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This study addresses the integration of supplier selection and inventory management issues 

that involve discounts, with a unified decision-making support formulated through a 

mathematical programming approach. The challenges addressed encompass uncertain 

parameters such as defective goods rates, late delivery rates, and demand, some of which 

are treated as probabilistic/random variables under data availability assumptions, while 

others are managed as fuzzy variables where data is not explicitly required. The joint 

problems were synthesized into a piecewise fuzzy-probabilistic optimization model with 

the aim of minimizing total operational costs, and the optimal decision was deduced by 

solving this model. Further, the model was constructed incorporating multi-period 

observations, indicating its ability to generate optimal solutions for multiple procurement 

activity periods. Computational simulations were executed to demonstrate the calculation 

of the optimal decision and to appraise the proposed model. All calculations were 

performed in LINGO 19.0 optimization software, leveraging its uncertain programming 

package. The computational process employed the generalized reduced gradient - a 

popular method for solving optimization problems due to its requirement of only a 

differentiable objective function - in conjunction with the branch and bound algorithm - 

recognized for its simplicity in branching and bounding feasible solutions. The results 

affirmed that the proposed model successfully delivered the optimal solution for the 

problem at hand. Therefore, the proposed model is deemed appropriate for implementation 

by practitioners in manufacturing/retail industries as a decision-making tool to curtail 

operational costs associated with their procurement and warehousing operations. 
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1. INTRODUCTION

Decision-makers in manufacturing and retail industries 

have been continuously attempting to optimize all supply-

chain activities in order to generate larger profit. Optimizing 

the whole supply-chain problems simultaneously from the 

upstream parties such as raw material suppliers up to the 

downstream parties such as buyers is impossible due to the 

extensive size of the problems. In many cases, decision-

makers divide supply-chain problems into supply-chain 

activities and optimize them independently or in an integrated 

manner for some inter-connected activities. 

Numerous approaches, mostly in mathematical model 

forms, have been proposed to optimize certain problems in 

supply chain independently. For supplier selection problems, 

some pioneering models can be found in the study [1]. 

Monteiro et al. [2] dealt with simpler problem specifications, 

e.g., there are no discounts, and all parameters are certain.

Generally, more complex specifications lead to more complex

models. For instance, more complex models have been

proposed in Wicaksono [3] and Widowati [4] to address

supplier selection problems under full truckload transportation

schemes. Models with price discounts are built in the studies

[5, 6], however, all involved parameters are certain. Cases with

uncertain parameters in the form of probabilistic and fuzzy 

were constructed in this study to fill the prevalent research gap. 

Numerous studies have been carried out in dealing with 

supplier selection problems, indicating the need of decision-

making support for such problems in many fields such as 

power management [7-9], healthcare [10, 11], automotive [12, 

13], electrical equipment manufacturing [14, 15], garment 

industries [16], mega-construction [17], and others.  

Several mathematical models have also been proposed to 

solve inventory management problems independently. For 

example, in the studies [18-20], three models have been 

proposed to solve inventory under sales dependent stochastic 

return flows, carbon emissions policies, and with varying 

perishability rate product, respectively. Another approach has 

been proposed using deep reinforcement learning in the study 

[21]. However, there were no integrations with other parties 

such as suppliers. Various studies that had been conducted 

emphasize the need of inventory models in real world 

problems such as pharmaceutical inventory [22], textile 

industries [23], grocery retail [24], and many more. In 

particular, case studies that contain uncertain parameters can 

be found in numerous reports from various fields such as 

supply chain management [25], mechanical devices [26, 27], 

and transportation [28], further demonstrating that uncertain 
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parameters naturally occur in real world problems. 

To address the aforementioned supplier selection and 

inventory management problems in an integrated manner, 

some models have been proposed in previous studies such as 

two models in the studies [5, 6]. However, all parameters were 

fully certain, and no model has been constructed under 

uncertainty, especially with both probabilistic and fuzzy 

variables; this is the main weakness of the existing studies and 

will be resolved in this paper. Furthermore, uncertain 

parameters naturally occur in real-world problems. 

Probabilistic parameters can be used to treat parameters with 

historical data. Nevertheless, the trend of the data may change, 

and when data do not represent the reality anymore, fuzzy 

parameters can be used to treat the corresponding parameters. 

This leads to the need of having both probabilistic and fuzzy 

parameters in the decision-making processes. Therefore, this 

study aimed to propose a joint decision-making support for 

integrated supplier selection and inventory management 

involving discounts, probabilistic parameters, and fuzzy 

parameters. The proposed model is in the form of fuzzy-

probabilistic programming and is demonstrated via 

computational simulations. The discounts are in piecewise 

constant forms whereas the probabilistic parameters have 

normal probability distribution functions, and the fuzzy 

parameters have discrete membership functions; those 

approaches are commonly used in practice due to their 

simplicity in formulating the corresponding price or 

probability or membership functions. 
 

 
 

Figure 1. The supply chain flow 
 

 

2. METHODOLOGY 

 

2.1 Problem setting 

 

Consider the supply chain illustrated by Figure 1. When a 

manufacturer or retail company needs to purchase goods from 

several suppliers, not all suppliers might need to be selected; 

only some would be eventually selected. Furthermore, the 

scenario also involves several types of goods which will be 

handled simultaneously. A particular supplier might only 

supply certain types of goods. Therefore, the problem is to 

determine an optimal decision in determining the quantities of 

goods that should be purchased to each supplier such that the 

procurement cost is minimal and the demand is satisfactorily 

fulfilled. Moreover, when multi-period optimizations are 

considered, decision-makers wish to find optimal decisions 

from multiple observations.  

The problem becomes more complicated as some goods 

could be stored in the inventory between two consecutive 

observation periods, which can be used to fulfill the demand 

in the future time periods. In addition, decision-makers should 

determine the quantity of goods that should be stored in the 

inventory for each type of goods, and the optimal decision 

should also minimize the total holding cost along the 

observation time horizon. 

The particular specification considered in this problem is 

that suppliers provide price discounts for their goods. 

Transportation costs and holding costs also involve discounts. 

Meanwhile, some parameters are uncertain, hence creating 

more complicated problems. 

To be precise, the problem specifications as well as the 

assumptions adopted in the problem-solving process are as 

follows: 

• The discount schemes adopted in this study were 

following piecewise constant functions, i.e., at larger 

interval of quantity, the prices/costs are cheaper. 

• Upon arrival at warehouses, some goods might be rejected 

due to damage during delivery or failed qualification. The 

rejection rate for those damaged or failed goods were 

random, while some goods were delivered late, with 

random late delivery rate as well. These rejection and late 

delivery rates are assumed to be uncertain and are 

approached as probabilistic parameters.  Any probability 

distribution function can be implemented based on the 

data fitting results, however, in the numerical experiments, 

normal distributions were considered.  

• The demand for goods were also uncertain. This caused 

the problems to be solved under uncertainty. However, the 

purchased goods were expected to satisfy the demand. 

Historical data for demands are assumed to be not 

available or not reliable anymore. Values of demands are 

then treated as fuzzy parameters with discrete 

membership functions, see also the numerical experiment 

results for further details.  

• Decisions were implemented under uncertainty, i.e., they 

were executed before uncertain parameters were 

identified. This means that after all unknown parameters 

are known, demand of goods might be not satisfied when 

the demand is larger than the available goods. If demand 

is not satisfied, alternative goods are purchased as a 

solution. If goods are overbought, the remaining goods are 

assumed to be unsold and thus do not contribute to the 

total cost. 

• In the proposed model, all decision variables are 

considered as integer, meaning that all measurements of 

the goods follow integer numbers. 

• Eight costs contribute to the total procurement costs, 

namely purchasing costs, ordering costs, contract costs, 

delivery costs, penalty costs for rejected good and late 

delivery, inventory costs, and alternative goods 

purchasing costs. 

 

2.2 Problem solving procedure 

 

The methodology implemented in this study is summarized 

in Figure 2 with explanation as follows. In step 1, the problem 

was identified as described in the problem setting. The 

functions of prices/costs with discounts were in piecewise 

constant functions (see mathematical model for further details). 

In step 2, the uncertain parameters could be either probabilistic 

or fuzzy. For probabilistic parameters, the probability 
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distribution function was formulated from the (historical or 

trial) data. Otherwise, decision-makers formulated its 

membership function based on intuition and 

observation/experience. The discrete membership function 

was adopted in this study (see mathematical model for further 

explanation).  
 

 
 

Figure 2. The supply problem solving procedure 

 

Step 3 included mathematical symbol declaration, cost 

component formulation, and each constraint function based on 

assumptions and conditions from the problem. In step 4, all 

computations were carried out in LINGO 19.0 optimization 

software. The uncertain programming package was utilized, 

and the generalized reduced gradient algorithm was used in 

running the computations. To obtain integer solutions, the 

branch-and-bound method was employed. LINGO was chosen 

due to its flexibility on solving optimization problems. Any 

kind of objective functions and constraint functions can be 

added to the problem, and it can detect the type of the 

optimization problem. Furthermore, it can also handle many 

kinds of optimization problems including uncertain 

programming, for further technical details, one may refer [29]. 

Meanwhile, the generalized reduced gradient combined with 

branch and bound was chosen since it has been reported as one 

of the most popular methods to solve optimization problems, 

see, e.g., the study [30]. One of the main advantages of it is 

that it only requires the objective function to be differentiable. 

In particular, branch-and-bound scheme is a well-known 

method for finding integer solutions by simply branching and 

bounding the feasible solutions [31]. 

In solving uncertain programming, the model was first 

converted into its deterministic equivalent programming by 

considering the expectation values for the objective and 

constraint functions. Subsequently, it was solved using 

algorithms for certain programming. The theoretical studies 

regarding uncertain programming are highlighted in the study 

[32]. In step 5, the optimal decision generated by the proposed 

decision-making support was eventually implemented. It 

should be noted that multiple computations could be run in the 

event that the generated decisions are unsatisfactory since the 

calculations are carried out under uncertainty. Therefore, 

computations can be re-run with different values such as 

different membership functions for the fuzzy parameters. 
 

 

3. MATHEMATICAL MODEL 

 

The notations used in the mathematical modeling process of 

the decision-making support are available in the Nomenclature 

section at the end of the paper. The decision variables, semi-

decision variables (values that follow the decision variables), 

uncertain parameters, and the certain parameters are also listed 

in the Nomenclature section. First, we introduce in the 

following the discounted prices/costs functions, which are in 

piecewise constant functions: 
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The above piecewise constant functions of prices/costs 

represent the discount schemes in which more goods/services 

provide cheaper prices/costs, which are common in industries. 

Each price level is separated by breakpoints, which are 

determined by the goods/services provider. 

The target of the optimization is the total operational cost, 

which includes the following cost components: 

• The total order cost for the selected suppliers along the 

optimization time horizon 1,2,...,t T= : 
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• The total purchasing cost to all suppliers along the 

optimization time horizon 1,2,...,t T= : 
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• The total delivery cost for transporting goods from 

suppliers to the warehouse along the optimization time 

horizon 1,2,...,t T= : 
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• The total cost to penalize late delivery along the 

optimization time horizon 1,2,...,t T= :  
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• The total cost to penalize rejected goods along the 

optimization time horizon 1,2,...,t T= : 
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• The total cost for purchasing alternative goods (if any and 

desired by decision-makers) needed to satisfy the demand 

along the optimization time horizon 1,2,...,t T= : 
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• The total inventory cost of all goods along the 

optimization time horizon 1,2,...,t T= : 
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• The total contract cost for all selected suppliers:  
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The constraint functions that need to be satisfied were 

subsequently formulated based on the assumptions and 

conditions described in the problem statement. The constraint 

functions are formulated as follows: 

• Available goods should be sufficient to satisfy the demand, 

i.e., for each goods type p at each time observation period 

t, goods in the inventory plus the arriving goods (goods 

that are ordered at the current time period plus the arriving 

goods from the previous time period minus late delivered 

goods minus defect goods) plus alternative goods minus 

goods decided to be stored in the inventory for future time 

periods should no less than the current demand; this is 

expressed as follows: 
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where, 
(0) p

 is the initial inventory level for goods p; 

commonly, it is zero if no goods are available in the warehouse 

at the initial time, and (0)sp  is zero as no goods was purchased 

before the initial time.  If the inventory is initially not empty, 

then 
(0) p

 can be set to be nonzero. This inequality is used to 

ensure that the demand is expected to be always satisfied. 

• The number of delivery calculation for each supplier 

based on the trucks’ capacities used in the transportation 

and the amount of purchased goods to each supplier; this 

is expressed as follows: 
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This is needed to calculate the number of deliveries which 

is used to calculate the transportation cost. 

• Selected supplier indicator functions at each time 

observation period t for each supplier s; 1 means selected, 

while 0 means not selected; this is expressed as follows:  
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This constraint function is used to determine whether a 

supplier is selected or not at a particular time observation 

period and is used to calculate the order cost at every time 

observation period in the objective function. 

• Selected supplier indicator along the time horizon 

1,2.,..,t T= to calculate contract costs; 1 means selected, 

0 means not selected; this is expressed as follows:  
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or, alternatively,  
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This binary variable is utilized to determine whether a 

supplier is selected or not for the whole planning time horizon 

and is used to calculate the contract cost in the objective 

function.  

• Suppliers’ capacity bounds in supplying goods at each 

time observation period t; this is expressed as follows:  
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This bound is rather obvious as suppliers have maximum 

capacity limits in supplying goods, and this constraint is used 

to ensure that the decision in ordering goods does not excess 

the maximum number of goods can be provided by suppliers. 

If a supplier does not have a capacity limit, the upper bound 

can be simply set as a sufficiently big number; this will imply 

that the feasible region of the optimization problem is bounded.  

• Warehouse capacity to store goods at each time 

observation period t; this is expressed as follows:  
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Similar to upper bounds for suppliers, this is used to make 

sure that the number of goods stored in the warehouses does 

not excess its maximum capacity limits. 

• Nonnegativity and integer assignments for all decision 

variables; this is expressed as follows: 
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The nonnegativity constraints are obvious since all decision 

variables have to be nonnegative. The integer constraints are 

optional; some variables related to particular goods may be 

non-integer if their measurements follow real numbers.  

Since the problem contains uncertain parameters, the 

expectation value of the total operational cost was minimized 

instead of its actual value. This is due to the presence of 

probabilistic and fuzzy parameters, and thus the actual value 

cannot be known before those uncertain parameters are 

revealed; and the decision-maker can only expect the 

operational cost. Subsequently, as a complete mathematical 

optimization problem, the proposed model was rewritten as 

follows: 
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Note that this optimization problem involves uncertain 

parameters, some of them are probabilistic with some known 

probability distribution functions such as normal distribution 

and some others are fuzzy with some known membership 

functions such as discrete membership function. This 

optimization problem belongs to uncertain programming, and 

the technique used to solve it in this paper is based on the 

uncertain programming method provided in the study [33]. 

The general steps to solve are is first, the uncertain 

optimization problem is converted as a deterministic-

equivalent optimization model by utilizing the probability 

distribution functions of the probabilistic parameters and the 

membership functions of the fuzzy parameters. Then, the 

optimization algorithms are employed to calculate the optimal 

decision from the deterministic equivalent model. For 

technical details, one may refer to [29, 33]. Furthermore, it 

should be also noted that the objective function is in a 

piecewise function since it is a piecewise function of 

discounted prices/costs. Therefore, the above optimization 

problem is in a piecewise programming class. From all 

constraint functions, the decision variables’ feasible region is 

closed as bounded. Provided that it is not empty, then an 

optimal decision is guaranteed to exist. Hence, the 

mathematical optimization in Eq. (20) is well defined. 

 

 

4. RESULTS AND DISCUSSION 

 

To illustrate how the proposed model works, and to evaluate 

the mathematical model, computational simulations were 

performed. All tests were carried out in a personal computer 

with common specifications (3.0 GHz of processor and 8 GB 

of RAM) and all data were randomly generated using the 

function “@SPDISTNORM” in LINGO 19.0 for probabilistic 

parameters, and the function “RANDBETWEEN” in Ms 

Excel Software for realization values of fuzzy parameters. 

 

4.1 Computational experiments setup 

 

The optimization model in Eq. (20) was solved with five 

suppliers S1, S2, S3, S4, and S5, three types of goods P1, P2, 

and P3, three discount levels/price break points DL1, DL2, and 

DL3, and six observation time periods. There were three 

discounted prices/costs, namely unit prices of goods, delivery 

costs, and holding/inventory costs given by the following price 

functions: 
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 if  2 5  

 if  5;

,

,

ts ts

ts ts ts

ts ts

TC

TC TC

TC

 


=  




 

 
(1)

(2)

(3)

 if  10

 if  10 15

 if  1 ;

,

,

5

tp tp

tp tp tp

tp tp

IC

IC IC

IC

 


=  



 

 

where the values for 𝑈𝑃𝑡𝑠𝑝
(𝑖)

 , 𝑇𝐶𝑡𝑠
(𝑗)

, and 𝐼𝐶𝑡𝑝
(𝑘)

 are listed in the 

appendix. For uncertain parameters, the demand was fuzzy 

with the following discrete membership functions: 

 

679



0.10  if  , 0.85  if  

0.20  if  , 1.00  if  

0.40  if  , 0.75

30 55,

35 60,

40 65,

4

  if  

0.55  if  , 0.50  if  

0.75  if  0.25  if 

5 70,

50, 75; 

tp

tp tp

tp tp

tp tp

tp tp

tp tp

F

= =

=







= 



=

= =

= =

= =




 

 

whereas the rejection and late delivery rates had 

normal/Gaussian distributions with 7.5% and 5% of mean, 

respectively, and 1% of standard deviation for both parameters. 

The distributions were applied for all observation time periods, 

all suppliers, and all goods. At the initial time, the initial 

inventory level was assumed to be zero, i.e., no goods were 

stored in the warehouse. The values of remaining parameters 

are listed in the appendix.  

 

4.2 Results 

 

The optimal decisions regarding procurement and inventory 

are shown in Figures 3 and 4. The proposed model generated 

this solution to achieve the smallest expectation value of the 

total operational cost, including the total holding cost for all 

goods for all time periods. The expected total operational cost 

was 33,582.903.  

 

 
 

Figure 3. Optimal decisions for the product volume to be 

ordered 

 

Only three out of five suppliers were selected along the 

optimization time horizon 1 to 6 (suppliers S1, S2 and S4), 

therefore the contract costs only applied to those suppliers. 

However, not all those selected suppliers were selected at each 

time period. For example, at time period 2, only S1 and S4 

were selected since purchasing goods from those two suppliers 

was expected to be sufficient in satisfying the demand. In 

particular, selecting suppliers S1 and S4 provides the minimal 

procurement cost and buying goods from other suppliers may 

increase the procurement cost. Furthermore, not all goods 

types were purchased from each selected supplier. For instance, 

only goods P1 and P3 were purchased from supplier S1 at time 

period 6. This decision provides the minimal procurement cost 

since, mathematically, the procurement cost may be bigger if 

those goods are bought from other supplier. It shows that the 

optimal decision is indeed not obvious, and a decision-making 

support is needed. Furthermore, the proposed model 

successfully solved the given supply chain problem and 

provided the optimal solution.  

 

 
 

Figure 4. Optimal decisions regarding the inventory 

management 

 

 
 

Figure 5. Demand values and their corresponding recourse 

product volume for multiple scenarios 
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The optimal decision related to the inventory management 

is shown in Figure 4. It should be noted that at time period 1, 

the initial inventory was zero, meaning that the demand was 

fully satisfied by the purchased goods at that time period. From 

Figure 4, it can be seen that certain quantities for each goods 

type were decided to be stored in the inventory. However, at 

time period 6, it was decided to not store goods in the 

warehouse since this was the last time period of the 

optimization, and thus storing goods was not necessary. 

It was observed that the decisions were calculated under 

uncertainty of several parameters and were executed before 

decision-makers were aware of the actual values of those 

uncertain parameters. This means that after all values of 

uncertain parameters at past time periods are revealed, the 

actual operational cost may differ from the one generated by 

the decision-making support. It also means that the demand at 

the current time period could be not fully satisfied. Figure 5 

shows two possible outcomes represented by scenarios of 

actual values after the values of all uncertain parameters were 

identified. The actual demand is highlighted in this figure, and 

the actual late delivery and rejection rates are listed in the 

appendix. 

Values shown in Figure 5 are values for the whole six time 

periods. It can be seen that for scenario 1, no alternative goods 

were needed since demand was satisfied by the purchased 

goods. Instead, the goods were overbought. For scenario 2, 30 

units of alternative goods P1 were needed to fulfill the demand. 

Even though for the whole six time periods the goods were 

overbought, the alternative goods were needed for certain time 

periods only since at those time periods, the available goods 

were not sufficient to satisfy the demand. The expected total 

costs were slightly different between those two scenarios 

following the realization of all values.  

This illustrates that the proposed model handles the 

uncertainty based on the possible realizations of each 

uncertain parameter. The uncertain programming solves the 

problem by finding the best expectation of the total operational 

cost from all generated possible values based on the 

corresponding probability distribution functions of the 

probabilistic parameters and fuzzy membership functions of 

the fuzzy parameters involved in the problem. This is 

beneficial in reducing procurement and inventory operational 

costs based on the information about the uncertainties 

considered in the decision-making process handled by the 

decision-maker. 

 

4.3 Discussion 

 

From the computational simulations, the problem seems to 

have been solved. However, in practice, decision-makers may 

face issues such as lengthy computational time. Other 

managerial insights are discussed as follows:  

• The computations can be run more than once with 

different values for uncertain parameters. For example, 

different membership functions for the fuzzy parameters. 

Results may vary depending on the type of membership 

functions. In the end, the implementation is decided by 

decision-makers. 

• The proposed model is not fixed, meaning that it is 

modifiable following the needs of decision-makers. It also 

depends on the circumstances of the problem. For 

example, in the event where there are additional 

assumptions and conditions that should be considered. 

• Alternatives discount schemes could be implemented 

such as continuous price functions. In this case, decision-

makers should be aware how to handle the continuous 

price functions which may result in optimization 

problems with functional parameters. 

• The size of the problem solved in the computational 

simulations was relatively small and all computations 

were carried out within minutes. For larger problems 

containing more suppliers, goods, and price break points, 

decision-makers should be careful with the computational 

time since it could take much longer time. 

• For large-scale problems, high-performance computers 

might be needed. As an alternative, metaheuristic 

algorithms could be applied to solve the corresponding 

optimization problems. 

• The optimization model was built under some 

assumptions described in the Methodology section. If an 

assumption is not met, then a modification on the model 

might be needed. For example, if the unsold products can 

be sold with possible cheap prices, then the income from 

this can be added to the objective function to reduce the 

cost.  

 

 

5. SUMMARY AND FUTURE RESEARCH 

 

The integrated supplier selection and inventory 

management problem was solved by using a piecewise fuzzy-

probabilistic programming approach. The problem was 

considered with discounted prices/costs and both probabilistic 

and fuzzy parameters. The proposed model can handle those 

discounts and both uncertainty types, and it was tested in a 

laboratory with randomly generated data. It successfully 

solved the given problem, and therefore can be utilized by 

decision-makers in relevant manufacturing/retail companies.  

Nevertheless, the proposed model still have some 

limitations, for example, the capacity of trucks used in the 

delivery processes is equal where in practice, various trucks 

with various capacities might be used. Another example is that 

all types of goods were treated to have same sizes whereas in 

practice, they may vary. This will imply the formula of 

calculating the number of deliveries. One may consider such 

issues as possible future research directions. Furthermore, for 

other possible future research, the model can be developed by 

integrating other parties in the supply chain such as carrier 

agents, distributors, and production units. Some recently 

developed technologies such as blockchain and internet of 

things could also be integrated to create a better decision-

making support.  Furthermore, sustainability aspect, such as 

carbon emission and circular economy, could also be taken 

into account to build green supply chain. One possible 

approach to integrate those aspects with the current model is 

by adding a new objective function such as carbon emission 

measurement produced by the procurement and storing 

activities, and minimize it.   
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NOMENCLATURE 
 

Indices and common notations 
t index of time observation period, 1,2,...,t T=  

p index of goods, 1,2,...,p P=  

s index of suppliers, 1,2,...,s S=  

i, j, k index of discount breakpoints/levels, ˆ1,2,...,i i= , ˆ1,2,...,j j= , ˆ1,2,...,k k=  

  a probabilistic parameter 

f  the probability distribution function of the probabilistic parameter   

  a fuzzy parameter/number 

  the membership function of the fuzzy parameter/number   

   expectation value of its argument 

Decision variables: 

tsp
 the quantity of goods p purchased to supplier s at time observation period t 

tp
 the quantity of goods p stored in the inventory at time observation period t 

tp  the quantity of alternative goods p which are needed to satisfy the demand at time observation period t 

Semi-decision variables 

ts  The number of deliveries needed to transport goods from supplier s to the warehouse at time observation period t 

ts  Selected supplier indicator functions at each time observation period t for each supplier s; 1 means  selected, while 0 
means not selected 

s  Selected supplier indicator along the time horizon 1,2.,..,t T= to calculate contract costs; 1 means selected, 0 means 

not selected 
Uncertain parameters 

tsp  
uncertain parameters representing the percentages/rates of defect goods p ordered from supplier s at time observation 
period t 

tsp  
uncertain parameters representing the percentages/rates of late deliveries of goods p ordered from supplier s at time 
observation period t 

tp  
uncertain parameters representing the quantities of the demands of goods p at time observation period t 

Certain parameters 
( )i

tspUP  unit prices for goods p purchased from supplier s at discount price break/level i at time observation period t 

( )j

tsTC  one-truck delivery cost from supplier s at discount price break/level j at time observation period t 
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( )k

tpIC  unit holding cost of goods p at discount price break/level k at time observation period t 

tspSC  supplier s’s maximum capacity in supplying goods p at time observation period t 

MItp warehouse’s maximum capacity for storing goods p at time observation period t 
TRC maximum capacity of a truck utilized in deliveries from suppliers to the warehouse 

tsp  unit cost to penalize late delivered goods p from supplier s at time observation period t 

tsp  unit cost to penalize defect goods p from supplier s at time observation period t 

tsOC  cost to order goods to supplier s at time observation period t 

sCC  cost to make a contract with supplier s 

 

APPENDIX 
 

Table A.1 Discounted goods prices ( )i

tspUP  

 

Time period Supp. 

Goods 

P1 P2 P3 

DL1 DL2 DL3 DL1 DL2 DL3 DL1 DL2 DL3 

1-4 

S1 20 18 15 15 15 15 50 50 50 

S2 20 20 20 20 20 20 50 45 45 

S3 19 18 18 15 15 15 50 50 50 

S4 21 20 19 15 15 15 45 45 45 

S5 21 20 20 15 15 15 45 45 45 

5-6 

S1 18 18 15 15 15 14 50 50 50 

S2 18 18 18 20 20 18 50 45 45 

S3 20 18 18 15 15 15 50 50 45 

S4 20 20 18 15 15 15 45 45 40 

S5 20 20 20 15 15 14 45 45 40 
 

Table A.2 Transport costs ( )j

tsTC  

 
Time period 

Supplier 
Discount Level 

DL1 DL2 DL3 

1-4 

S1 200 175 175 

S2 200 180 175 

S3 180 180 175 

S4 200 190 180 

S5 180 180 180 

5-6 

S1 210 200 190 

S2 200 200 190 

S3 190 190 190 

S4 200 180 180 

S5 210 200 180 

 

Table A.3 Holding costs 
( )k

tpIC  

 

Time period Supplier 
Discount Level 

DL1 DL2 DL3 

1-4 

P1 1.50 1.00 1 

P2 1.00 0.50 0.5 

P3 1.50 1.50 1 

5-6 

P1 1.50 1.00 1 

P2 1.50 1.00 0.5 

P3 1.75 1.50 1.5 

 

Table A.4 Table ctyles 

 

Parameter 
Product/Supplier 

P1/S1 P2/S2 P3/S3 -/S4 -/S5 

Penalty cost for 

rejected goods 
10 12 10   

Penalty cost for 

late delivered 

goods 

1 2 1 2 3 

Contract cost 100 120 110 100 120 

 

 

Table A.5 Supplier’s capacity 

 

Time period Supplier 
Goods 

P1 P2 P3 

1-4 

S1 50 45 120 

S2 75 50 100 

S3 50 40 80 

S4 20 50 50 

S5 25 20 25 

5-6 

S1 25 50 50 

S2 20 40 30 

S3 25 35 55 

S4 35 30 75 

S5 45 50 10 

 

Table A.6 Order cost 

 

Time period Supplier 
Goods 

P1 

1-4 

S1 50 

S2 55 

S3 60 

S4 50 

S5 75 

5-6 

S1 50 

S2 75 

S3 75 

S4 50 

S5 55 

 

Table A.7 Recourse costs 

 
Time period P1 P2 P3 

1 50 100 175 

2 55 100 175 

3 55 110 175 

4 75 125 175 

5 75 125 175 

6 50 100 750 
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Table A.8 Rejection rates for all time periods (%) 

 
Scenario Period P1 P2 P3 

1 

1 4.6 3.6 6 

2 4.6 3.6 6 

3 4.6 3.6 6 

4 4.6 3.6 6 

5 4.6 3.6 6 

6 5.3 3.1 5.2 

2 

1 5.2 6.2 3.6 

2 5.2 6.2 3.7 

3 5.2 6.2 3.6 

4 5.2 6.2 3.6 

5 5.2 6.2 3.6 

6 4.7 5.1 4.4 

 

Table A.9 Late delivered goods rates for all time periods (%) 

 
Scenario Period P1 P2 P3 

1 

1 7.3 7.9 7.1 

2 7.2 7.9 7.1 

3 7.8 7 8.7 

4 7.2 7.9 7.1 

5 7.3 7.9 7.1 

6 7 7 8.8 

2 

1 7.8 7 8.7 

2 7.8 7 8.7 

3 7.2 7.9 7.1 

4 7.8 7 8.7 

5 7.8 7 8.7 

6 7.3 8.2 7.4 
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