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CVBEM is a numerical method of solving boundary value problems that satisfy Laplace's 

Equation in two dimensions. Three key parameters that impact the computational error and 

functionality of CVBEM are the basis function, the positions of the modeling nodes, and 

the coefficient determination methodology. To demonstrate the importance of these 

parameters, a case study of 2D ideal fluid flow into a 90-degree bend and over a 

semicircular hump was conducted comparing models using original CVBEM, complex 

log, complex pole, and digamma function variants basis functions, using two different 

NPAs, NPA1 and NPA2, and using collocation and least squares methods to determine 

coefficients. Results indicate that the combination of the original CVBEM basis function, 

NPA2, and least squares results in an approximation with the least computational error. 

Moreover, least squares appear to enable stability in both NPAs regarding reduction of 

computational error due to taking advantage of all boundary data and more stable condition 

number growth.  By exploring the interaction of the three main CVBEM parameters, this 

paper clarifies the unique impact they have on the modelling process and explicitly 

identifies a fourth parameter, collocation point placement, as being impactful on 

computational error. 
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1. INTRODUCTION

The traditional computational methods of finite element, 

finite difference, control volume and similar, boundary 

element, meshless methods among others, use the problem 

boundary to develop a modeling node placement pattern. The 

literature contains numerous examples of model nodes being 

placed on the problem boundary and then an interpolation 

scheme is applied to develop an approximation function 

defined along the problem boundary. Indeed, model nodes are 

typically placed before any modeling is undertaken.  The 

methodology discussed in the current paper, CVBEM, uses 

modeling results to determine computational error along the 

problem boundary for subsequent use in model node 

positioning. Algorithms have been developed to accomplish 

this search and adjustment task called Nodal Positioning 

Algorithms or NPA [1-3]. Thus, the model node distribution 

is developed as part of the presented modeling procedure. Use 

of nodes exterior of the problem domain are commonplace, 

however, because of the singularities typically involved with 

many types of basis functions, nodes are usually excluded 

from the problem interior. The final node distribution 

developed by application of the NPA (such as presented below) 

is therefore dependent not only upon the type of basis 

functions used in the approximation but the problem definition 

itself. Numerous tests of the presented computational 

procedure show that final node positions seldom occur on the 

problem boundary, but instead arise in the problem domain 

exterior such as seen in the example problem.  

Use of the described modeling procedure has been highly 

successful in achieving computational error reduction in 

comparison to other computational methods such as domain 

methods and the like. In this paper, we use MATLAB software 

on a laptop as the computational engine. The presented 

methodology leverages application of a defined computational 

error to formulate model node spatial patterns from which a 

plot of computational error versus model number of nodes is 

developed as a modeling outcome. 

1.1 The approximation function 

The approximation function used is the linear sum of 

complex basis functions multiplied term-wise by complex 

coefficients. Complex coefficients are determined by equating 

the approximation with known values of the problem solution 

in a collocation process. Initially, the collocation process is 

part of an iterative process where approximation coefficients 

are determined in their entirety as a sequence of values for both 

the real and imaginary parts of each coefficient. Assuming that 

the domain of interest is a simply connected domain Ω ⊂ ℝ2

where Laplace’s equation holds, and Ω  is an open set, the 

CVBEM approximation function is of the form: 

𝜔̂(𝑧) =   ∑ 𝑐𝑗𝑔𝑗(𝑧)𝑛
𝑗=1 (1) 

where 𝑐𝑗 ⊂ ℂ  is a complex coefficient, 𝑔𝑗(𝑧)  is a complex

variable function that is analytic within Ω and harmonic, and 
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𝑛  is the number of basis functions, or nodes, used in the 

approximation function [4, 5]. In contrast with real variable 

methods that utilize real coefficients, the complex coefficients 

consist of a real and imaginary part. Thus, for each basis 

function there are two degrees of freedom (DOF). In other 

words, for 𝑛 nodes, there are 2𝑛 DOF that are determined by 

2 𝑛  collocation points through collocation. The additional 

degrees of freedom could account for differences in 

computational error when comparing CVBEM to real variable 

methods. 

 
∂𝑢

∂𝑥
=

∂𝑣

∂𝑦
 (2) 

 
∂𝑢

∂𝑦
= −

∂𝑣

∂𝑥
 (3) 

 

Because the approximation is comprised of harmonic 

functions, its real and imaginary parts are related through the 

Cauchy-Riemann Eqs. (2) and (3), and the potential lines and 

streamlines are orthogonal in the resulting flow net plot. Thus, 

when only the real or imaginary part can be modelled due to 

the available data, the other part can be easily determined 

using the Cauchy-Riemann equations [6, 7]. 

In summary, the three key parameters of the CVBEM 

methodology are the used basis functions, of which there is a 

diverse selection, the position of nodes, and the methodology 

to determine the approximation function coefficients. 

Numerous studies have explored the impact of these three 

parameters on the resultant models, especially in 

computational error. 

 

1.2 Basis functions 

 

The basis function to be used is an important consideration 

of the CVBEM modelling process. To ensure that linear 

combinations of basis functions are harmonic and satisfy the 

Laplace equation over the problem domain, the selected basis 

functions are analytic. The underpinnings of this process can 

be found in publications prepared by Walsh, which predates 

the advent of the digital computer, where he proves several 

theorems regarding the approximation of complex analytic 

functions bounded by Jordan arcs [8, 9].  

The family of basis functions that can be used for CVBEM 

modelling is any harmonic function that is analytic in the 

problem domain of interest. Previous research has explored the 

application of the following basis functions in CVBEM 

modelling and has illustrated that the main difference is how 

fast the approximation function converges [10]. 

1. Complex linear polynomials multiplied with the 

complex natural logarithm (this is also the original 

CVBEM basis function and will be referred to as 

CVBEM basis function): 

a. (𝑧 − 𝑧𝑗)ln(𝑧 − 𝑧𝑗) 

2. The complex natural logarithm: 

a. ln(𝑧 − 𝑧𝑗) 

3. Complex monomials: 

a. (𝑧 − 𝑧0)𝑗 

4. Laurent series expansion: 

a. 
1

(𝑧−𝑧1)𝑗 

5. The simple complex pole: 

a. 
1

𝑧−𝑧𝑗
 

6. The digamma function, 𝜓, and its variants: 

a. Digamma Basis Function: 𝜓𝛼𝑗
(𝑧 − 𝑧𝑗) 

b. Variant 1: (𝑧 − 𝑧𝑗)𝜓𝛼𝑗
(𝑧 − 𝑧𝑗) 

c. Variant 2: (𝑧 − 𝑧𝑗)[𝑙𝑛(𝑧 − 𝑧𝑗)]
𝛼𝑗

𝜓𝛼𝑗
(𝑧 − 𝑧𝑗)  

Depending on the selected basis function, special 

considerations may need to be taken such as rotating the 

branch cuts of the complex natural logarithm so that each 

branch lies in the exterior of the problem domain. 

Consequently, the resulting approximation function will be 

analytic within the problem domain [10].  

 

1.3 Location of nodes 

 

It has been illustrated that the computational error of 

CVBEM and other methods tends to decrease as the number 

of nodes increase, but a long standing issue has been how to 

choose the location of the nodes and collocation points [3, 11, 

12]. In this regard, there are two main approaches: one is when 

the node locations are determined. Various node distributions 

where node locations are determined have been assessed, such 

as nodes uniformly spaced on a circle, nodes located a constant 

distance away from the problem boundary, and nodes on an 

evenly spaced grid around the problem domain [11]. Because 

the node locations are predetermined, there is high 

computational efficiency, but the computational accuracy of 

the models is unreliable. Thus, treating the node locations as 

another set of degrees of freedom is an alternative method that 

has been illustrated to reduce computational error [1-3, 11, 12]. 

The most recent algorithms developed for CVBEM but is also 

applicable to other methods like the Method of Fundamental 

Solutions is called the Node Positioning Algorithm (NPA1) 

and its refinement procedure (NPA2) [3]. 

 

1.3.1 NPA1 vs NPA2 

NPA1 works as described in the following steps: 

1. Generate two sets of points: Candidate nodes and 

candidate collocation points. Candidate nodes are 

located on the exterior of the problem domain, and 

candidate collocation points are located on the domain 

boundary. 

2. Select two initial collocation points to be used for 

collocation. Two collocation points are necessary 

because complex coefficients have two degrees of 

freedom, a real and imaginary part. From this point the 

NPA starts. 

3. For each candidate node, create a model and evaluate 

its error. Select the model that results in the least 

maximum error on the boundary. 

4. Evaluate the error of the selected model and select the 

next two collocation points to be the two greatest 

maxima of the error function. 

5. Repeat steps 3 and 4 until the desired number of nodes 

is achieved. 

NPA1 provides a methodology to select nodes with the 

intention of reducing the computational error of the model. 

Experimental results have illustrated its efficacy, but there it 

possesses a significant drawback. That is, NPA1, when 

selecting a new node, operates under the assumption that the 

selected nodes are correct. In other words, it does not consider 

the possibility that computational error can be reduced by 

adjusting the position of the previously selected nodes. 

Consequently, a refinement procedure was developed that 

specifically addresses this problem and named it NPA2. The 
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following steps describes NPA2:  

1. For simplicity, NPA2 will be described using an 

existing model with 3 nodes and their 6 

corresponding collocation points. These nodes and 

collocation points were selected through NPA2 in the 

sequence Node 1, Node 2, then Node 3. 

2. Test alternative positions for Node 1 to determine if 

there exist a different position that would reduce the 

maximum computational error of the model. If such a 

position is found, Node 1 is moved to that position. 

3. Repeat step 2 for Node 2 and Node 3, then continue 

the loop by going back through Nodes 1, 2, and 3 until 

no better position can be found for any of the nodes. 

4. When no better position can be found for the 3 nodes. 

The refinement procedure is complete. Node 4 can 

now be selected through NPA1, then the refinement 

procedure begins again, but with 4 nodes. 

In contrast with NPA1, NPA2 adjust every node’s position 

instead of solely the new node being added to the model, 

which results in lower computational error at the expense of 

time due to its greater complexity [3]. In summary, both 

NPA’s provide a better methodology for selecting nodes 

instead of using predetermined node locations and has been 

illustrated to reduce computational error in problems CVBEM 

has been historically used to solve, such as modelling the 

transportation of ground water contamination [1, 13]. 

 

1.4 Coefficient determination method 

 

Most recently, CVBEM research has looked at the method 

of determining coefficients of the approximation function as 

another avenue of customization of the CVBEM modelling 

process [14]. For nearly 40 years, collocation has been the 

foremost method for coefficient determination. However, a 

recent advancement was the development of a least squares 

methodology. The main difference between the two methods 

is how the collocation points are used. As described in Section 

1.1, collocation prescribes 2 collocation points for each node 

to determine the coefficients. Thus, if there were N total 

candidate collocation points and a n node model was being 

made, N-2n collocation point would have no effect on the 

model. The advantage of collocation is that the approximation 

function will satisfy the boundary conditions at the used 

collocation points with zero error. Conversely, least squares 

takes advantage of all available boundary data to compute the 

coefficients of the approximation. However, instead of exactly 

satisfying a subset of collocation points, it instead minimizes 

the sum of the squares of the error between the approximation 

and all the collocation points. Despite not exactly fitting any 

of the boundary conditions, using least squares has resulted in 

comparable computational error to collocation. 

 

1.5 Computational error analysis 

 

In this work, we define computational error function as 

magnitude of the difference between the CVBEM 

approximation function and the known boundary function, 

𝑓(𝑧): 

 

𝐸 = ‖𝑓(𝑧) − 𝜔̂(𝑧)‖ (4) 

 

Because the CVBEM approximation function is a linear 

combination of functions analytic in the problem domain, thus 

it itself is also analytic within the problem domain. It follows 

that the real and imaginary parts of the problem domain are 

related through the Cauchy-Riemann equations, so the real and 

imaginary parts are consequently harmonic. As a result, 

because the target function and CVBEM approximation 

functions are both harmonic, their difference, which is the 

error function, is also harmonic. This property is pivotal in the 

error analysis of CVBEM approximation functions because 

the maximum and minimum principle of harmonic functions, 

which states that the maximum and minimum values of a 

harmonic function are located on the boundary of its domain. 

Therefore, because the error function is harmonic, it is known 

that the point of maximum error is located on the boundary of 

Ω . When the error of CVBEM models is plotted for 

comparison, the maximum error is plotted against the number 

of nodes in the model, which is equivalent to the number of 

terms in the CVBEM approximation function. While the 

computational error of CVBEM models has always been 

assessed in the literature in regard to its magnitude, this paper 

seeks to reveal more about intricacies of the error’s behavior 

throughout the modeling process. 

 

 

2. CASE STUDY: IDEAL FLUID FLOW INTO 90 

DEGREE CORNER AND OVER A CYLINDRICAL 

HUMP 

 

A case study is used to demonstrate the results of the 

CVBEM modeling procedure. It is ideal fluid flow into a 90 

degree bend and over a semicircular hump. This problem was 

selected because it contains three stagnation points located at 

the 90 degree bend and at the left and right ends of the hump. 

Due to the extreme curvature of solutions at stagnation points, 

they are particularly difficult to model. Similarly, the north 

pole of the semicircular hump exhibits extreme curvature, 

which make it a difficult are to model. This complexity 

requires the use of more nodes to be effective in reducing error, 

which will make it easier to observe trends in error reductions. 

The exact definition of this example problem is found in Table 

1 and the initial problem geometry is depicted in Figure 1. 

 

Table 1. Problem definition 

 

Problem Domain 
Ω = {0 ≤ 𝑥 ≤ 8,0 ≤ 𝑦 ≤ 5, and 

(𝑥 − 5)2 + 𝑦2 ≥ 1}  

Governing PDE ∇2Ψ = 0 

Boundary Conditions Ψ(𝑥, 𝑦) = ℜ [𝑧2 + 𝑧 +
10

𝑧 − 5
] 

Candidate Nodes 500 

Candidate Collocation Points 1000 

Selected Nodes 40 

Selected Collocation Points 80 

 

The main results of this case study are presented in Figure 

2, where the log10 of the maximum error for each of the 

models is plotted. For collocation and NPA1, the model that 

resulted in the lowest maximum computational error used 

digamma variant 1 as the basis function and achieved a 

maximum error of 1.190995×10-5. The digamma variant 2 

basis function achieved 2.100197×10-5 as the lowest 

maximum computational error for collocation with NPA2. 

Digamma variant 1 also had the lowest maximum 

computational error for least squares with NPA1, which was 

2.110717×10-5. Finally, the model that resulted in overall 

lowest maximum error used least squares, NPA2, and the 

CVBEM basis function. Its error was 2.465528×10-6. 
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Figure 1. Initial distribution of candidate nodes and 

collocation points for every model  

 

Clearly, different combinations of basis functions, NPAs, 

and methods to determine coefficients produce different error, 

and the results replicate previous findings. Figure 2 illustrates 

that the different basis functions affected the rate at which the 

numerical solution converges, with digamma variant 1, 

digamma variant 2 and the CVBEM basis function converging 

the fastest in their respective modelling scenario. 

Results regarding the NPAs support NPA2’s greater relative 

error reduction capability compared to NPA2, with two 

exceptions: using collocation, the digamma and digamma 

variant 1 basis functions had more computational error when 

NPA2 was applied compared to NPA1 (see Figure 3). In both 

cases, NPA2 starts off with less error, but eventually its error 

overtakes the error of NPA1. This highlights the potential for 

NPA2 to select a path of nodes that results in greater error in 

NPA1 despite the refinement procedure that NPA2 

implements. A potential explanation is the order of the nodes 

that the refinement procedure is applied to. In other words, in 

the same vein that NPA1 was flawed, NPA2 exhibits the same 

flaw when it starts its refinement procedure from the first 

selected node, which can lead to different model from NPA1 

but not necessarily one with less computational error. This is 

further supported by Figure 4, where there is a large spike at 

the 27th term for the condition number of collocation that 

coincides with the spike in maximum computational error 

observed in Figure 2. In essences, the node that ends up being 

selected causes the condition number to increase greatly when 

compared to the expected increase the come with a growing 

matrix, which ultimately results in more computational error. 

One potential mitigation for this issue is to increase the 

number of candidate nodes, which will give both NPAs more 

nodes to choose from, which could strengthen the error 

reduction due to refinement in NPA2. This can be done by 

increasing the density of candidate nodes in the candidate node 

space or by expanding the candidate node space and 

maintaining the density. 

When least squares was considered alongside collocation, 

in addition to ultimately resulting in the model with the least 

computational error, the error plots also demonstrated a 

distinct stability in error reduction. 

That is, for both NPA1 and NPA2, the error plots for least 

squares demonstrate a monotonic reduction in computational 

error, whereas the collocation models have occasional 

increases in computational error as seen in Figures 3A and 3B. 

This can be attributed to differences in how collocation and 

least squares handle the boundary data. For collocation, 

because the information the approximation has concerning the 

boundary of the problem is limited to the collocation points it 

utilized, what happens is at the start of the algorithm is selected 

collocation points could be clustered withing a certain region 

of the problem boundary, so the model approximates that part 

of the problem well. However, the regions with no collocation 

points are poorly approximated, which eventually causes the 

spike in error. The NPAs actually account for this by selecting 

new collocation points at the two highest maxima of the error 

function, which is why the error starts to decrease again. In 

contrast, because least squares utilizes all of the boundary data, 

as more nodes are added to the approximation, the error across 

the boundary decreases, not just around a few selected 

collocation points. This is reflected in the condition number 

for least squares, where it grows with relative stability and no 

spikes. 

 

 
(A) 

 
(B) 

  
(C) 
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(D) 

 

Figure 2. Log10 error for each of the created models plotted 

against the number of terms in the CVBEM approximation 

function 

 

 
(A) 

 
(B) 

 

Figure 3. Error plots for the digamma and digamma variation 

1 basis functions using collocation  

 

 
 

Figure 4. Log10 of condition number plotted against the 

number of approximation terms 

3. THE FUTURE OF THE CVBEM 

 

Improving the CVBEM process generally means reducing 

computational error. Investigations into new basis functions 

and NPA's are the primary avenue through which 

improvement has been sought. However, it has been illustrated 

that the selection method for collocation points and the 

coefficient determination method also have import effects on 

computational error. Thus, advancement can be focused in 

these four areas. 

It has been well established by this paper and previous 

papers that different basis functions have different rates of 

convergence. A potential avenue of advancement is using 

multiple different basis functions within the same 

approximation. In other words, instead of each term in the 

approximation function being of the same basis function, the 

CVBEM algorithm selects the best node and basis function 

combination for each term. Through this, computational error 

can be reduced because the approximation could now be a 

better representation of the actual solution. For instance, the 

function that was being approximated in this case study was 

𝑧2 + 𝑧 +
10

𝑧−5
, which consists of two complex monomials and 

a complex pole. Using both of those types of basis functions 

in an approximation would be a better representation of the 

actual problem and could lead to being able to accurately 

model the problem with less nodes. 

Regarding the NPA and collocation point selection, this 

paper explained how spikes in error can occur due to poor node 

and collocation point selection. Currently, the NPA selects the 

two highest maxima of the error function as collocation points, 

which allows those same points to have essentially no error in 

the subsequent model. However, this can lead to sections of 

the problem boundary having no collocation points, which can 

cause a spike in error. A potential alternative collocation point 

selection method is to have the subsequent collocation points 

be furthest from the selected collocation points by average 

distance. This may enable the collocation method to use a 

more diverse portion of the problem boundary, which may 

reduce the spikes in error. 

Finally, while least squares was previously illustrated as a 

viable coefficient determination method, and the distinctive 

characteristic of using all available boundary data was noted 

in a previous study, analysis of its effect on the behavior of the 

error and error reduction potential was not conducted. The 

observed stability of the error in least squares when compared 

to collocation is grounds to explore the impact of other 

coefficient determination methods. For instance, to address the 

increasing condition number as the number of nodes in the 

approximation increases, methods that utilize preconditioning 

could increase the rate of convergence through reduction of 

the condition number. 

In addition to computational error reduction, another future 

investigation for CVBEM is shifting from 2D to 3D, which 

would allow more comprehensive models to be made. The 

biggest challenge here is the increase in the size of the domain, 

which would exacerbate the issue with collocation point 

selection. Consequently, least squares may prove to be better 

suited to 3D applications.  
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NOMENCLATURE 

 

𝑐  complex node coefficient 

ℂ  set of complex numbers 

CVBEM complex variable boundary element method 

E computational error function 

𝑓  boundary condition function  

𝑔  approximation term/basis function 

𝑛  number of nodes in approximation function 

NPA mode positioning algorithm 

ℝ  set of real numbers 

ℜ  real part 

z complex variable, 𝑥 + 𝑖𝑦 

 

Greek symbols 

 

Ω simply connected domain 

𝜓  digamma function 

𝜔̂  CVBEM approximation function 

 

Subscripts 

 

𝛼  
Clockwise rotation angle of digamma axis and 

natural log branch cut 

𝑗  node index 
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