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Nonlinear model predictive control (NMPC) has been recognized as an influential control 

strategy for intricate dynamical systems due to its superior performance over conventional 

linear control systems. The complexity associated with nonlinear dynamics is a recurring 

issue in a multitude of engineering applications, rendering the development of nonlinear 

models a challenging endeavor. The construction of such models, either through 

correlating input and output data or applying fundamental energy conservation laws, 

presents considerable difficulties. The absence of an effective model suitable for 

fundamental nonlinear processes is a marked deficiency, one that NMPCs are poised to 

address. NMPCs demonstrate a pronounced advantage over linear MPCs, particularly in 

managing the complexities and nonlinearities inherent in various systems. They exhibit 

efficacy in controlling nonlinear dynamics, including input/output constraints, objective 

functions, and computationally demanding optimization problems integral to real-time 

applications in process industries, power systems, and autonomous vehicular systems. 

This capability has prompted extensive research into nonlinear dynamics, thereby 

diminishing the disparity between the analysis of linear and nonlinear MPCs. This review 

provides a thorough examination of NMPCs, encompassing the fundamental principle, 

mathematical formulation, and various algorithms associated with NMPCs. A concise 

overview of NMPC applications, along with the challenges they pose, is also discussed. 
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1. INTRODUCTION

Model predictive control (MPC) is one of the progressive 

methods which can be used to control a process and optimize 

the performance [1]. MPCs were initially developed to 

overcome the drawbacks of single loop controllers which 

cannot provide desired performance under specified 

constraints. MPC techniques are appropriate for applications 

that require robust control of constrained multivariable 

processes [2]. Few applications that demand high performance 

do not require explicit pairing of input and output variables for 

controlling the process and hence the constraints are adopted 

directly into the system. This can result in the open-loop 

optimal control problem [3]. Present MPC techniques are 

designed as linear dynamic models and hence are termed in 

general as linear model predictive control (LMPC) [4]. 

LMPCs belong to the group of MPC techniques which uses 

linear models for predicting the dynamics of the system by 

considering the linear constraints of the input and state of the 

system [5].  

It is assumed that the linearity of LMPCs simplify the 

design of the model and the controller [6]. Based on this 

assumption, several models have implemented LMPCs for 

controlling different processes [7, 8]. However, most of the 

processes are practically nonlinear which affects the control 

mechanism and application of LMPC techniques. In addition, 

applications that are highly nonlinear operate at a fixed 

operating point and moderately nonlinear techniques are 

characterized by larger operating points such as multivariable 

polymer reactors [9]. It must be noted that, even if the system 

is linear, the dynamics of the closed loop systems are nonlinear 

due to varying constraints. This factor motivated the 

researchers to develop nonlinear model predictive control 

(NMPC) systems which can be used to predict and optimize 

the nonlinear control processes [10]. 

In general, NMPCs are the MPC techniques which operate 

based on nonlinear and non-quadratic constraints. Although 

NMPCs enhance the process operation, the theoretical and 

practical problems are more challenging compared to linear 

MPCs. Most of the challenges are due to the nonlinear 

programs which need to be resolved to achieve better control 

over the process. In control engineering perspective, all real-

time systems are inherently nonlinear due to the application 

specific requirements [11]. The nonlinear characteristics along 

with complex environmental regulation, high quality product 

specifications, rising demand for productivity, extensive 

operating conditions and economic considerations force the 

systems to operate near to the threshold level. In these 

conditions, linear systems cannot handle the dynamics of the 

system and nonlinear models come to the rescue. This lack of 

efficiency of linear models motivates the researchers to adopt 

NMPCs for controlling system operation [12]. 

1.1 Principle of NMPC 

The concept of NMPCs is formulated as the iterative 

solution for solving open loop and closed loop control 

problems considering the input constraints and the system 
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dynamics. The prominent advantage of NMPC is its ability to 

handle varying system constraints which can either be input or 

state variables. The schematic of NMPC is illustrated in Figure 

1. The fundamental principle of NMPC is based on three main 

concepts: (a) The system model which uses a nonlinear model 

to estimate the future process in real time applications (b) the 

optimal control law for performing online computations using 

an optimal control sequence to improve the system’s 

performance and achieve the desired outcome (c) the receding 

horizon wherein the initial value of the control sequence is 

applied and the horizon is shifted by one instance and based 

on this the new sequences are calculated [13]. 

 

 
 

Figure 1. Block diagram of NMPC 

 

A brief overview of the components of NMPC are discussed 

in below points: 

(i) The System Model: The NMPC model is mainly used to 

formulate the law for controlling the system operation. It is 

essentially important to maintain the accuracy of the model to 

achieve a stable control. The structure and functioning of the 

NMPC model are highly flexible i.e., no strict restrictions are 

applied while designing the model. If complete information 

about the model is available then it can be expressed 

mathematically in the state space form. In other cases, if only 

partial information is available then a black box model can be 

used to represent the state of the system. In such scenarios, the 

model is accompanied with a fuzzy system or a neural network 

is implemented to estimate the model’s performance. Fuzzy 

systems use fuzzy logic or rules for making decisions. On the 

other hand, neural networks mimic the learning and decision-

making processes of the human brain for making complex 

decisions. 

As discussed previously, most of the systems are nonlinear 

and the open loop control of the NMPC model is as shown in 

Figure 1. In certain applications, the NMPC model 

incorporates an inbuilt inner control loop or an externally 

provided feedback controller. The inner control loop controls 

the specific task of the system and external controller is 

responsible for providing specific feedback to the system. The 

case mentioned in reference [14] used NMPC to enhance the 

process of the feedback controller by handling the 

uncertainties. The NMPC with external feedback improved the 

performance of the controller compared to the open loop 

NMPC controller without any feedback controller. In another 

case, the inner loop dynamics was considered while designing 

a flatness based MPC (FMPC) which considers the 

nonlinearity associated with the controlling process [15]. The 

FMPC improved the resistance of the system towards 

modeling errors and reduced the input time delays. 

(ii) The Optimal Control Law: The NMPC model consists 

of an optimal input sequence denoted as u*(k) which is 

calculated as a result of the optimization problem in the control 

process [16]. The performance metrics are evaluated based on 

the cost index which is defined as follows: 
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The initial term ‘J’ is used to compute the square error 

between the estimated output yd (k+j) and the predicted future 

output �̂�(𝑘 + 𝑗 ∣ 𝑘) . The output is predicted based on the 

feedback obtained at an instant k. The feedback error is 

calculated over a specific prediction horizon which lies 

between N1 and N2 samples. The term ‘j’ is used to control the 

horizon window of Nu instances, where (𝛥𝑢(k)=u(k)-u(k-1)). 

The terms pk and qk are defined as the weights of the terms J 

and j. The term J1 is defined as the cost function which 

considers various specifications while optimizing the cost 

coefficients. NMPCs are predominantly used in agreement 

with specifications such as variation in the input and state 

variables as shown in Eqs. (2) and (3) respectively. 

 

U-<u(k)<U+ΔU-<Δu(k)<ΔU+ (2) 

 

Y-<y(k)<Y+ΔY-<Δy(k)<ΔY+ (3) 

 

The constraints defined in Eq. (2) considers the practical 

restrictions of the control system and constraints mentioned in 

Eq. (3) prevent the system to operate under unfavorable 

horizons. The term J is optimized to obtain a minimum value 

and is evaluated based on the decision variables which vary 

with respect to the control increment sequence as shown in Eq. 

(4). 

 

[Δu(k), Δu(k+1), …, Δu(k+Nu-1)] (4) 

 

(iii) The receding horizon: Receding horizon is a control 

strategy used for solving an optimization problem over a finite 

time horizon at each time step. The term “receding” refers that 

the problem is solved for updated time interval. In this 

technique, only the initial terms of the optimal sequence u* 

(k+j) are applied to the system. Correspondingly, the horizon 

will be shifted one level up in the next step and the 

optimization is repeated based on the newly obtained values 

[17]. Fundamentally, the shifting of horizons happens at each 

sampling level and the feedback information is obtained at 

each level [18]. Though this process generates feedback in the 

control loop for every instance at a predefined sampling rate, 

it increases the computational burden on the system since it 

requires a larger number of computational resources for 

implementation. However, the computational burden can be 

minimized by applying intermittent feedback. In simple words, 

the complexity of the system depends on the feedback 

techniques used to provide the information during 

optimization. In most of the cases, a basic low-pass filter is 

used as a feedback filter which significantly reduces the 

additive noise. This mechanism is employed in association 

with input-output models wherein the output is used for 

repressing the effect of steady state errors. The design of 

feedback filters for state space models can be more 

complicated since it is often a stack of filters used for 

estimating the derivatives of integrals. In case of errors, the 

system realigns itself to prevent the effect of prediction error 
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and this process becomes more important in applications that 

require long-range predictions. 

 

1.2 Properties of NMPC  

 

The prominent characteristics of NMPC are as follows [19, 

20]: 

•Nonlinear models can be directly used for prediction in 

NMPCs. 

•The input and state constraints are considered explicitly. 

•The performance criteria in terms of specified time domain 

are augmented. 

•NMPCs require a real-time solution to solve an open-loop 

control problem. 

•NMPCs estimate the state of the system while making 

predictions. This property can be considered as an advantage 

or limitation of NMPC. 

The direct application of nonlinear models can be beneficial 

if the details of the first principles of the NMPC model is 

available. The availability of first principle helps in enhancing 

the performance of the closed loop without much fine-tuning. 

In recent times, the first principle of NMPC can be assessed 

even before building the plant or a model and this process 

helps the applications that require detailed models based on 

first principle to maintain consistency and minimize the cost 

[21]. In certain cases, where the first principle is not available, 

it is practically not possible to obtain an efficient nonlinear 

model using identification techniques. In such cases, other 

control techniques such as LMPC models are employed [22]. 

The LMPC models apply the input as the solution to the 

optimal control problem which can either benefit or affect the 

model’s performance at the same time. Besides, LMPC 

models consider the input and the state constraint and directly 

apply them to the model. This makes it difficult to control the 

operations of the model. In addition, the cost minimization and 

the constraints of the model can be calibrated on-line without 

redesigning the controller. These aspects make it difficult to 

model nonlinear systems. In this context, the adoption of 

NMPCs gain huge significance for handling the uncertainties 

[23, 24] and constraints of the state and input. 

The contributions of this review are summarized as follows: 

•This review paper provides a systematic review of the 

nonlinear MPCs (NMPCs), its performance analysis and 

applications. 

•This paper discusses the principle of NMPCs, properties, 

mathematical formulation, and algorithms. 

•This study presents a detailed analysis of different 

optimization models used for optimizing the NMPCs and the 

state of art of evolutionary techniques used for enhancing the 

performance of NMPCs. 

•This paper also discusses the recent trends, challenges and 

research gaps in the field of NMPCs. 

 

 

2. MATHEMATICAL FORMULATION OF NMPC 

 

NMPCs are formulated as a repetitive solution for an open-

loop control problem considering the state and input 

constraints along with system dynamics. The basic principle 

of NMPC is illustrated in Figure 2. 

As shown in Figure 2, NMPC predicts the dynamic behavior 

of the control system by assessing the state of the model at 

time ‘t’. The behavior of the system in future is predicted over 

a horizon Tp and the input (between the horizon Tc≤Tp) is 

obtained to minimize the performance of the open-loop control 

system. If no disturbances and mismatches are observed in the 

model-plant, and if the plant operations can be modified over 

an infinite horizon, then the input signal at t=0 can be applied 

to the model-plant for all the values that are greater than 0 i.e., 

t≥0. In practical scenarios, the model-plant experiences 

disturbances and mismatches between the actual behavior of 

the system and predicted behavior. The error observed is 

transferred to the system via feedback and the open loop input 

(ū) is applied after the time interval (t+Tc) until the next set 

point is obtained.  

 

 
 

Figure 2. Basic principle of NMPC 

 

The sampling time required for optimizing the control 

problem can vary and the problem is re-evaluated after each 

sampling instance i.e., δ. At a time, instant t+δ, the system 

attains a new state and the future prediction and optimization 

of the control problem is performed again by shifting forward 

the horizon of the prediction and control system. As shown in 

Figure 2, the optimal open loop input (ū) is shown as an 

arbitrary function of time. In order to obtain an appropriate 

solution for the open loop control problem, the input (ū) is 

expressed in terms of fixed or finite parameters and thereby 

leads to a finite dimensional control problem. Practically, the 

control systems use a constant input and make Tc/δ decisions 

over the control horizon. The state of the input is determined 

based on the behavior of the predicted system and is measured 

as a function of different input and state constraints, with an 

aim to minimize the cost function. Since the behavior of the 

input in the open loop control system is predicted for a finite 

horizon, the behavior will be different from the closed loop 

system. This raises the concern about stability issues and 

necessary action should be taken to maintain the stability of 

the closed loop system and achieve closed loop desired 

performance. 

Summarizing the principle of NMPC models, the process 

involved is as follows:  

(i) Obtain prediction related to the state of the system for a 

finite horizon. This helps in making optimal control decisions 

even in the presence of nonlinearity and system perturbations. 

Predicting the state of the system over a finite horizon enable 

the NMPC system to address different critical aspects such as 

adapting to time-varying behavior of the system, mitigate the 

effect of disturbances, and ensure stability.  

(ii) Evaluate the input function to minimize the cost 
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function based on the predicted system model. The main 

advantage of minimizing the cost function is that it helps the 

NMPC system to achieve an optimal control over the system’s 

processes. The cost function is designed to control the 

performance of the system by controlling the input and 

minimization of cost function over a finite horizon enables the 

NMPC system to optimize the system’s behavior and there by 

improve the performance efficiency. 

(iii) Implement one part of the input function until the next 

sampling instant is obtained. This helps in simplifying the 

process of understanding the impact of input and state 

constraints. 

(iv) Repeat the process from step 2. 

Considering a continuous system, the nonlinear differential 

equation can be described as follows: 

 

�̇�(𝑡) = 𝑓((𝑥), 𝑢(𝑡)), 𝑥(0) = 𝑥0 (5) 

 

Correspondingly, the input and state constraints are 

expressed as shown in Eqs. (6) and (7) respectively. 

 

u(t)U, ∀t≥0 (6) 

 

x(t)X, ∀t≥0 (7) 

 

where, u(t)Rm and x(t)Rn represent the vector of inputs and 

states respectively.  

With respect to these vectors, the constraint set for input U 

is considered to be compact and the constraints for system 

state X is considered to be connected. For instance, U and X 

are usually defined by the constraints that are defined in Eqs. 

(8) and (9) respectively. 

 

U:={uRm|umin≤u≤umax} (8) 

 

X:={xRn|xmin≤x≤xmax} (9) 

 

where, umin, umax and xmin, xmax are the constant vectors. 

The input function in NMPCs is normally defined by the 

solution obtained for an open loop optimal control problem 

which is computed over a finite horizon at each sampling 

instant.  

 

 

3. ALGORITHMS FOR NMPC 

 

Some of the prominent aspects of NMPCs including 

different algorithms and approaches are discussed in this 

section which have gained huge prominence in the past 

decades.  

Most of the linear dynamic systems are characterized by 

fundamental differential equations and algebraic equations. 

Linear systems describe the behavior of a controller which is 

characterized by linearity and time-invariance. As a result, 

problems related to NMPCs are formulated in a continuous 

time domain. An optimal control problem (OCP) in continuous 

time domain can be realized in an infinite dimensional space 

and it requires optimized parameters for converting the 

continuous time OCP into a nonlinear program (NLP). 

Techniques that first discretize the OCP and solve NLP in a 

finite dimension are defined as direct methods [25]. Two 

prominent algorithms that can be used to solve NLP are 

interior point (IP) methods and sequential quadratic 

programming (SQP) [26-28]. In order to extend the 

adaptability of NMPCs in various applications including 

dynamic approaches, and advanced versions of IP and SQP 

techniques, several techniques have been proposed with an 

aim to find optimal solutions for NLP [29-31]. For example, 

methods based on real-time iteration (RTI) execute one SQP 

iteration at a time and categorizes the calculations into two 

phases namely a preparation and feedback phase. This 

categorization is performed to apply the control input soon 

after the system’s states are measured. If the sampling time is 

less, then this method is used to evaluate the performance of 

the closed loop NMPC models [32]. As observed, both linear 

MPCs, NMPCs, and structured QP problems are solved using 

an iterative mechanism wherein the iterations are performed at 

each time step. Several algorithms and effective softwares are 

essential for solving NMPCs and there is a need to address the 

problems related to high computational overhead in traditional 

control systems. A significant amount of research work has 

been done in the field of NMPCs and have proposed different 

algorithms for exploiting the underlying problems associated 

with NMPCs. 

As discussed previously, IP and SQP techniques are the two 

prominent algorithms which are predominantly used to solve 

nonlinear problems. In the IP method, the condition of non-

smooth complementarity in the Karush– Kuhn–Tucker (KKT) 

system is modified and is interchanged with a smooth 

nonlinear approximation. The KKT system incorporates a set 

of important constraints for solving optimization problems, 

specifically problems involving both equality and inequality 

constraints. The KKT system helps in finding the solutions to 

these problems by analyzing the factors that are used for 

optimizing the performance. Solving KKT system is one of the 

fundamental approaches for finding optimal solutions in 

various optimization problems with constraints. In contrast, 

SQP techniques linearize the unequal constraints to find a 

point that can satisfy the optimal conditions for KKT and 

become equal to solve a quadratic problem. However, both 

these techniques follow a structured optimal control flow for 

solving QP. In general, SQP techniques use customized 

algorithms for addressing sub problems of QP and are 

advantageous in terms of warm-starting compared to IP 

techniques. Warm starting is the ability of an algorithm to 

make an ideal consideration for obtaining optimal solution and 

achieve convergence. Such considerations are already 

available in MPC-based approaches that obtain solutions 

based on the previous problem. On the other hand, IP-based 

techniques follow a central path, which reduces the effect of 

warm starting. Few solutions to overcome this problem are 

discussed by Zanelli et al. [33]. In NMPCs, the state of the 

system varies frequently while the controller calculates the 

next possible optimal input. In such cases, the RTI technique 

decreases the time between the control feedback and the 

measurement of the system's state by executing one SQP 

iteration per instance and by dividing the calculations into 

feedback and preparation phases. All these processes belong 

to the preparation phase and do not rely on the state 

measurements. The feedback phase consists of the initial 

values and solutions for QP sub problems for providing the 

feedback. While interpreting the results, there are chances that 

the state of the problem varies and can cause perturbations in 

the controller’s performance. This must be handled carefully 

such that the perturbations do not affect the performance of the 

closed loop system [34]. The RTI schemes developed for 

NMPC does not make use of any globalization strategy and 

assumes that all steps are required to achieve local 

596



 

convergence. Globalization strategies are the techniques used 

to ensure that the optimization algorithm converges to a 

feasible solution globally. These strategies focus on improving 

the reliability and performance of the NMPC controller. Both 

convergence and stability can be achieved by implementing a 

simple computation process with only a few required equality 

constraints that are discussed by Diehl et al. [35]. In order to 

decrease the computational burden, the RTI technique can 

further divide the calculations and process into multiple sub-

levels and are operated with different frequencies. Initially, 

RTI method was the part of MUSCOD-II and was modified 

later and implemented in an ACADO Toolkit which is an 

open-source software tool. This toolkit provides both direct 

single and multiple shooting as parameterization techniques 

and various SQP algorithms and are integrated with qpOASES 

for obtaining solutions for dense sub problems of QPs. For 

embedded applications with sampling times (which is the 

range of microseconds), ACADO tool generates a code that 

can solve nonlinear problems. It consists of a RTI technique, 

with appropriate parameters to solve a nonlinear OCP using a 

Gauss–Newton Hessian approximation method. The code is 

generated for differential equations and for performing 

numerical simulations to improve the performance of the 

algorithms used for NMPCs. Several real-time algorithms 

implemented for NMPCs that are used for addressing 

nonlinear problems include Newton-type controllers [36]. 

This type of controllers performs one iteration of SQP per time 

instance using a Gauss–Newton Hessian. The Gauss–Newton 

Hessian is an optimization method used for solving the 

problem of nonlinear least squares. This method is analyzed 

with respect to the parameters being optimized and the main 

objective of this method is to find the best parameters for 

approximating the performance of the system. 

However, a line search and a single shooting is used as an 

advanced controller which executes iterations for IP to achieve 

convergence and to reduce the delay. This is performed by 

estimating initial state constraints and implementing a 

tangential predictor to rectify the difference observed from the 

obtained measurements and the actual measurement of the 

system. Applying the Newton-type iteration with Gauss–

Newton Hessian for single shooting can treat inequality issues 

in IP-based methods. Many techniques such as augmented 

Lagrangian-based techniques have been used in the existing 

literary works to solve the rising NLPs in a structured manner. 

In NMPCs that use input constraints, simple numerical 

techniques such as the projected gradient techniques, proximal 

techniques, and the projected Newton techniques are applied 

to achieve optimal solution. 

IP techniques have several advantages such as ability to 

achieve global convergence while solving optimization 

problems, and has lower memory requirements. In addition, IP 

techniques use numerical approximation which makes it easy 

for solving the problem which are difficult to solve using 

direct methods. However, there are certain drawbacks which 

affects the performance of IP techniques. IP methods require a 

large number of iterations for converging compared to 

standard optimization techniques. It is challenging to update 

the parameters in IP-based NMPC systems because of high 

computational complexity. On the other hand, SQP techniques 

can handle equality constraints naturally and thereby make it 

convenient for solving NMPC problems with equality 

constraints. However, SQP techniques are more prone to get 

stuck in local optima and hence find it difficult to achieve 

global optimal solution.  

It can be inferred from the study that IP methods are suitable 

for solving large-scale convex NMPC problems without 

relying on explicit derivatives and SQP techniques are more 

appropriate for solving fundamental convex problems with 

equality constraints that require fast convergence. The 

selection of these two techniques depends on the specific 

characteristics of the NMPC problem wherein there is a 

tradeoff between the local and global optimality and 

computational efficiency. 

 

4. THEORETICAL ASPECTS OF NMPC 

 

The theoretical aspects of NMPCs are essentially important 

to understand the stability issues of closed loop systems. In 

addition to the issue of closed loop system stability, the 

problems related to nominal stability of closed loop systems, 

different NMPC strategies, and their impact on the output 

feedback are also researched extensively. In real-time 

applications the NMPCs are considered as instantaneous 

NMPCs wherein it is assumed that the computational time 

required for evaluating optimal is nil and the instantaneous 

value δ=0. Here, the sample data of NMPC is used to calculate 

the optimal input value at different sampling instances. This 

section elaborates on different theoretical aspects of NMPC 

such as stability, infinite horizon, and finite horizon. Stability 

of NMPC is one of the critical aspects of closed-loop system 

which ensures that the behavior of the system under 

perturbations remains safe, steady, and predictable. Another 

important theoretical aspect of NMPC is infinite horizon 

which refers to a control strategy wherein the optimization 

problem is solved over an infinite time horizon. Infinite 

horizon in NMPC optimizes the controlling actions over an 

indefinite time space. The main objective of applying an 

infinite horizon in NMPC is to achieve a steady state behavior 

for a specific operating time. Finite horizon is another 

important theoretical aspect which enables a proper tradeoff 

between the control actions and computational complexity. By 

selecting an appropriate finite horizon for prediction, NMPC 

can realize real-time constraints and strengthen its ability to 

handle complex dynamic systems over a finite time period. A 

brief overview of these theoretical aspects is discussed in the 

sections below. 

 

4.1 Stability of NMPC 

 

The prominent aspect in NMPCs is to define whether the 

NMPC technique over a finite horizon can ensure the closed 

loop stability or not. The main issue in NMPCs with respect to 

predicting the outcome over the control horizon is due to the 

difference between the estimated open loop behavior and 

actual closed loop behavior. Fundamentally, an effective 

strategy is required to achieve closed loop stability which is 

independent of the parameters required and predicts the 

infinite horizon accurately. An effective NMPC technique 

which can ensure the stability of a closed loop is independent 

of the parameter selection and is termed as the NMPC 

technique which can guarantee stability of the NMPCs. 

Numerous strategies and techniques are used to stabilize 

closed loop systems using finite horizons. These strategies use 

only approximated parameters which are not validated 

practically. The technical evaluations can be performed based 

on certain assumptions which are independent of the 

application. Without generalization, it is considered that the 

origin of the state and input i.e., (x=0, u=0) is the steady state 
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parameter used to stabilize the nonlinear system. In addition to 

this, the predictive horizon is equalized to the control horizon 

which is defined as Tp=Tc to simplify the stabilization process. 

 

4.2 Infinite horizon NMPC 

 

Applying an infinite horizon is one of the most effective 

methods to stabilize nonlinear MPCs. In this technique, the 

value of Tp is set to infinity (∞) and the trajectories of input 

and state constraints are considered as the solution for 

optimizing NMPC problems. These problems can be solved by 

defining a sampling instance which is equal to the trajectories 

of the closed loop nonlinear system. Therefore, the other 

samples of the trajectories at different sampling instances are 

considered to be optimal, which also defines the convergence 

of the closed loop system. 

 

4.3 Finite horizon NMPC schemes with guaranteed 

stability 

 

There exist several possibilities to achieve stability of the 

closed loop system over a finite horizon. Most of these 

techniques transform the conventional NMPC schemes in such 

a way that it ensures closed loop stability of nonlinear 

controllers. This can be achieved by including approximated 

equality and inequality constraints along with additional 

penalty parameters which can help in ensuring the stability. 

Equality constrains are the conditions which represent 

physical laws, dynamics of the system and other constraints 

which should be compulsorily satisfied at each time step 

within the finite horizon. These constraints define the relation 

between the predetermined state and input variables. On 

contrary, inequality constraints define the conditions which 

need not be satisfied compulsorily over a finite horizon. These 

constraints define the limits on the input and state variables in 

order to ensure that the stability of the system is not affected. 

The additional penalty parameters are not affected by the 

physical limitations of system constraints and their only 

objective to ensure stability. Hence, these parameters are often 

considered as stability constraints. Another way of ensuring 

the stability of NMPCs over a finite horizon is to include an 

equality constraint with a zero terminal at the end of the 

predicted finite horizon. Similar to this, the possibility of 

applying one sampling instance at a time does not guarantee 

that all other sampling instances can contribute to improve 

stability. The main drawback of this possibility of applying a 

zero terminal is that the predicted state of the closed loop 

system is enforced to reach the origin within a fixed time. This 

raise concerns over the possibility of achieving stability for 

systems which short control horizon lengths or short 

prediction applications. In terms of computational feasibility, 

it is essential to satisfy the constraint of zero terminal equality 

which requires infinite iterations. This is not practical and 

hence is not suitable for real-time applications. However, the 

prominent advantage of zero terminal constraints is that it is 

very simple and is suitable for straightforward applications. 

Several existing works have studied the stability of NMPCs. 

Some of the works that studied the stability of NMPCs are 

tabulated in Table 1. 

 

Table 1. Existing works on stability of NMPC 

 
Reference Stability Analysis 

[37] 
The stability conditions for NMPC are analyzed with cyclically varying horizons. Structured terminal constraints and terminal 

penalties are considered to analyze the stability conditions. 

[38] The properties of nonlinear programming problems (NLPs) are explored to improve the stability and robustness of NMPCs 

[39] 
The partial stability analysis of NMPCs is analyzed by determining the behavior dynamic NMPC systems considering terminal 

costs and constraints 

[40] 
The inherent properties and robustness of NMPCs are analyzed to formulate economic NMPC. The study states that the system 

is practically stable even in the presence of disturbances 

[41] 
A long prediction horizon is provided to ensure stability of NMPC with desired output response. Results validate the 

practicability of the stability approach 

 

 

5. OPTIMIZATION TECHNIQUES FOR NMPCS 

 

The robust characteristics of NMPCs in terms of achieving 

stability under the presence of system disturbances makes it an 

appropriate choice for the design of control systems. As 

discussed in previous sections, it is challenging to obtain an 

appropriate solution for optimizing the nonlinear problem at 

each sampling instance. In this context, various formulations 

are introduced which can prevent the problems related to 

optimization. Different optimization techniques have been 

designed for NMPCs in past decades to optimize the problems 

of NMPCs, which are discussed as follows. 

 

5.1 Suboptimal NMPC 

 

The suboptimal NMPCs eliminates the need for finding the 

minimum value of a non-convex cost function by assuming 

that satisfying the constraints for a nonlinear system is the 

preliminary consideration [42]. If the optimization technique 

can provide desired outcome at each sub-iteration (within a 

sampling instance) and can minimize the cost function then 

optimization can be terminated and an optimal solution can be 

obtained with robust stability. After applying the optimization 

strategy, the system continues to be stable even after the 

sampling time is over. It can be said that it is reliable to 

minimize cost function continuously in order to achieve 

stability. The optimization technique proposed by Chen et al. 

[43] used a metaheuristic based genetic algorithm (GA) for 

optimizing the control sequence in NMPCs. The main 

objective is to minimize the computational burden on NMPCs 

by obtaining a feasible solution rather than computing optimal 

solutions for each sample interval. The solution obtained 

reduces the cost function instead of minimizing it. This 

technique significantly lowers the computational time at every 

iteration without affecting the performance of the system. The 

low complexity attribute of the GA algorithm makes it 

practically feasible for real time control systems. Another 

suboptimal optimization approach is proposed by Berning Jr 

et al. [44] which aims to control the uncertainties and help the 

system to be stable. In addition, the computationally intensive 
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NMPCs can be used to optimize the nonlinear problems 

without compromising on the performance of closed loop 

systems. 

 

5.2 Simultaneous approach 

 

Simultaneous approach is also termed as multiple shooting 

approach wherein the dynamics of the system at each sampling 

instance can be considered as nonlinear parameters for 

optimization [45]. In other words, an equality constraint 

should be satisfied for each sampling instance, as shown in 

below equation: 

 

Ŝi+1=ŷ(ti+1,Ŝi,ûi) (10) 

 

where, Ŝi is defined as an additional parameter used to solve 

optimization problem and can be used to determine the initial 

condition for each sampling instance ‘i’. After achieving 

convergence, all the trajectories of the system are aggregated 

together. Therefore, in addition to the input vector ûi {û1, 

û2, …, ûN}, the vector of Ŝi is also termed as the variable used 

for optimization. However, in both these techniques, the 

optimization problem can be solved using SQP methods. This 

method can be advantageous and possess certain drawbacks. 

For instance, the application of initial states Ŝi is considered as 

an effective optimization variable which can solve sparse 

behavior of the QP problem. This behavior can be considered 

to design a fast and robust strategy. The main disadvantage 

associated with the simultaneous approach is that it provides 

an appropriate state trajectory at the end of the iterative 

process. This increases the computational time and if the 

optimization is not completed on time, then it is not possible 

to ensure the possibility of the trajectory. 

 

5.3 Application of short horizons 

 

To achieve better computational performance, it is desired 

to apply short horizons since it reduces the required number of 

parameters and decision variables for optimization. However, 

it is feasible to implement long horizons for achieving 

satisfactory performance for closed loop systems. Multiple 

techniques are introduced to overcome the stability problem. 

In reference [46], a code generation strategy is proposed for 

managing short and long horizons in NMPCs. Existing RTI, 

QP, and condensing strategies are not suited for short horizons, 

and their execution time varies linearly with the increase in the 

length of the horizon. Correspondingly, Ławryńczuk and 

Nebeluk [47] proposed an algorithm which integrates all 

relevant features for optimizing the cost function. The main 

motive behind this approach is to reduce the computational 

load and to calculate the first step of the actual control 

sequence. In addition, the first step is required to estimate the 

remaining variables of the control sequence which is not 

calculated. Here, the required number of decision variables 

does not depend on the control horizon. This is feasible only if 

there is no sufficient time for calculating the complete control 

sequence and calculate only the first variable and predict the 

rest of the variables. An optimization algorithm that 

incorporates a single degree of freedom was implemented 

previously for NMPC based control systems. The optimization 

function is obtained by performing interpolation between the 

control law and a suboptimal control law. Here, the control law 

is considered as the absence of constraints (though it is not 

contributing to the stability of the system) and a suboptimal 

control law is directly related to the stability concerns. The 

interpolation between these two laws generates desired 

optimality and stability and the control law used for 

stabilization incorporates a single degree of freedom and can 

be executed by imposing an appropriate penalty on the 

convergence requirements and the cost function. 

 

5.4 Decomposition of the control sequence 

 

The prominent advantage of linear MPC systems is the 

implementation of free and forced response. This process is 

not well-suited for NMPC applications and as a result, the 

principle of superposition cannot be applied for this case. This 

concept can be transformed and then implemented for 

formulating NMPCs. In certain applications, predicting the 

system’s output can be carried out by including the free 

response of NMPCs and by adding the forced response from 

the linear model of the control system. The estimations are 

made in such a way that the response can be approximated due 

to the principle of superposition, which allows the division or 

decomposition of the control sequence into smaller segments 

and is applied only to linear systems. In addition, the 

estimation made in this way can be a better solution than the 

solutions obtained using a linear model for computing the 

output response. This problem can be resolved by 

manipulating the control sequence and the variables and such 

manipulated sequence can be used along with the fundamental 

control sequence and a series of control sequences with the 

manipulated parameters. The output of the process ‘j’ can be 

predicted and is calculated as the sum of the output of the 

process (yb(t+j)) and due to the incremented input sequences 

in addition to the response of the system (yi(t+j)), the future 

control sequence can be calculated. In this approach the 

responses from both linear and nonlinear models are used for 

computation wherein, the term (yb(t+j)) is used as a 

computation obtained from nonlinear model, while the term 

(yi(t+j)) is used as a computation obtained from a linear model 

of the control system. Correspondingly, the cost function is 

formulated as a quadratic function for all the decision variables 

and can be used to solve the QP sub problem as a linear MPC. 

Similar to the linear MPC, the principle of superposition 

cannot be applied for nonlinear systems. The output response 

obtained from the nonlinear system will align with the output 

response obtained from the linear MPC system, only if the 

sequence of the future variables is 0. If the output response 

does not align with each other, then the fundamental value is 

made equal to the last value of the control sequence along with 

the optimized control increment obtained by the QP algorithm. 

The same process is repeated until all the sequence of the 

future control sequence is set to zero. 

 

5.5 Feedback linearization 

 

For linearizing the feedback, the nonlinear MPC system can 

be converted to a linear MPC model by approximating the 

transformations. However, this is feasible only in certain cases 

and this does not hold good for all the cases. A sample instance 

for transforming nonlinear MPC into linear MPC is given as 

follows: 

Consider a nonlinear system whose process is determined 

using the state space model as shown in Eq. (11). 

 

𝑥(𝑡 + 1) = 𝑓(𝑥(𝑡)), 𝑢(𝑡)𝑦(𝑡) = 𝑔(𝑥(𝑡)) (11) 
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where, x(t+1) is the input sequence at a time instance t+1, u(t) 

is the initial state, y(t) is the output sequence and g(x(t)) is the 

future control sequence. The process of determining the input 

and state transformation functions denoted as: 𝑧(𝑡) =

ℎ(𝑥(𝑡)) 𝑎𝑛𝑑 𝑢(𝑡) = 𝑝(𝑥(𝑡), 𝑣(𝑡)). The term is modified as 

shown in Eq. (12). 

 

𝑍(𝑡 + 1) = 𝐴 𝑧(𝑡) + 𝐵 𝑣(𝑡)𝑦(𝑡) = 𝐶 𝑧(𝑡) (12) 

 

However, the linearization method is often characterized by 

two prominent limitations. The first drawback is associated 

with the transformation functions that can be computed only 

for certain cases and are not suitable for all cases. The second 

drawback is related to the constraints of the system which are 

mostly linear and can be converted into a different set of 

nonlinear constraints. 

In summary, the optimization techniques can ensure the 

stability of NMPCs by solving complex problems. It can be 

inferred that the suboptimal NMPC techniques do not ensure 

that global optimal solution. Instead, these techniques 

converge to a local optimum which is not the best solution for 

optimizing the control objectives. In certain cases, the 

suboptimal techniques have a negative impact on the 

performance of the NMPC systems compared to global 

optimization methods. Hence these methods are not suitable 

for applications that rely on global solutions. The simultaneous 

approaches are computationally intensive and are not effective 

in real-time control applications. Although short horizon-

based methods achieve excellent results in terms of improving 

the computational performance, they cannot capture the 

behavior of the system for a longer period and this drawback 

can reduce the performance efficiency of the system in a 

longer run. In addition, the limited predictive capability fails 

to capture the dynamics of the complex system under long 

term disturbances. Thereby these techniques do not exhibit 

desired performance in applications that require a longer 

prediction horizon to achieve high performance. Furthermore, 

the process involved in the decomposition-based methods and 

the feedback linearization methods are not appropriate for all 

applications. 

 

 

6. NMPC BASED CONTROL SYSTEMS FOR 

DIFFERENT APPLICATIONS 

 

Numerous applications have implemented different control 

systems based on NMPC. This section discusses some of the 

prominent control system designs for different applications. 

An advanced control algorithm based on NMPC for a 

variable speed wind turbine is presented by Dang et al. [48] 

for controlling the speed of the shaft to capture power at 

different speed levels and maintain the power level below the 

maximum level during high wind speed. Due to the drawbacks 

of power electronic converters, the torque generated is also 

kept below the maximum value. The dynamic system 

constraints are controlled by the NMPC algorithm which is 

considered as a potential solution by the researchers. The 

efficacy of the NMPC algorithm in regulating the speed of the 

turbine is validated through simulation. A NMPC based 

controlling system is proposed for thermal management (TM) 

in Plug-in Hybrid Electric Vehicles (PHEVs) is implemented 

by Lopez-Sanz et al. [49]. One of the important drawbacks 

associated with the TM process is the high energy 

consumption due to the increase in the count of low voltage 

components used for cooling processes. More complicated and 

advanced control techniques are required for reducing the 

number of components in TM and simultaneously reduce the 

energy consumption in PHEVs. In such cases, NMPCs act as 

a potential tool for solving multi objective problems in 

Multiple input- Multiple output (MIMO) systems. The NMPC 

proposed in this work for the TM and power electronic circuits 

in a PHEV is highly effective and is highly distinguishable 

from previous NMPC approaches in the domain of PHEVs. 

The complexity of the nonlinear control plants which are 

perturbed by the nonlinearity is reduced by controlling the 

system variables. Results show that the NMPC techniques 

reduce the power consumption by 5% approximately and 

optimizes the objective function and improves the 

performance by 30%. A similar approach based on traction 

control is presented by Tavernini et al. [50]. In the control 

system, the feedback law was obtained before and the 

variations in the system constraints with respect to different 

plant conditions were discussed. The explicit controller is used 

for controlling the prototyping unit and strengthens the 

performance of the controller by improving the computation 

time which is in the range of microseconds. The performance 

is compared with the explicit NMPCs along with a 

proportional integral (PI)-based traction controller. The 

performance is compared with one implicit NMPC and two 

explicit NMPCs for different control models by considering 

the transient behavior and without considering the load 

transfers. Results of the experimental evaluations show that 

explicit NMPCs are more suitable for improving the 

performance of the electric vehicles. With the advancements 

in the controlling strategies, NMPCs are also accompanied 

with artificial intelligence (AI) based techniques such as 

neural networks and deep learning models. A multi-level 

NMPC is used as controller by Lucia and Karg [51] which are 

employed for learning the policy of robust NMPCs using deep 

learning based deep neural networks (DNN). The 

implementation of NMPCs with DNN is based on the fact that 

deep learning (DL) models achieve phenomenal results in 

terms of improving the representation capabilities of the DNN 

compared to shallow learning models. The experimentation 

process validates the effectiveness of the DNN with several 

hidden layers incorporated to achieve a better process. On the 

other hand, shallow models do not achieve desired 

performance when used with multiple hidden layers. Results 

show that the DNN model improves the learning capabilities 

of the NMPCs. A similar approach is presented by Karg and 

Lucia [52] wherein a combined form of moving horizon 

estimation (MHE) and NMPC is considered to be more robust 

and stable not only because of its formulation but also its 

ability to solve two optimization problems at a time. However, 

this can be a complex task due to the time and resource 

constraints. In this research, the advantages of the DNN are 

exploited to obtain an optimal solution for both MHE and 

NMPC problems. The computational load is reduced by 

replacing the MHE constraints with the NMPC based on the 

learning aspects. Karg and Lucia [53] implemented a 

reinforced learning based robust NMPC control approach. The 

controllers designed using this approach is also known as 

imitation learning and have some significant limitations which 

makes it difficult for learning the behavior of the system which 

is not represented well and must be reevaluated by designing 

from the beginning once the controlling strategy changes. 

These drawbacks are addressed by integrating two factors such 

as imitation learning and the learning attributes of the 
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reinforcement learning (RL) algorithm. The main objective 

behind this work is to make an effective use of the control 

policy which is updated after every iteration using 

reinforcement learning. RL-based models can learn 

dynamically from the previous instances. In addition, the 

advantages of the RL algorithm make it easy to approximate 

the NMPC and the efficiency of combining two learning 

concepts is highlighted in this work and is validated through 

simulation results. The existing research works have validated 

the effectiveness of the DL based NMPCs in terms of 

optimizing the nonlinear problems and achieving better 

control over the system’s performance. 

 

 

7. CHALLENGES AND FUTURE DIRECTIONS 

 

Despite the advantages of NMPCs offered to enhance the 

stability of the closed loop control systems, there are certain 

challenges that restrict the performance efficiency of the 

NMPCs. This research identifies some of the prominent 

challenges, which can be summarized as follows: 

•It is difficult to solve highly nonlinear problems due to the 

constraints and difficulty in formulating the economic 

objectives in NMPCs. 

•The design of an effective nonlinear model is essential to 

accurately capture the intricate phenomena in the control 

systems and it is complicated to design such systems. 

•It is challenging to achieve a balanced tradeoff between 

tracking and correcting steady-state errors. This problem can 

be addressed by modifying the controller architecture, which 

is a difficult task. 

•There is a need for a deeper analysis which can focus on 

the stability and robustness of the NMPCs and this problem 

gets worsened when applied for open loop unstable systems. 

These challenges must be addressed effectively to increase 

the adaptability of the NMPCs to different applications. For 

further research, the study of NMPCs can be extended to solve 

the issue of stability in open loop unstable control systems. As 

inferred from existing research works, there is a limited focus 

on the review of NMPCs as more focus is given to the linear 

and conventional MPCs. In addition, it is also necessary to 

identify different types of open loop unstable control systems 

wherein NMPCs can be studied based on the specific concepts. 

These points contribute as a potential research gap which can 

be considered as directions for future research. 

 

 

8. CONCLUSION 

 

This paper emphasizes the study of NMPCs and its 

performance in different applications. NMPCs are most 

suitable for solving the nonlinear problems in control systems. 

Studies reveal that the design of NMPCs for different 

controllers is a difficult task and more advanced control 

strategies are required for addressing this complexity. A brief 

overview of the theoretical aspects and optimization of 

NMPCs using different techniques is presented in this paper. 

In addition, the application of NMPCs for different 

applications is discussed and the prominent observations are 

recorded. The prominent observations of this research can be 

summarized as follows: 

NMPCs can effectively handle highly nonlinear dynamics, 

constraints, and uncertainties, which are persistent in modern 

engineering and control applications.Algorithms such as IP 

and SQP techniques are used to solve optimization problems 

in NMPCs by achieving global convergence. The performance 

analysis demonstrates the effectiveness of NMPC in achieving 

superior control objectives and its ability to handle challenging 

control scenarios. 

The paper also outlines prominent research challenges as 

observed from the existing literary works and identifies the 

research gap for further research.  
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NOMENCLATURE AND SUBSCRIPTS 

 

MPC Model predictive control 

NMPCs Nonlinear MPC 

LMPC  Linear model predictive control 

OCP Optimal control problem 

NLP Nonlinear program 

SQP Sequential quadratic programming 

RTI Real-time iteration 

KKT Karush-Kuhn-Tucker 

TM Thermal management 

PHEVs Plug-in Hybrid Electric Vehicles 

MIMO Multiple input- Multiple output 

PI Proportional integral 

AI Artificial intelligence 

DNN Deep neural networks 

DL Deep learning 

MHE Moving horizon estimation 

RL Reinforcement learning 
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