standards. Despite this, the controller is incorporated into this

paper as a case study, given the benefits associated with it,

such as interoperability with a wide variety of network

equipment. This allowed organizations to deploy SDN

solutions in heterogeneous environments. Moreover,

centralized network management facilitated the configuration

and management of network policies from a single point of

control. It also highlights the automation of network tasks,

flexibility in scheduling and optimization of resources based

on traffic.

In addition, it has its own application shop for SDN

networks similar to Android. It has a set of software

development tools to create and maintain applications for the

controller [17, 18].

3. ONOS: Open Network Operating System is an open-

source controller written in JAVA and developed by the Open

Networking Laboratory (ON Lab) foundation in 2014. It is

based on the FloodLight controller and was developed with

programmers from both organizations. Its architecture is

distributed and oriented to the administration, configuration

and deployment of new services. Its design follows the OSGI

(Open Service Gateway Initiative) architecture that includes

the necessary abstractions to easily develop new services and

functions. It divides the network into 7 subsystems: Devices,

links, hosts, topologies, routes, flow rules and packets. It is

supported by developers from the ONOSProject.org

foundation and they deliver updates approximately every three

months.

4. Huawei AGILE SDN Controller: This controller is

designed and marketed by the Chinese multinational Huawei.

It is based on the ONOS controller and is compatible with the

OpenDaylight controller through a REST API interface.

Among its main design features, it allows the

interconnection of physical networks with cloud

functionalities through an interface with OpenStack. This

facilitates the implementation of Network Functions

Virtualization (NFV) and Internet of Things (IoT)

technologies. Its graphical user interface enables monitoring

and management of physical and virtual network topologies

for rapid deployment of applications and network changes. It

is compatible with OpenFlow, Netconf [19], PCEP [20], BGP-

LS [21], SNMP [22] and other protocols. It uses REST API

[23] user interface to communicate the controller with the

application layer. It also has applications for monitoring,

routing, network failover, load balancing, user authentication

and control, quality of service, among others [24].

This work presents a selection of 4 SDN controller

alternatives. These SDN controllers have been chosen to

determine which one best suit the needs of an enterprise

network. The authors of this paper have evaluated and selected

each decision criteria based on the SDN controller

characterization information they have found. In order to

decide which SDN controller is the most suitable, the authors

have integrated their decision criteria using a methodological

approach by obtaining a weighted score calculation (overall

priority) of each of the alternatives.

After this description of the controllers that constitute the

object of study of this work, the methodology used for the

evaluation will be presented. Obviously, two open source and

two proprietary controllers have been chosen. In the case of

one of the proprietary controllers, despite the fact that the

company has discontinued it, it was the right choice, given its

characteristics.

4. WORK METHODOLOGY

The methodology used in this work, which is based on

clearly defined stages, is presented below. Figure 3 shows the

work approach proposed by the methodology where the

sequence of the stages of the process can be appreciated. To

reduce execution times, the evaluators performed the tests in

parallel where each author evaluated all the controllers.

The evaluation matrix was based on the following general

criteria:

• Controller capabilities: Features, supported protocols,

QoS, load balancing, etc.

• Standards compliance: Interoperability through open

standards.

• Ease of installation and operation: User interfaces and

tools to configure and use the controller. Documentation

provided, clarity and depth.

• Scalability: Ability to handle large networks and loads.

• Stability: Fault tolerance and failover.

• Performance: Latency, throughput, traffic management,

etc.

• Security: Authentication, authorization, encryption and

protection.

• Integration: APIs included and integration with third

party systems or applications.

• Community: Controller user community activity.

• Compatibility with network hardware: Existing

compatible network infrastructure.

• Hosted network support: Support for data centers,

network service providers.

• Cost and licensing: Consider total cost of ownership.

• Vendor support and reputation: Level of support and

technical assistance, frequency of software updates.

Track record of the controller vendor and reliability of

their products.

• Testing: Simulation to validate driver functionality,

performance and compatibility through use cases.

The Likert scale was used to weight each evaluation

criterion. The Likert scale consists of a series of statements on

a specific topic. The authors indicated, according to the tests

carried out, their degree of agreement or disagreement with

each item on a predefined scale of options. For this paper, a

typical five-point Likert scale was considered. The extreme

44

points of the scale usually represent options such as "Fully

complies" and "Does not comply at all", while the points in

between offer more neutral options.

The methodological scheme in Figure 3 shows the

conceptual process in which each author arrived at his or her

score (perform evaluation), using the factor matrix.

Figure 3. Methodological approach diagram

In each case, for example, the assessment of ease of

installation and operation can be subjective to some extent, as

it depends on the experience and expectations of the evaluators.

However, by following a structured process as was done in this

work, it was possible to obtain more objective and useful

evaluations for decision making in the rating.

This can be seen in the schematic methodological approach

in Figure 3 and network configuration base scenario for the

test in Figure 4, in the next section.

The process included evaluators with knowledge of SDN

and the proposed controllers. The authors performed

installations and evaluations independently of each other for

all controllers. To generate the conclusions, they have worked

together.

Authors are considered to be qualified assessors. Each of

them has the necessary experience, knowledge and skills to

competently and accurately conduct evaluations in the specific

field of this work. The qualification of each author/assessor is

considered certified as capable of conducting assessments in a

professional and objective manner.

This section has detailed the evaluation work, the evaluation

matrix, the methodology and the authors' probity in carrying

out this work have been detailed. In the next section, closely

connected to this one, the test scenarios considered will be

discussed.

5. TEST SCENARIOS

In Figure 4, we present the base network topology scenario

for testing as a starting point. The testers can modify or adjust

it according to the requirements of the software controller.

L3 switches are configured as SD boxes to simulate the

WAN environment by performing routing functions. L2

switches are defined as traditional or conventional equipment.

The SDN controller configures the L3 switches to manage

traffic parameters and hosts are included to verify that data

flows as expected. L3 switches are configured with SDN

protocols, such as OpenFlow. SDN Controller is installed on a

cloud device accessed through Internet.

Although the authors/qualifiers used the same scenario,

modifications were made as necessary for the implementation

and evaluation of each controller. The authors consider that

these modifications were minimal and did not influence the

assessment of the items in the matrix presented in the previous

section.

The evaluation environment of a controller refers to the

context in which the controller is tested and evaluated in order

to determine its performance match with the evaluation matrix

under consideration. Each author considered and slightly

modified the described test scenario. Although these

modifications can be considered substantial differences

between authors, compatibilities in the criteria used were

discussed after the evaluations.

Figure 4. Network configuration base scenario

6. RESULTS OBTAINED FOR EACH CONTROLLER

Once the complete evaluation matrices had been analyzed,

it was necessary to adjust some of the values obtained in order

to calculate the final results. The results obtained are presented

in Table 1 and Figure 5.

Table 1. Evaluation results

Controller T1* T2 T3 T4 T5 Average

Floodlight 15 14 14 13 14 14

HP SDN VAN 13 14 14 15 16 14.4

Huawei SDN Agile 14 10 14 15 13 13.2

ONOS 17 20 22 20 18 19.4
*Tester or evaluator

In this evaluation of SDN controllers, the process was

considered to be complex and subjective given the evaluation

matrix (section 4). Therefore, it is essential to clarify that the

authors had a common understanding of what was found in the

matrix items. This helped to minimize the differences in the

evaluation criteria and ensure a homogeneous evaluation but

with a clear pre-eminence of ONOS.

Thus, the evaluators arrive at similar scores, which means

that there is a strong indication of the quality of the solutions

evaluated. However, it has been clarified that the differences

generated discussions that enriched the understanding of the

technology evaluated.

7. CONCLUSIONS

• The most outstanding features of the ONOS controller are

its performance and scalability to support growth towards

larger networks. It allows the installation of controllers

working in clusters, enhancing its capacity for fault tolerance.

It is an open-source project and supports a wide variety of

45

southbound protocols to connect to different equipment and

technologies.

• In the case of HP SDN VAN, its integration with HP

hardware products can be highlighted as a benefit; additionally,

it is compatible with OpenFlow to be able to connect with

other equipment that supports it. It has a large number of

management and control tools, and everything can be managed

centrally.

• In FloodLight we can see that it is an open-source project

with an active community. It allows an important

parameterization that allows it to be adjusted to the user's

needs. It provides several APIs for Northbound processing. Its

documentation requires more time to learn. The level of

integration does not reach that of other controllers.

• The Huawei Agile SDN controller is also highly

integrated with Huawei products and can be a limiting factor

if you want to use, operate with or migrate to products from

another vendor. It has centralized management and a large

number of easily configurable functions.

• It was concluded that we recommend updating SDN

controllers’ information and characteristics after 2023 to

choose the SDN controller that best suits future needs.

Figure 5. Evaluation results ordered by average

REFERENCES

[1] Paliwal, M., Shrimankar, D., Tembhurne, O. (2018).

Controllers in SDN: A review report. IEEE Access, 6:

36256-36270.

https://doi.org/10.1109/ACCESS.2018.2846236

[2] What is Software-Defined Networking (SDN)? VMware

Glossary.

https://www.vmware.com/topics/glossary/content/softw

are-defined-networking.html.

[3] Blial, O., Ben Mamoun, M., Benaini, R. (2016). An

overview on SDN architectures with multiple controllers.

Journal of Computer Networks and Communications,

2016: 9396525. https://doi.org/10.1155/2016/9396525

[4] Ferro, G. (2012). Northbound API, Southbound API,

East/North – LAN navigation in an OpenFlow world and

an SDN compass. EtherealMing.

https://etherealmind.com/northbound-api-southbound-

api-eastnorth-lan-navigation-in-an-openflow-world-and-

an-sdn-compass/.

[5] Qué son las "apps" y para qué sirven. (2011). BBC News.

https://www.bbc.com/mundo/noticias/2011/04/110408_

1336_tecnologia_apps_negocios_celulares_telefonos_in

teligentes_dc.

[6] Rodríguez Herlein, D.R., Talay, C.A., González, C.N.

(2020). Explorando las redes definidas por software

(SDN). In XXII Workshop de Investigadores en Ciencias

de la Computación.

http://sedici.unlp.edu.ar/bitstream/handle/10915/103546

/Documento_completo.pdf-

PDFA.pdf?sequence=1&isAllowed=y.

[7] Neto, F.J.-B.V., Miguel, C.J., de Jesus, A.C.D.S.,

Sampaio, P.N.M. (2021). SDN controllers-A

comparative approach to market trends. In 9th

International Workshop on ADVANCEs in ICT

Infrastructures and Services (ADVANCE 2021), pp. 48-

51. https://hal.archives-ouvertes.fr/hal-03133692.

[8] Bouguerra, F. (2021). Data center networking: What is

SDN? Ubuntu Blog. https://ubuntu.com/blog/data-

centre-networking-what-is-sdn.

[9] The Web GUI component. (2021). IBM Documentation.

https://www.ibm.com/docs/sv/netcoolomnibus/7.4?topi

c=components-web-gui-component.

[10] Spanning Tree Protocol. Cisco Technology Supporting.

https://www.cisco.com/c/en/us/tech/lan-

switching/spanning-tree-protocol/index.html.

[11] Network Address Translation (NAT). Hanna, K.T.,

Burke, J. (2021). TechTarget Networking.

https://www.techtarget.com/searchnetworking/definitio

n/Network-Address-Translation-NAT.

[12] Apache license version 2.0. The Apache Software

Foundation.

https://www.apache.org/licenses/LICENSE-2.0.

[13] Julio, C., Rodríguez, Q. (2020). Propuesta metodológica

para la selección de controladores de redes SDN a nivel

empresarial. Universidad Santo Tomás.

https://repository.usta.edu.co/handle/11634/30425?sho

w=full.

[14] Cisco SD-WAN design guide. Cisco Solutions.

https://www.cisco.com/c/en/us/td/docs/solutions/CVD/S

DWAN/cisco-sdwan-design-guide.html.

[15] Floodlight projects. Project FloodLight.

https://floodlight.atlassian.net/wiki/spaces/floodlightcon

troller/pages/1343647/Floodlight+Projects.

[16] HP VAN SDN Controller Administrator Guide.

https://support.hpe.com/hpesc/public/docDisplay?cc=cl

&docId=emr_na-c04003114-2&lang=es-cl.

[17] Understanding the controller architecture.

https://techhub.hpe.com/eginfolib/networking/docs/sdn/

sdnc2_6/5998-8472admin/content/c_controller-apps-

sdn.html.

[18] HPE VAN SDN Controller and applications support

matrix. Hewlett Packard Enterprise.

https://www.hpe.com/psnow/doc/c04647298.

[19] Information about the NETCONF protocol. SCRIBD.

https://es.scribd.com/document/491711300/Net-

Conf?utm_medium=cpc&utm_source=google_pmax&u

tm_campaign=3Q_Google_Performance-

Max_RoW&utm_term=&utm_device=c&gclid=Cj0KC

Qjw7aqkBhDPARIsAKGa0oIDRJw0nbbtkKHQRjJYH

sZTho7XHZZWmJeaBg7MwdnTEU0wfnxVQooaArn

UEALw_wcB.

[20] PCEP configuration. Juniper Networks.

https://www.juniper.net/documentation/us/en/software/j

unos/mpls/topics/topic-map/pcep-configuration.html.

[21] Border Gateway Protocol Link-State. Cisco Systems.

https://www.cisco.com/c/en/us/td/docs/ios-

xml/ios/iproute_bgp/configuration/xe-16-6/irg-xe-16-6-

book/bgp-ls.pdf.

[22] What is SNMP? ManageEngine.

46

https://www.manageengine.com/network-

monitoring/what-is-snmp.html.

[23] What is REST API? Red Hat.

https://www.redhat.com/es/topics/api/what-is-a-rest-api.

[24] Agile Controller-DCN. Huawei.

https://support.huawei.com/enterprise/en/network-

management-control-analysis/agile-controller-dcn-pid-

21481886.

NOMENCLATURE

APIs Application Program Interfaces

ARP Address Resolution Protocol

BGP Border Gateway Protocol

BGP-LS Border Gateway Protocol Link-State

BSD Berkeley Software Dirstribution

DHCP Dynamic Host Configuration Protocol

DTLS Datagram Transport Layer Security

EPL Eclipse Public License

GNU GNU's Not Unix software code

GPL GNU General Public License

GUI Graphical User Interface

HP Hewlett-Packard

INET Internet Networking

IoT Internet of Things

IP Internet Protocol

IPSEC Protocol Suite for Encrypting Network

Communications

IS-IS Intermediate System - Intermediate System

Protocol

L2 Level 2

L3 Level 3

LGPL GNU Lesser General Public License

MPLS Multiprotocol Label Switching

NAT Network Address Translation

NFV Network Functions Virtualization

NOS Network Operating System

ON Lab Open Networking Laboratory

ONF Open Network Foundation

OSGI Open Service Gateway Initiative

PCEP Path Computation Element Protocol

REST REpresentational State Transfer

SD Software Defined

SDN Software Defined Networks

SNMP Simple Network Management Protocol

STP Spanning Tree Protocol

Tn Tester n

VMS Virtual Machines

47

