
 

 
 
 

 
 

 
1. INTRODUCTION 

Enhancement of the heat transfer of non-Newtonian fluids 
flowing in ducts is required in many practical engineering 
domains [1] [2]. To achieve this goal, researchers focused on 
two types of geometries, curved and chaotic channels. Since 
the work realized by Dean [3] and [4] where he initiated 
theoretical studies of viscous flow, the curved pipes are 
widely studied numerically and experimentally. The Dean 
vortexes formed in these ducts have a significant effect on the 
pressure loss and heat transfer of non-Newtonian fluids flow 
[5-8]. The second alternative method is to create chaotic 
trajectories [9] while keeping the laminar flow that ensures 
the efficient stretching and folding of material lines. This type 
of flows is more efficient and provides better performance in 
terms of heat transfer [10] [11].  Kamal et al. [10] investigate 
numerically the enhancement of both mixing and heat transfer 
in a two-rod mixer for highly viscous non-Newtonian fluids. 
The mixer was composed of two vertical circular rods in a 
cylindrical tank. Chaotic flows were obtained by imposing the 
temporal modulations of the rotational velocities of the walls. 
Three different stirring protocols were chosen: non-
modulated, continuous and alternating (non-continuous). The 
last two protocols were able to give chaotic flow trajectories. 
The authors confirmed that chaotic mixing is suitable for 
shear thickening fluids for which it is observed a clear 

enhancement of the thermal mixing (heat extraction and 
homogenization). This is due to the increase in the apparent 
fluid viscosity close to the rotating walls. Lester [11] 
quantifies asymptotic scalar transport (temperature or 
concentration) by the application of a novel spectral method 
within both Newtonian and non-Newtonian fluids over the 
control parameter space of a chaotic flow, the Rotated Arc 
Mixer (RAM). The non-Newtonian fluid under consideration 
is a yield stress shear thinning fluid, which is traditional 
problematic traditional problematic for transport enhancement 
due to the existence of plug flow regions. 

Our contribution in this paper is to outline and analyze the 
thermal and hydrodynamic behavior of power law non-
Newtonian fluid in complex geometry, called in this paper C-
shaped geometry, in comparison to the straight channel. The 
C-shaped geometry is proposed in the first time by Beeb et al 
[12]. By the calculation of the Poincare section, Robin et al 
[13] showed the existence of chaotic trajectories within this 
geometry. In addition, Lasbet et al [14] characterized this 
geometry as a new design for the PEM fuel cell cooling 
system where the fluid is Newtonian (water). Their heat 
performance is considerably improved compared to that when 
the flow is regular (straight channel). 

Different non-dimensional parameters are used to estimate 
the flow and heat characteristic: Poiseuille number, Nusselt 
number and the ratio Nu/Re as function of generalized 
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Reynolds number for large range of the power law index (n = 
0.5-1). The ratio Nu/Po characterizes the compromise 
between the improvement of the heat transfer and the 
diminution of pressure losses.  

2. MODEL AND NUMERICAL SOLUTION 

2.1 Governing equations 

Figure 1 presents the basic elements of the two considered 
geometries called period(C-shaped and the straight channels).  

The channel cross-section is square (1.5 cm × 1.5 cm). The 
hydraulic diameter Dh is 1.5 cm. The unfolded length of one 
period C-shaped geometry is equal to 13.5 cm.  

The mass conservation, Navier–Stokes and energy 
equations, which given by equations (1), (2) and (3) 
respectively, are numerically solved by using the commercial 
CFD code Fluent©. In this study, the fluid is considered as 
incompressible, non-Newtonian power-law while the flow 
regime is steady and laminar: 

 

0divV  (1) 

 

where V  is the velocity vector. 
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where  (Pa) is shear stress. 
 

.     cV T T  (3) 

 
The constitutive relation between the shear stress   (Pa) 

and the shear rate  (s−1) can be described by a simple power 

law expression: 
 

  nk  (4) 

 

where, k (Pa.s-1) is power-law consistency index and n is the 

power-law index. 
 

The apparent viscosity of the work fluid is given by: 
 

1   nk  (5) 

 
The applied boundary conditions are:  
 at the inlet section, uniform velocity profile equal to 

the mean velocity.  
 at solid walls, no–slip conditions and a uniform wall 

heat surface flux.  
 at the outlet section, the pressure outlet condition is 

considered.  
 

 
 

Figure 1. Schematic representation of the studied geometries: (a) straight channel, (b) C-shaped geometry. 
 

The non-dimensional parameters that characterize the flow 
regime are the generalized Reynolds number (Reg) Poiseuille 
number (Po) and Nusselt number (Nu). These parameters are 
developed as following: 
 Generalized Reynolds number 
The generalized Reynolds number (Reg) for power-law 

fluids is defined by Metzner and Reed [15]: 
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where, a* and b* equal 0.2121and 0.6771 respectively, for 
square channel and Ui(m/s) is inlet velocity. 

 Poiseuillenumber (Po)  :  
The hydrodynamic performance of all geometries is 

characterized by the evolution along the curvilinear 
coordinate s of the local friction coefficient f, defined as: 
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where dp/ds is the local pressure gradient along the 
curvilinear coordinate of the channel. Because this parameter 
depends on the Reynolds number, it is preferable to follow the 
evolution of the local Poiseuille number: 
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.Relocal gPo f  (8) 

 
The mean Poiseuille number is calculated as: 
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(9) 

 
where s is the axial coordinate. 
 Nusselt number: 

The local Nusselt number defined as: 
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where, qw (w/m2) is the wall heat flux, Tb (k) is the mean bulk 
temperature fluid over the cross-sectional area and Tw(k) is 
perimeter average wall temperature. 
The mean Nusselt number is given by the following equation: 
 

0
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L
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L

 
 

(11) 

2.2 Numerical solution methodology  

The conservation equations for mass, momentum and 
energy were solved by using computational fluid dynamics 
(CFD) code, Fluent®. The standard scheme is used for 
pressure discretization, and the SIMPLE scheme is employed 
for pressure-velocity coupling. The momentum and energy 
equations are solved with second-order up-wind scheme. The 
computations were considered to be converged once all the 
scaled residuals are less than 10-7 and the global imbalances, 
representing overall conservation don’t exceed 10-5. 
 

2.3 Grid mesh sensibility 

To perform grid independence studies, four grids were used 
for simulations of non-Newtonian fluid flow in the C-shaped 
geometry considering a steady laminar flow, forced 
convection, at a generalized Reynolds number of 200and n = 
0.5. These grids are ranging from 30 to 60 nodes in the x and 
y direction, and from 30 to 60in the z direction. The Nusselt 
number, the Poiseuille number, velocity and temperature 
profiles were assessed for increasing mesh densities.  

Figures2 and 3 show the evolutions of static temperature 
and the axial velocity versus x and y coordinates for various 
grids at the center line of the outflow section. It can be seen 
that the temperature profiles in both x and y directions are 
superimposed for all mesh densities. This illustrates that the 
temperature profiles are not affected by the grid mesh. 
However, it can be observed that the velocity profiles are 
sensitive to the grid mesh except for the mesh densities 
(50x50x50) and (60x60x60) where no significant difference is 
seen. As consequence, the (50x50x50) grid is chosen as the 
optimal grid mesh for the computation. 

 

 
a 

 

 
b 

 

Figure 2. Temperature profiles for different mesh 
densities for n = 0.5 and Reg = 200 at the outlet section of the 

C-shaped channel, (a) X-Coordinate (b) Y-coordinate 
 

 
a 

 

 
b 

 

Figure 3. Axial-Velocity profiles for different mesh 
densities for n = 0.5 and Reg = 200 
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Table 1 presents the mean values of the Poiseuille number 
between inlet and outlet sections of the C-shaped geometry 
and the values of the local Nusselt number at the outlet 
section for all grid densities. It shows that the differences 
between the two grids mesh (50x50x50) and (60x60x60) of  
the Poiseuille and the Nusselt numbers change by less than 
0.24% and 1.4% respectively. This presents another argument 
to select the (50x50x50) grid mesh as the optimal mesh 
density for the rest of the computations. 
 

Table 1. Mean Poiseuille number and local Nusselt number 
for different mesh densities for n = 0.5 and Reg = 200 in the 

C-shaped channel 
 

Mesh  Error/ 

 
 Error/

 

30x30x30 218.270  0.13% 41.741 13.56% 
40*40*40 219.270 - 0.32% 45.8307 5.09% 

50*50*50 219.099 - 0.24% 47.6098 1.41% 

60*60*60 218.561  0.00% 48.2904 0.00% 

 

3. VALIDATION 

In this section, in order to check the reliability and the 
precision of the CFD computation, a comparison with other 
results provided in the literature is carried out. A fully 
developing laminar steady flow of non-Newtonian power-law 
fluid in straight channel with square cross section is 
considered.  

Tables 2 and 3 present, respectively, a comparison of the 
values of the Poiseuille number and the Nusselt number 
obtained in the present study and those provided in the 
literature for large range of a power-law index (n = 0.3-1).The 
numerical values barely differ from the case of the theoretical 
values where the maximum difference is less than 0.5%. 
These values are in fair agreement and the comparison is 
satisfactory and reveals a very good concordance. 

 
 
 
 
 

 

Table 2.  Poiseuille number, Po, of fully developed laminar flow in square straight channel for different power-law index  
(n = 0.3-1) 

 

n 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 

Present work 56.90 47.47 39.32 33.00 27.52 22.90 18.99 15.66 

Wheeler and Wissler [16] 56.92 47.53 39.67 33.07 27.54 22.89 18.97 15.65 

Seppo [17] 56.90 47.52 39.65 33.06 27.53 22.88 18.96 15.64 

Simsoo et al [18] 56.90 47.89 40.29 33.89 28.49 23.91 20.01 - 

Kozicki et al [19] 56.91 47.88 40.26 33.82 28.37 23.75 19.82 - 

Sayed-Ahmed [20] 56.90 - - - - 22.88 - - 

Error (%)/ [17] 0.007 0.09 0.82 0.17 0.05 -0.06 -0.14 -0.14 

 

Table 3. Nusselt number of fully developed laminar flow in square straight channel for different power-law index  
(n = 0.5-1) 

 

n   1  0.9    0.8  0.7   0.6   0.5 

Present work 3.0704  3.1140 3.1463  3.1832 3.228  3.2818 

Wheeler and Wissler [16] 3.0950 3.106 3.135 3.171 3.216 3.274 

Error (%)/[16] 0.2407 - 0.2580 - 0.3607 - 0.3869 - 0.3736 - 0.2386 

 

4. DISCUSSION AND RESULTS 

In this section, the flow and heat transfer characteristics for 
a power law non Newtonian fluid are studied in detail based 
on the numerical solution. The flow structure is the main 
contribution factor which affects the flow and heat transfer 
performances in the geometries. Furthermore, these 
performances are a complex function of generalized Reynolds 
number and power law index. As known, the improvement of 
the heat transfer performance is accompanied with an 
augmentation of the pressure drop penalty. According to 
above, it is interesting to measure the energetic efficiency of 
the considered geometries. This efficiency illustrates the 
compromise between heat transfer and pressure losses. Three 
main parameters are considered in order to achieve the 
focused goals: Poiseuille number (Po) for the flow 
characteristics, Nusselt number (Nu) for the heat 
characteristics and the ratio (Po/Nu) for the efficiency  

 
 
measurement. These parameters are evaluated for generalized 
number and power law index ranging from 50 to 200 and 0.5 
to 1 respectively. 

4.1 Flow characteristics 

Figure 6 and 7 show the evolutions of the axial velocity 
profiles with x and y coordinates at the center line of the 
straight channel outlet section for power law non-Newtonian 
fluid for two generalized Reynolds number 50 and 150. The 
power-law index varies from 0.5 to 1. The profiles of the 
velocity are symmetric and parabolic. The maximum velocity 
is located in the center of the cross section and it increases 
considerably with the increase of the power law index. It can 
be seen clearly that, in the straight channel, particles Pathlines 
released from the inlet section are parallel resulting in no 
motion of the fluid particles in the transverse direction of the 
flow, see figures 4. In addition, figure 5 displays that there is 
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no secondary flows appeared in the outlet cross section. So, 
the momentum transfer is limited only to the molecular 

diffusion mode for all cases of the power law index n.  

 
Reg=50 n=0.5 

 
Reg=50 n=1 

 
Reg=150 n=0.5 

      
Reg=150 n=1 

 

Figure 4. Particle Pathlines released from the inlet section 
 

 
Reg=50 n=0.5 Reg=50 n=1  Reg=150 n=0.5  Reg=150 n=1 

 

Figure 5. Velocity vectors distribution in outlet cross section
 

 
a 

 
b 

 

Figure 6. Axial velocity profiles at the outlet section of the straight channel for Reg=50, (a) X-Coordinate and (b) Y-
Coordinate 
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a b 

 

Figure 7. Axial velocity profiles at the outlet section of the straight channel for Reg = 150, (a) X-
Coordinate and (b) Y-Coordinate 

 
Figure 8 and 9 show the evolutions of the axial velocity 

with x and y coordinate at the center line of the outlet section 
in the C-shaped geometry for power law non-Newtonian fluid 
for two generalized Reynolds number 50 and 150.The 
velocity distributions within the channel highlight the flow 
complexity where the symmetric nature of the velocity profile 
is disrupted under the effect of the secondary flows. The 
velocity profiles in the central core region are lower 
compared to that in the straight channel. The location of the 
maximum velocity point in this type of geometry is of interest. 
One can gain the general idea about the secondary flow 
pattern and the intensity of secondary flow. The results show 
clearly that the effect of the secondary flows is to shift the 
location of the maximum value toward the walls. In addition, 
the maximum value increases as the value of the power law 
index increases. 

Besides, the evolutions of the local and the mean Poiseuille 
numbers in the interest of channels are examined. This 
parameter depends strongly on the nature of the kinematic 
trajectories of fluid particles in the flow. Figure 10 presents 

the evolutions of the local Poiseuille number with the 
curvilinear coordinate for a generalized Reynolds number 
equal to 100 and for two values of the power law index 0.5 
and 1 in three periods of the straight and C-shaped channels. 

Because the flow is regular in the straight channel, the local 
Poiseuille number decreases rapidly at the entrance of the 
channel as function of the curvilinear coordinate and it tends 
towards an asymptotic value once the flow is established. This 
value increases with the power law index n.          In the C-
shaped geometry and from the second period, the variation of 
the local Poiseuille number is periodic. This is explained by 
the fact that the velocity field is itself periodic (figure 11). 
The flow is enough disrupted due to the existence of the 
geometrical perturbations which prevents the establishment of 
the boundary layer. This phenomen on increases strongly the 
pressure drop. Figure 12 presents the evolution of the mean 
Poiseuille number with generalized Reynolds number for the 
two considered geometries and for power law index ranging 
from 0.5 to 1. 

 

 
a 

 

 
b 

 

Figure 8. Axial velocity profiles at the outlet section of the C-shaped channel for Reg = 50, (a) x-coordinate and (b) y-coordinate 
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a 

        

b 

Figure 9. Axial velocity profiles at the outlet section of the C-shaped channel for Reg = 150, (a) x-coordinate and (b) y-
coordinate 

 
 

 

Figure 10. Evolutions of the local Poiseuille number with the curvilinear coordinate for the two geometries for a power law index 

of 0.5 and 1 (Reg =100)
 

a b  

Figure 11. Axial-Velocity profiles in the C-shaped channel at the middle of each period as function of 
x coordinate, (a) n = 1 , (b) n = 0.5 

 

Second period 

First period 

Thir dperiod 
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Figure 12. Evolution of the mean Poiseuille number with generalized Reynolds number in straight (S-
channel) and C-shaped channels 

 
In the straight channel and when the flow regime is 

established, the mean Poiseuille number keep a constant value 
whatever the generalized Reynolds number for a given value 
of power law index n. This parameter (Po mean) increases 
with the growth of the power law index.As mentioned to 
above, the pressure drops are influenced by the intense 
secondary flows and accentuated with the increase of the 
generalized number and the power law index. So, the mean 
Poiseuille number is very significant in the C-shaped than that 
calculated in the straight channel.  

4.2 Heat characteristics 

Figure 13 presents the evolutions of the local Nusselt 
number with the curvilinear coordinate in the interest 
geometries for two values of the power law index 0.5 and 1 
and for a generalized number equal to 100.In the entrance 
length of the straight channel, the local Nusselt number 
decreases strongly to reach an asymptotic value which 
depends on the power law index. However, in the C-shaped 

geometry, the chaotic behavior exhibits a marked influence on 
heat transfer distributions in the system. Due to the 
continuous effect of the boundary layer destruction, the local 
Nusselt number evolves periodically with the curvilinear 
coordinate which allowed us to make the computation in one 
period. Consequently, the thermal boundary layer in the 
chaotic tube became thin and the heat transfer is very 
sensitive to temperature changes between the wall 
temperature and the mean bulk temperature. The maximum 
variation of the local Nusselt number is very considerable and 
it is around 40.In order to compare the heat performances 
between the two geometries, the variation of the mean Nusselt 
number as function of generalized Reynolds number for 
several power law index values ranging from 0.5 to 1 is 
estimated (figure 14). 

In the straight channel, the mean Nusselt number is 
independent of the generalized Reynolds number and keeps a 
constant value which increases with the power law index 
value n.  

 

 
 

Figure 13. Evolutions of the local Nusselt number with the curvilinear coordinate in the two geometries for two values of the 
power law index 0.5 and 1 (Reg = 100) 

 

Second period First period Third period 
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Figure 14.  Evolution of the mean Nusselt number with generalized Reynolds number in straight and C-shaped channels Power 
law index (n = 1 to 0.5) 

 

 
 

Figure.15. Evolution of the ratio of the Poiseuille number to the Nusselt number with different Power law index for straight 
channel and C-shaped geometry 

 
This is due to the effect of the chaotic kinematics of the 

particles. With a view to examine the increase of heat transfer 
rate rather than the decrease of pressure drop, we present on 
the figure 15 the evolutions of the ratio Numean/Pomean with the 
generalized Reynolds number for the power law index values. 
When this ratio is high, the compromise (improving heat 
transfer- diminution pressure losses) is the best. In the straight 
channel, this parameter has a constant value for a given power 
law index and is lower when n = 1. 

However, in the C-shaped geometry, the ratio Nu/Po 
becomes higher with the increase of the power law index but 
it decreases with the generalized Reynolds number. As 
conclusion, the compromise (improving heat transfer- 
diminution pressure losses) provided by the C-shaped is very 
significant in comparison with that calculated in the straight 
channel.  

5. CONCLUSIONS 

In this work, numerical simulations were performed by 
using CFD code in order to study flow characteristics of the 

non-Newtonian power law fluid in two geometries, C-shaped 
and straight channels, in terms of heat transfer and fluid flow. 

This paper outlines the evolutions of the Nusselt number 
and the Poiseuille number with generalized Reynolds number 
and with the power law index ranging from 0.5 to 1.It was 
observed that the local friction factor and Nusselt number 
straches and folded as the axial distance increases. The 
chaotic configuration displays a heat transfer enhancement in 
terms of the mean Nusselt number compared to the straight 
channel, however the pressure drop in this geometry increases 
(high Poiseuille number) for all examined Reynolds number. 
Despite this, the ratio of the Nusselt number to the Poiseuille 
number is higher in the C-shaped geometry, showing that the 
heat transfer enhancement is important than the pressure loss 
increase. The study of thermal mixing in the C-shaped 
geometry of the Non-Newtonian fluids is in progress. 
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