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This study conducts a comprehensive examination of the nonlinear propeller pendulum 

system's angular position control, utilizing three distinct control strategies: Proportional-

Integral-Derivative (PID) controller, State Feedback (SF) controller, and Sliding Mode 

Control (SMC). In order to optimize the performance of each controller, Gorilla Troops 

Optimization (GTO) is employed to identify the optimal value of the controllers' design 

parameters. The dynamics of the system under each controller are simulated via MATLAB 

software, and the performance of the controlled system is quantitatively assessed utilizing 

the Integral Time of Absolute Error (ITAE). The resilience of the controllers under 

uncertainties is evaluated by introducing an external disturbance to the system. Simulation 

results indicate that the SMC, tuned by GTO, exceeds the performance of the other 

controllers in reducing the settling time, eliminating maximum overshoot, and minimizing 

the ITAE index. Moreover, under external disturbance, the SMC tuned by GTO 

demonstrates superior robustness compared to other controllers. 
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1. INTRODUCTION

A propeller pendulum system is a type of nonlinear dynamic 

system that integrates a propeller with a pendulum. The 

propeller is motorized to generate a thrust force at the end of a 

pendulum rod such that the pendulum can lift up and down [1]. 

The simple pendulum system is a standard topic in most 

physics educational courses because it includes some physical 

subjects including the simple harmonic motion, the 

acceleration of gravity, and the center of mass [2]. Besides, the 

system is considered a nonlinear model that can be used in the 

education of mechatronics, control, and mechanical 

engineering to explain the system dynamics and methods of 

controller design [3].  Moreover, the propeller pendulum 

system can be used to model the take-off and landing of 

aircraft [4]. Therefore, modeling and controlling propeller 

pendulum system are gained high attention as a research topic. 

Various control methods have been applied to control and 

stabilize the propeller pendulum at any desired position such 

as Proportional-Integral-Derivative (PID) controller [2, 5], 

Linear Quadratic Regulator (LQR) [6], Quadratic Dynamic 

Matrix Control (QDMC) [7], Fuzzy PID controller [1], Sliding 

Mode Control (SMC) [8], Adaptive Super-Twisting SMC 

(ASTSMC) [4] and Adaptive Backstepping Control (ABSC) 

[3]. 

With the substantial improvement in the capabilities of 

swarm optimization algorithms such as the ability in handling 

multivariate, high dimensional problems and easy 

implementation, these algorithms have been successfully 

utilized in different fields of applications [9]. Among these 

applications, they combined with classical and modern 

controllers for further improvement in the performance of the 

controller. In this direction, this paper proposes three control 

strategies including the Proportional-Integral-Derivative (PID) 

controller, State Feedback (SF) controller, and Sliding Mode 

Control (SMC) to control the angular position of the nonlinear 

propeller pendulum. For further enhancement of the proposed 

three controllers, this study has employed Gorilla Troops 

Optimization (GTO) to find the optimal value of the design 

parameters of the proposed controllers. The GTO algorithm is 

inspired by the social behavior and daily activity such as 

taking rest, traveling, and eating of gorilla troops. 

The novelty of the current work as compared to previous 

studies can be stated as follows. PID and SF controllers are 

commonly used to improve the dynamic performance of the 

linear system. For such systems, the classical control methods 

such as Ziegler-Nichols or root locus for PID controller and 

pole placement or LQR for SF controller can be used to 

determine the design parameters of the controllers. However, 

for nonlinear systems, the system is often linearized about an 

operation point, and then the SF and PID controllers are 

applied. As an example of using the linearized model of a 

propeller pendulum, Mohammadbagheri and Yaghoobi [2] 

used Ziegler and Nichols method to tune the PID controller. 

The same strategy has been used by Günel and Ankarah [5]. 

In Günel's and Ankarah’s [5] work, the Genetic Algorithm 

(GA) and Particle Swarm Optimization (PSO) are employed 

to tune the design variables of the PID controller. In the 

context of the SF controller, Farmanbordar et al. [6] used the 

LQR approach based on a linearized model of the propeller 

pendulum. However, these papers presented an approach that 

can be successfully utilized for systems with a small region of 

operation. To avoid this restriction, Taskin [1] proposed a 

Fuzzy PID controller for the nonlinear propeller pendulum 

system. The design variables of the PID controller are 

calculated by a fuzzy logic unit. Unlike these works, this paper 

proposed the recent swarm optimization GTO as a method to 

find the optimal value of the design parameters of the PID and 

SF controllers directly based on the nonlinear propeller 

pendulum system. 
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In terms of SMC, there are two works in the literature that 

are considered SMC as the controller of the propeller 

pendulum system. Kizmaz et al. [8] used a linearized model of 

the propeller pendulum system. However, in the present work, 

the SMC is designed based on the nonlinear dynamics of the 

propeller pendulum system. In addition, the chattering 

problem in the voltage control signal was very high. The 

second work on the SMC was presented by Al-Qassar et al. 

[4]. Al-Qassar et al. [4] adopted the Super-Twisting approach 

to cope with the chattering problem in the SMC. The present 

paper utilizes a different approach based on the power rate 

reaching law method to avoid the chattering problem and 

control the nonlinear propeller pendulum system. 

To end this, the paper is organized as follows. The 

mathematical model of the nonlinear propeller pendulum 

system is formulated in Section 2. Section 3 presents the 

procedure to design the proposed controllers. In Section 4, the 

GTO algorithm is described. The simulation outcomes of the 

nonlinear propeller pendulum system with each controller are 

discussed in Section 5. The conclusion of this paper is 

summarized in Section 6. 

 

 

2. MATHEMATICAL MODEL 

 

To effectively control the propeller pendulum system, an 

accurate mathematical model of the dynamics of the system is 

first obtained. Figure 1 shows the schematic diagram of the 

propeller pendulum system. 

 

 
 

Figure 1. Propeller pendulum system 

 

As indicated in the Figure 1, there is a DC motor with a 

propeller is attached at the end of the arm. The input voltage 

of the DC motor is the control input u(t) and the angle position 

θ(t) between the arm and vertical axis is the control variable. 

After applied voltage to the DC motor, the propeller spins and 

generates torque Tm(t)  to move the arm with an angular 

speed  θ̇(t)  and an angular acceleration  θ̈(t) . Based on 

Newton’s, the equation of motion of the propeller pendulum is 

given by [2]: 

 

Jθ̈(t) + Cθ̇(t) + mgd(sinθ(t)) = Tm(t) (1) 

 

where, J, C, m, g and d are inertia of moment, viscous damping 

coefficient, mass of propeller, acceleration of gravity, distance 

from suspending point to the mass center respectively. 

The relationship between the input voltage and the torque 

produced from the DC motor is formulated as [2, 4]: 

 

Tm(t) = Kmu(t) (2) 

 

where, Km  refers to the constant of the DC motor of the 

propeller. 

Substitute Eq. (2) into Eq. (1) gives: 

 

Jθ̈(t) + Cθ̇(t) + mgd(sinθ(t)) = Kmu(t) (3) 

 

Rearrange Eq. (3) obtains: 

 

θ̈(t) =
−Cθ̇(t) − mgd(sinθ(t)) + Kmu(t) 

J
 (4) 

 

Let x1(t)  represent the angle position θ(t), and x2(t) 

represent the angle velocity  θ̇(t) . The dynamics of the 

propeller pendulum system are given by the following 

differential equations:  

 

ẋ1(t) = x2(2) (5) 

 

ẋ2(t) =
−Cx2(t) − mgd(sinx1(t))  + Kmu(t)

J
 (6) 

 

 

3. CONTROLLER DESIGN 

 

In this paper, three feedback control loop mechanisms 

named Proportional-Integral-Derivative (PID) controller, 

State Feedback (SF) controller, and Sliding Mode Control 

(SMC) are used to control the angular position of the nonlinear 

propeller pendulum system. SMC can be directly applied to a 

nonlinear dynamic system. However, the PID and SF 

controller are commonly used for linear systems where 

classical control methods such as Ziegler-Nichols for PID 

controller and pole placement for SF controller can be used to 

determine the design parameters of the controllers. However, 

for nonlinear system, the system need to be linearized about 

an operation point, and then the SF and PID controllers are 

applied. This approach can be successful works for systems 

with a small region of operation. To avoid this restriction, the 

swarm optimization is used to tune the design parameters of 

the PID and SF controllers for the nonlinear propeller 

pendulum system. 

 

3.1 PID controller 

 

PID controllers are a type of feedback control loop 

mechanism that is commonly employed in industrial control 

systems. The control law u(t) in the PID controller is 

determined based on the error e(t) between the measured 

output x1(t)  and the desired output  xd(t)  [10]. It has three 

terms. The proportional terms adjust u(t) based on the 

weighted gain Kp of the present e(t). The integral terms adjust 

the u(t) based on the weighted gain Ki of the integration of e(t). 

The derivative terms adjust u(t) based on the weighted gain Kd 

of the rate of change of e(t). The final response of the PID 

controller is based on the summation of these three terms. The 

control law of the PID controller is given by studies [11, 12]: 

 

u(t) = Kpe(t) + Ki∫e(t)dt

t

0

+ Kd
de(t)

dt
 (7) 

 

Figure 2 shows the general block diagram of the PID 

controller. 
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Figure 2. PID block diagram 

 

3.2 State feedback controller 

 

State feedback controllers are widely used in various control 

applications such as set-point tracking and disturbance 

rejection. The state feedback controller is a control mechanism 

used to place the closed-loop poles of a plant in desired 

locations in the s-plane. As the eigenvalues of the system is 

based on the pole location, the SF controller is control the 

characteristics of the response of the system. In order to apply 

the SF controller, the system needs to be controllable and. The 

control law u(t) in the SF controller is determined based on the 

difference between the forward-weighted gain  Kxd  of the 

desired output  xd(t)  and feedback-weighted gains  Kx1 and 

Kx2 of the states (x1, x2) of the system. In the SF controller, 

the choice of the design variables (Kxd ,  Kx1, and Kx2) is very 

importance and affects the system performance. The control 

law of the SF controller is given by [13]: 

 

u(t) = Kxdxd(t) − [
Kx1
Kx2

] [x1(t) x2(t)] (8) 

 

Figure 3 shows the general block diagram of the SF 

controller. 

 

 
 

Figure 3. SF block diagram 

 

3.3 Sliding mode control 

 

SMC is a well-known as robustness and systematic design 

controller. It has two stages. Defining the sliding surfaces for 

the required performance is the first stage. Then, keeping the 

system on the sliding surface is the second stage [14]. The 

sliding surface is defined as: 

 

s(t) = ė(t) + asmce(t) (9) 

 

where, e(t) is the error between the measured output x1(t) and 

the desired output xd(t), and asmc > 0 is a tuning parameters. 

Taking the first derivative of the sliding surface yields: 

ṡ(t) = ë(t) + asmcė(t)
= ẍd(t) − ẋ2(t) + asmcẋd(t)
− asmcx2(t) 

(10) 

 

Substitute ẋ2(t) from Eq. (6) into Eq. (10) obtains: 

 

ṡ(t)
= ẍd(t) + asmcẋd(t)

− (
−Cx2(t) − mgd(sinx1(t)) + Kmu(t)

J
)

− asmcx2(t) 

(11) 

 

The second part of the control law in the SMC is the 

switching control. Switching control appears in the SMC as a 

discontinuous control law that makes the system slide on the 

surface [15]. To ensure that the system is sliding on the surface, 

the first derivative of the sliding surface should be equal to the 

switching control. Therefore, the switching control needs to 

select properly to avoid the chattering phenomena that exist in 

SMC [16]. In this direction, the power rate reaching law is 

used for the switching control which is given by the study [17]: 

 

ṡ(t) = −ksmc|s(t)|
γsgn(s(t)) (12) 

 

where, sgn is sign function, ksmc is adjusted parameter >0, γ 

is adjusted parameter between [0,1]. The final u(t) is 

determined by setting Eq. (11) and is equal to Eq. (12) as given: 

 

ẍd(t) + asmcẋd(t)

− (
−Cx2(t) − mgd(sinx1(t)) + Kmu(t)

J
)

− asmcx2(t) = −ksmc|s|
γsgn(s) 

(13) 

 

Rearrange Eq. (13) to find the control law of the SMC as: 

 

u(t) =
J

Km
(ẍd(t) + asmcẋd(t) + ksmc|s|

γsgn(s)

− asmcx2(t)

+
Cx2(t) + mgd(sinx1(t))

J
) 

(14) 

 

Figure 4 shows the general block diagram of the SMC 

controller. 

 

 
 

Figure 4. SMC block diagram 

 

 

4. GORILLA TROOPS OPTIMIZATION 

 

Swarm optimization is a population-based algorithm used 

to solve optimization problems and seek optimal solutions. 

Due to their simplicity, ease of implementation and reasonable 

time to find the solution, these algorithms become very 
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popular for solving different optimization problems. Most of 

these algorithms are natural-based-algorithm [18, 19]. In this 

paper, one of the recent swarm optimization, named Gorilla 

Troops Optimization, is used to solve the tuning problem of 

the design variable of the controllers proposed to control the 

propeller pendulum system. Gorilla Troops Optimization 

(GTO) is a swarm optimization developed by Abdollahzadeh 

et al. [20] in 2021. The algorithm is inspired by the social 

behavior and daily activity such as taking rest, traveling, and 

eating of gorilla troops. They live in a group called troops. The 

adult male gorilla is named Silverback [21]. Abdollahzadeh et 

al. [20] formulated the natural behavior of gorilla troops by 

five equations. The pseudo-code of the GTO algorithm is 

given in Figure 5. The exploration search is described by three 

equations including move to unknown places, move to known 

places, and move to another gorilla. To maintain a proper 

balance between these mechanisms to update the position of 

gorillas, it is assumed that there is a probability of 50% to 

choose between them. These three equations are given in Eq. 

(15). 

 

GX(itr + 1)

=

{
 
 

 
 
LB + r1(UB − LB),                rand < p1
GR(itr)(r2 − k1) + k2k3,   rand ≥ 0.5

GX(itr) − k2 (
k2(GX(itr) − GR(itr))

+r3(GX(itr) − GR(itr))
) ,

rand < 0.5 

 
(15) 

 

where, LB is lower bound, UB is upper bound, itr is current 

iteration, GX(itr+1) is new solution, GR(itr) is solution 

selected randomly, GX(itr) is current solution, r1, r2 and r3 are 

random number between [0,1], p1 is coefficients determined 

by the user between [0,1], coefficientsk1, k2, k3 and k4 are 

computed as follows [22]: 

 

k1 = k4 (1 −
itr

Tmax
) (16) 

 

k2 = k1k5 (17) 

 

k3 = k6GX(itr) (18) 

 

k4 = cos(2r4) + 1 (19) 

 

where, Tmax is maximum iteration, r4 is random number 

between [0,1], k5 is random number between [-1,1], k6 is 

random number between [−k1, k1]. 
On the other hand, the exploitation search is described by 

two equations including following the silverback and the 

competition for adult females. Based on the coefficients k1, 

the gorillas either follow the silverback or competition with 

adult females. If k1 ≥ p2, gorillas follow the silverback based 

on Eq. (20). On the other hand, if k1 < p2, gorillas compete 

for adult females based on Eq. (21), where p2 is determined by 

the user [20]. 

 

GX(itr + 1) = GX(itr)
+ k1k7(GX(itr) − Gsliverback) 

(20) 

 

GX(itr + 1) = Gsliverback
− k9k8(Gsliverback − GX(itr)) 

(21) 

 

Coefficients k7, k8, and k9 are computed as follows [22]: 

k7 = (|
1

N
∑GXi(itr)

N

j=1

|

gn

)

1
gn

 (22) 

 

gn = 2
k2  (23) 

 

k8 = p3k10 (24) 

 

k9 = 2r5 − 1 (25) 

 

k10 = {
rn1,    rand ≥ 0.5
rn2,   rand < 0.5 

 (26) 

 

where, N is the population size, p3 is coefficients determined 

by the user,  r5 is a random number between [0,1],  rn1  is 

random number between [0,N], rn2 is random number. 

 

 
 

Figure 5. Pseudo-code of the GTO algorithm 

 

 

5. SIMULATION RESULTS 

 

In this section, the simulations of controlling the nonlinear 

propeller pendulum system using three control structures, PID 

controller, SF controller, and SMC, are presented. The 

objective of the controller is to make the system follow a 

desired angular position. The simulation experiments and 

performance evaluation are conducted using MATLAB 

software. The Runge Kutta (ode45 in MATLAB) method has 

been used to solve the differential equations in the simulation. 
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The dynamics of the propeller pendulum system that is 

described by Eq. (5) and Eq. (6) are used in the simulation. 

The parameters of the system are given in Table 1 [4]. It must 

be pointed out that, the input voltage to the DC motor of the 

propeller pendulum system is saturated by ±30 V. 

 

Table 1. Parameters of the propeller pendulum system 

 

Parameter and Symbol 
Value and 

Unit 

Moment of inertia (J) 0.0106 𝑘𝑔. 𝑚2 

Viscous damping coefficient (C) 
0.0076 

𝑁𝑚𝑠/𝑟𝑎𝑑 

Mass of propeller (m) 0.36 𝑘𝑔 

Acceleration due to gravity (g) 9.81 𝑚/𝑠2 

Distance from suspending point to the mass 

center (d) 
0.03 𝑚 

Motor constant (Km) 0.0296 

 

To ensure the optimal performance of each controller, the 

GTO is employed to tune the design parameters of each 

controller. The performance of the PID controller is optimized 

by tuning the adjusted parameters (Kp, Ki, and Kd) of the 

control law that is given in Eq. (7). In the same way, the 

performance of the SF controller is optimized by tuning the 

adjusted parameters (Kxd , Kx1 and Kx2) of the control law that 

is given in Eq. (8). Besides, the performance of the SMC is 

optimized by tuning the adjusted parameters ( Ksmc,
asmc and γ) of the control law that is given in Eq. (14). The 

Integral Time of Absolute Errors (ITAE) as given in Eq. (27) 

[23] is used to evaluate the controlled system. 

 

ITAE = ∫ t|e(t)|dt
t=tsim

t=0

 (27) 

 

where, 𝑡𝑠𝑖𝑚 is the simulation time. 

The parameters of the GTO are listed in Table 2. The 

convergence of GTO for tuning the three controllers is shown 

in Figure 6. 

 

 
 

Figure 6. Convergence of GTO for the proposed controllers 

 

The values of the designed parameters of the PID controller, 

SF controller, and SMC are given in Table 3. The convergence 

of GTO for the proposed controllers is shown in Figure 6. The 

control signals of the proposed controllers are shown in Figure 

7.  

Table 2. Algorithm parameters of GTO 

 
Parameter  Value  

Population size (N) 25 

Number of Iterations (Tmax) 50 

p1 0.03 

p1 3 

p3 0.8 

 

Table 3. Optimal setting of design parameters based on GTO 

algorithm 

 
Controller Parameters Values 

PID Controller 

Kp 34.6 

Ki 20.24 

Kd 5.04 

SF Controller 

Kxd 45.26 

Kx1 42.25 

Kx2 6.7 

MC 

Ksmc 38.6 

asmc 25.4 

γ 0.7 

 

It can be seen from Figure 7 that the responses of the control 

signals for the three controllers are smooth and within the 

acceptable voltage range of the DC motor. Besides, it can be 

noticed that the chattering problem in the SMC is eliminated 

by the proposed reaching law. Moreover, Figure 8 shows the 

response of the three controlled systems for a unit step input. 

The performance evaluation is based on settling time, steady 

state error, maximum overshoot, and ITAE. The dynamics 

performance of the three controllers is reported in Table 4. 

 

 
 

Figure 7. Control signals of the proposed controllers 

 

Based on Figure 8 and Table 4, it can be revealed that the 

three controllers tuned by GTO are capable to control the 

system successfully with zero error steady state. However, the 

SMC has better dynamics performance than that of the other 

controller, in terms of reducing the settling time, overshoot, 

and ITAE index. For example, based on the results in Table 4, 

it can be seen that the settling time is reduced from 0.31 sec in 

the case of the PID controller and 0.35 sec in the case of the 

SF controller to 0.25 sec in the case of SMC. Furthermore, the 

SMC eliminates the overshoot in comparison to PID and SF 

controllers. The ITAE is reduced from 4.162 in the case of the 

PID controller and 3.81 sec in the case of SF controller to 

2.573 sec in the case of SMC. 
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Figure 8. Response of the system using the proposed 

controllers 

 

Table 4. Dynamic performances of the system using the 

proposed controllers without disturbance 

 

Controller 
Settling 

Time (s) 

Error 

Steady 

State 

(rad) 

Maximum 

Overshoot 

(%) 

ITAE 

PID  0.31 0 3.4 4.162 

SF  0.35 0 0.36 3.81 

SMC 0.25 0 0 2.573 

 

To ensure the robustness of the proposed controllers to cope 

with uncertainties, an external torque disturbance has been 

applied to each controller after 1.6 sec of the simulation. 

Figure 9 plots the response of the three controlled systems for 

unit step input with disturbance. The performance of the 

system with disturbance is evaluated based on settling time 

and maximum undershoot overshoot. The dynamics 

performance of the three controllers with disturbance is 

reported in Table 5. 

  

 
 

Figure 9. Response of the system using the proposed 

controllers with disturbance 

 

Based on Figure 9 and Table 5, it can be observed that the 

SMC has better recovery performance than that of the other 

controller under the disturbance environment, in terms of 

reducing the settling time and undershoot. For example, based 

on the results in Table 5, it can be seen that the settling time is 

reduced from 1 sec in the case of the PID controller and 0.56 

sec in the case of SF controller to 0 sec in the case of SMC. 

Moreover, the maximum undershoot is reduced from 29 in the 

case of the PID controller and 23 in the case of SF controller 

to 3.3 in the case of SMC. 

 

Table 5. Dynamic performances of the system using the 

proposed controllers with disturbance 

 
Controller Settling Time(s) Maximum Undershoot 

PID Controller 1 29 

SF Controller 0.56 23 

SMC 0 3.3 

 

From the aforementioned results, it can be concluded that 

SMC outperforms PID and SF controllers to control the 

angular position of the nonlinear propeller pendulum system. 

 

 

6. CONCLUSION 

 

The propeller pendulum system is a variant of the classical 

simple pendulum where a propeller motor is coupled at the end 

of the pendulum. The torque generated by the motor drives the 

pendulum to lift up and down. In this paper, three control 

structures, PID controller, SF controller and SMC, are 

proposed to make the angular position of the propeller 

pendulum follows the desired angular position. To ensure the 

best performance of each controller, GTO is employed to tune 

the design parameters of the controllers. Simulation results 

based on the n MATLAB environment show how’s that the 

three controllers tuned by GTO are capable to control the 

system successfully with zero error steady state. However, the 

result shows that the SMC exhibits a better response compared 

to PID and SF strategies in reducing the settling time, 

overshoot, and ITAE. Moreover, SMC-based GTO 

demonstrates considerable superiority to compensate for the 

effect of external disturbance. 
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ACRONYM 

 

ABSC Adaptive Backstepping Control 

ASTSMC Adaptive Super-Twisting SMC 

GA Genetic Algorithm  

GTO Gorilla Troops Optimization 

ITAE Integral Time of Absolute Error 

LQR Linear Quadratic Regulator 

PID Proportional-Integral-Derivative  

PSO Particle Swarm Optimization 

QDMC Quadratic Dynamic Matrix Control 

SF State Feedback  

SMC Sliding Mode Controller 

 

 

NOMENCLATURE 

 

asmc Tuning parameters>0 

C Viscous damping coefficient 

d 
Distance from suspending point 

to mass center 

e(t) 
Error between the measured 

output x1(t) and the desired 

output xd(t) 
ė(t) First derivative of e(t) 
g Acceleration of gravity 

gn Coefficients 

Gsliverback Best solution 

GR(itr) Solution selected randomly 

GX(itr) Current solution 

GX(itr + 1) New solution 

581



 

i Index for population 

itr Index for iteration 

J Moment of inertia 

k1, k2  , k3, k4, k7, k8, k9 Coefficients 

k5 
Random number between 
[−1,1] 

k6  
Random number between 
[– k1, k1] 

Kd  Derivative gain 

Ki  Integral gain 

Km  Constant of the DC motor 

Kp  Proportional gain 

ksmc  Adjusted parameter > 0 

Kx1, Kx2 Feedback-weighted gains  

Kxd  Forward-weighted gain  

M  Mass of propeller 

N  Population size 

p1, p2, p3  
Coefficients determined by the 

user between [0,1] 

r1, r2, r3, r4, r5 Random number between [0,1] 

rn1  Random number between [0, N] 
rn2  Random number 

s(t)  Sliding surface 

ṡ(t)  First derivative of s(t) 
sgn  Sign function 

t  Time  

tsim  Total simulation time  

Tm  Torque generated by the motor 

Tmax  Maximum iteration 

u(t)  Control law 

x1(t)  Angle position 

ẋ1(t)  First derivative of x1(t) 
x2(t)  Angle velocity 

ẋ2(t)  First derivative of x2(t) 
xd(t)  Desired output 

ẋd(t)  First derivative of xd(t) 
ẍd(t)  Second Derivative of xd(t) 
 

 

GREEK SYMBOLS 

 

Γ Adjusted parameter between [0,1] 

θ(t) Angle position 

θ̇(t) Angle velocity 

θ̈(t) Angle acceleration 
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