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Numerous coffee devotees believe that the coffee smell plays a vital role in the coffee-

drinking insight, complementing the taste and enhancing delight. In the traditional 

strategy, aroma patterns and profiles are observed by extensive investigation of human 

olfaction. However, the outcome tends to be imprecise. Tackling the difficulties 

encountered in distinct scent profiles linked to various coffee bean varieties, including 

Arabica, Robusta, Monsoon Malabar, Chikmagalur, and Coorg coffee, as well as diverse 

roasting techniques, through the utilization of Electronic Nose Applications for the 

investigation of coffee aromas. The suggested methodology employs e-nose technology 

utilizing conducting polymer sensors to detect aroma volatile chemicals found in coffee, 

including furaneol, 2-methylisoborneol, and 3-methylindole. The e-nose olfactory 

characteristics of coffee beans at various stages of roasting are systematically examined 

and discernible patterns are duly identified. The average intensity of the coffee aroma 

perceived at a distance of 10 centimeters was rated as 3.9 on a scale of 5. The observed 

standard deviation of coffee aroma intensity at a distance of 10 centimeters was determined 

to be 3.8 on a scale of 5. The p-value associated with the disparity in average fragrance 

scores was determined to be 0.05. 
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1. INTRODUCTION

With rising global consumption, coffee has become one of 

the world's most popular beverages. Coffee companies are 

focusing on improving quality and adopting various 

forecasting approaches in response to rising demand. Coffee 

fanatics all across the world admire Indian coffee for its rich, 

diverse quality. In India, coffee has a long and rich history 

accomplishing way back to the 16th century. It is said that 

Baba Budan, a Sufi saint, brought seven coffee beans from 

Yemen and planted them in the hills of Chikmagalur, in the 

Indian state of Karnataka. The coffee plant expanded rapidly 

over the country after its seeds were germinated in the Western 

Ghats' cool, humid climate. Coffee cultivation had become an 

important sector of commerce in India by the 18th century, 

especially in the southern regions of Karnataka, Kerala, and 

Tamil Nadu. Initially, Indian coffee was raised mostly by 

small-scale farmers and sold in neighborhood markets [1]. To 

expand output, the British constructed enormous coffee 

plantations in the highlands of southern India, employing 

forced labor and improved methods of farming techniques. By 

the turn of the twentieth century, India had emerged to become 

one of the world's most important coffee producers, with 

shipments to Europe and other parts of the world. This 

distinctive flavor profile of Indian coffee was impacted by the 

country's diverse terrain and climate. Today, India continues 

to be a major coffee grower, contributing to an estimated 3% 

of global coffee production. Arabica and Robusta coffee beans 

have unique scent characteristics that help distinguish them as 

indicated in Table 1. One such technique involves the use of 

Electronic Nose Applications (e-noses), which can detect and 

analyze the aroma profiles of coffee samples [2]. Conductor 

polymer sensors detect the presence of volatile organic 

compounds in coffee aroma and detect the freshness of the 

coffee. 

Table 1. History of coffee and its flavor 

Type History Grown Flavor 

Arabica 

coffee 

17th 

century 

Hills of Karnataka, 

Tamil Nadu, and 

Kerala 

The mild, fruity 

flavor is often 

used in blends 

Robusta 

coffee 

20th 

century 

Southern states of 

Karnataka, Kerala, 

and Tamil Nadu 

Strong, bold 

flavor and higher 

caffeine content 

Monsoon 

Malabar 

coffee 

19th 

century 

Malabar Coast of 

Karnataka, Kerala, 

and the Nilgiris 

mountains of Tamil 

Nadu 

Strong spicy, 

smoky, and earthy 

notes or malty 

sweetness. 

Chikmagalur 

coffee 

9th 

century 

Chikmagalur district 

of Karnataka 

Bright, floral 

aroma and rich, 

fruity flavor with 

notes of chocolate 

and caramel. 

Coorg coffee 
17th 

century 

Coorg region of 

Karnataka 

Fruit and a hint of 

acidity 
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The human brain consists of five senses olfactory which 

uses most of the brain area in our daily lives The Gustatory 

Cortex is for taste, the Auditory Cortex is for hearing, the 

Visual Cortex is for seeing, and the Olfactory Cortex is for 

Smell. There are two ways of smell detection Orthonasal smell 

and Retronasal smell. An Electronic Nose Application is a 

device that can detect and identify different odors or smells. 

Electronic Nose Applications analyze the volatile compounds 

in a sample and compare them to a database of known smells. 

In the case of coffee, an Electronic Nose Application could be 

used to identify different varieties of coffee based on their 

aroma. The Electronic Nose Application recognizes harmful 

or deadly gases that human sniffers cannot. An Electronic 

Nose Application is equipment that detects and recognizes 

various odors or aromas [3]. Electronic Nose Applications 

analyze the volatile substances in a sample and compare them 

to a database of recognized odors as indicated in Figure 1. In 

the instance of coffee, an Electronic Nose Application might 

be used to distinguish between various types based on their 

smells. 

 

 
 

Figure 1. Coffee smell and categories 

 

A possible approach to building an Electronic Nose 

Application for detecting coffee categories is training it on the 

distinct volatile substances in each variety. Coffee aroma is 

composed of a variety of volatile molecules that add to its 

distinct and complex fragrance, including aldehydes, ketones, 

pyrazine, thiols, esters, and others. Electronic Nose 

Applications are assembled from a network of sensors 

designed to detect a wide variety of chemicals. The Electronic 

Nose Application works by analyzing the unique pattern of 

signals it generates in response to a sample used to identify the 

substances it contains. E-nose (Electronic Nose Application) 

systems commonly use electronic signal processing. It's a term 

for the methods by which the electrical signals generated by 

the e-nose sensors are extracted and analyzed. E-nose sensors 

react to volatile organic compounds (VOCs) in a coffee sample 

by sending out complex and often audibly distracting 

electronic signals [4]. Electronic signal processing techniques 

are used to eliminate noise from sensor data and retrieve 

pertinent data. Hierarchical clustering, formerly referred to as 

cluster analysis with hierarchical structure or HCA is another 

unsupervised Machine Learning Techniques approach for 

clustering unlabeled datasets [5]. The construction of a cluster 

hierarchy in the outline of a tree is referred to as hierarchical 

clustering, and this tree-shaped structure is known as the 

dendrogram. K-means and hierarchical clustering results can 

appear identical at times, however, could vary depending on 

how they work [6]. Agglomerative (bottom-up) and Divisive 

(top-down) techniques are used for hierarchical clustering. 

A dendrogram, which is a tree-like envision generated by 

hierarchical clustering, displays the hierarchical relationships 

between groupings. Individual data points are at the bottom of 

the dendrogram, while the largest clusters, which contain all 

of the data points, are at the top. The dendrogram can be cut at 

different heights to yield varying numbers of clusters [7]. 

Section 2 discusses the related work of the existing model in 

detecting and categorizing coffee aromas. 

 

 

2. RELATED WORK 

 

Zhang and Deng [8] proposed employing an Electronic 

Nose Application to identify odors inspired by extreme 

learning machines. The self-expression model (SEM) and the 

extreme learning machine (ELM) are two real-time verified 

methods for detecting aberrant odor 96 target samples and 24 

aberrant samples were used in training and testing. The scents 

of perfume, flowery water, and fruits were used in Real-Time 

Abnormal Odor without Target Odor. The intended odor 

recognition rate is 90.67%, whereas the anomalous odor 

recognition rate is 91.67%. Fang et al. [9] proposed an 

olfactory algorithm in all features based smart Electronic Nose 

Application. The technique mixes one-dimensional 

convolutional and recurrent neural networks. Deep-learning-

enabled sensor array code signs and recognition algorithms 

may aid in meeting the growing need for a large number of 

highly specialized gas sensors. Deep-learning-enabled e-nose 

code sign paradigm that automatically learns target-specific 

features and optimizes sensor materials and sampling 

procedures iteratively. 

Liu et al. [10] proposed wine properties detection using a 

MOS sensor and Machine Learning Techniques algorithm 

using an Electronic Nose Application. Odor detection includes 

the area of production, fermentation process, vintage years, 

and variants of four groups of test runs, the extreme gradient 

boosting (Xgboost), support vector machine (SVM), random 

forest (RF), and backpropagation neural network (BPNN) 

datasets were utilized, and the results were achieved 94% by 

analyzing wine properties for 450 in 6 matrices, 600 in 6 

matrices, 450 in 6 matrices, or 600 in 6 matrices, 

correspondingly. Tan and Xu proposed a review of food 

quality with related properties for e-nose and e-tongue 

determinations. Feature extraction and classification used 

ANN and CNN based on the Electronic Nose Application. A 

coffee sample size is type typically and was collected and 

tested for training and validation [11]. 

Mu et al. [12] developed Machine Learning Techniques and 

algorithms for detecting milk sources and estimating milk 

quality. Milk fats and proteins are enhanced with an estimated 

accuracy of 95% using Dairy Herd Improvement (DHI) 

analytical data that collects data on dairy cows, including their 

milk production, health, and reproduction, and a five-fold 

cross-validation technique dividing the data into five-fold, and 

then training the model on four of the folds and testing it on 

the remaining fold. This process is repeated five times, and the 

results from the five tests are averaged to get an estimate of the 

model's performance based on milk odor features using an 
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Electronic Nose Application. Xu et al. [13] proposed an 

approach for psychiatric symptoms and volatile organic 

compounds in trans-diagnostic samples using an Electronic 

Nose Application. 1200 participant’s characteristics were 

collected based on age, sex, smoking status, BMI, depression 

PHQ-90, Anxiety OASISd, Addiction DAST-10e, Race 

Ethnicity, and Education datasets were collected and 

processed using Machine Learning Techniques and data 

analysis. Hayasaka et al. [14] proposed a Machine Learning 

Techniques-based strategy based on three types of gas water 

(H2O), methanol (MeOH), and ethanol (MtOH) in a single 

graphene FET using e-nose. MFC1 and MFC2 controlled the 

background R.H., while MFC3 controlled the target gas 

concentration. Controlling overfitting and performing cross-

validation tests ensured accuracy. 

Dadi et al. [15] suggested a sensor array reduction for 

detecting odor utilizing e-nose. The cross-validation approach 

is used to calculate performance using the usual leave-one-

group-out and group shuffling methods. The increased odor 

recognition power of e-noses obtained 95% performance from 

training and cross-validation. Ye et al. [16] developed recent 

developments towards smart Electronic Nose Applications, a 

Machine Learning Techniques approach. Advanced Machine 

Learning Techniques and methodologies are required for the 

e-nose to improve its performance and capabilities in a variety 

of applications, including robotics, food engineering, 

environmental monitoring, and medical diagnosis. Using 

Machine Learning Techniques and algorithms improved both 

qualitative and quantitative analysis outcomes. A Machine 

Learning Techniques-based prediction approach for detecting 

coffee quality from green to roasted coffee beans was 

proposed by Suarez-Peña et al. [17]. The neural network 

algorithm is compared to support vector classification. The 

findings of the analysis of green coffee bean attributes were 

predicted as high or low with a classification shoehorn 

accuracy of 81% using 10-fold stratified cross-validation 

procedures. 

Harsono et al. [18] advocated employing e-nose in Machine 

Learning Techniques to recognize odors in original Arabica 

civet coffee. This study focuses on a blend of Arabica civet 

coffee and Robusta coffee, which results in nine different 

mixing combinations. A statistical computation would be 

determined to obtain parameter statistics. Furthermore, the 

classification approach used in this work is intended to 

discriminate between original Arabica civet coffee and 

original Robusta coffee. The KNN technique yields the best 

results, with an accuracy rating of 97.7% for nine classes as 

indicated in Table 2. 

Caporaso et al. [19] suggested a hyperspectral imaging-

based prediction method for single-roasted coffee beans. The 

current work used hyperspectral imaging (1000-2500 nm) to 

predict volatile chemicals in single roasted coffee beans, as 

assessed by Solid Phase Micro Extraction-Gas 

Chromatography-Mass Spectrometry and Gas 

Chromatography Olfactometry. Individual beans can be 

separated, resulting in batches of coffee with varying volatile 

flavor element combinations. 

Hendrawan et al. [20] and colleagues suggested utilizing 

Deep Learning approaches to detect and categorize purity 

levels in luwak coffee green beans. The study sought to detect 

and classify the purity of Luwak coffee green beans into four 

categories: deficient (0-25%), low (25-50%), medium (50-

75%), and high (75-100%). Based on the training and 

validation data, GoogleNet was recognized as the best CNN 

model with optimizer type Adam and a learning rate of 0.0001, 

with an accuracy of 89.65%. García et al. [21] proposed using 

computer vision to detect quality and flaws in green coffee 

beans. Color, morphology, shape, and size are all critical 

indicators of high-quality beans. To determine the quality of 

coffee beans, the k-nearest neighbor approach was applied. 

AI-based vision technique for choosing high-quality coffee 

beans to reduce production time and increase quality control. 

Angeloni et al. [22] proposed an expresso coffee aroma profile 

based on its properties and odorants. The odor of coffee 

arabica and canephora is evaluated using volatile analysis and 

chemical attributes to determine the granulomere of the coffee 

particles and the brew ratio, which can modify the aroma 

profile of the beverage. The optimized extraction procedure 

may enable greener EC preparation and consumption by using 

less coffee powder to generate the same amazing output. 

 

Table 2. Summary of coffee variety and aroma 

 

Reference Contributor Method Samples Accuracy 

[8] Zhang and Deng Self-expression and Extreme Machine Learning 96 samples 91.67% 

[10] Liu et al. MOS Sensor 1200 samples 94% 

[11] Tan and Xu ANN and CNN-based E-Nose 180 samples 91% 

[12] Mu et al. Milk Odor Features Based E-Nose DHI Samples 95% 

[13] Xu et al. Machine Learning Techniques and Data Analysis 1200 samples 95% 

[15] Dadi et al. Cross-validation method 650 samples 95% 

[17] Suarez-Peña et al. Support Vector Machine 597 samples 81% 

[18] Harsono et al. KNN 
Nine mixing 

combination 
97.7% 

[19] Caporaso et al. 
Chromatography-Mass Spectrometry and Gas Chromatography 

Olfactometry 

Solid Phase 

Micro 

Extraction 

1000-2500 

nm 

[20] Hendrawan et al. Deep Learning approaches  
75-100% Coffee 

Sample 
89.65% 

[23] Thanarajan et al. E-Nose Odor Categorization 97.1% 

[24] 
Raveena and 

Surendran 
Deep CNN ResNet50 459 samples 99.01% 

Thanarajan et al. [23] proposed using an Electronic Nose 

Application to control coffee output quality by odor 

categorization. Instant coffee samples are collected and 

analyzed depending on temperature, concentration, and brand, 

achieving 97.1% overall odor uniqueness. Raveena and 

Surendran [24] proposed using ResNet50 to classify coffee 

cherries. Six coffee stages are used for categorizing coffee 

cherries depending on coffee type and color variation. Using 
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Deep CNN models, the author achieved 99.01% accuracy. Lee 

et al. [25] proposed an artificial intelligence-based coffee 

aroma recognition-based fingerprint extraction method. 

Various fragrances of freshly roasted coffee were collected, 

and performance was calculated based on individual coffee 

aroma signatures of authentic quality. Dewangan et al. [26] 

developed a smell detection model based on Machine 

Learning Techniques code-based methods. The Chi-square 

feature extraction technique was used to pick the most 

significant features in each dataset. The Long-method dataset 

with the various selected sets of metrics produced the most 

accuracy (100%) for all five methods; however, the Max 

voting method produced the lowest accuracy (91.45%) for the 

Feature-envy dataset with the specified twelve sets of metrics. 

Zhang et al. [27] suggested a data preprocessing strategy based 

on polynomial curve fitting (PCF), locally weighted regression 

(LWR), wavelet package correlation filter (WPCF), and mean 

filter (MF) for recognizing and detecting coffee odor. The 

well-known Support Vector Machine (SVM) classifier has a 

classification accuracy of 96.23%. 

Gonzalez Viejo et al. [28] proposed the intensity of coffee 

aroma profile using an integrated electronic nose at a low cost. 

Aromatic chemicals in coffee and their representation in a 

principal component analysis. Overall 270 datasets were 

trained and validated to evaluate the Performance was 

assessed based on mean squared error (MSE). Tanveer et al. 

[29] proposed a Green requirement engineering for mobile 

application development based on IoT for gathering required 

mobile challenges. Section 3 discusses the Materials and 

Methods in the roasting process, and working of Electronic 

Nose application detection for coffee aromas. 

 

 

3. MATERIALS AND METHODS 

 

Electronic Nose Application uses conducting polymer 

sensors which have 12 sensor arrays to detect the VOCs in 

coffee aroma. Polyaniline (PANI) sensors made from 

polyaniline. PANI sensors are sensitive to a wide range of 

VOCs, and they can be used to detect the aroma of coffee, ten 

samples of Arabica coffee, twelve samples of Robusta coffee, 

seven samples of Monsoon Malabar coffee, five samples of 

Chikmagalur coffee, and eight samples of Coorg coffee were 

examined. Observed data is imported to a CSV file processed 

for a data science library, such as Pandas. Checked for missing 

values which can affect the missing values using the clustering 

algorithm. Data should then be normalized and features should 

be scaled so that they have a similar range. Model performance 

is measured using internal and external measurements. 

 

3.1 System architecture and execution 

 

High to High roast can bring the Expresso flavor of Italian 

and French coffee characteristics, and Medium dark to 

Medium dark roast can bring the Dark and full city flavor of 

coffee characteristics. Medium to Medium roast can bring the 

Dark and Rich flavor of coffee characteristic. 

The coffee having a light-to-light roast might have a 

cinnamon flavor. The venture began with processing green 

coffee beans under continual roasting conditions, ranging from 

unflavoured green beans to those with a distinct smell. 

Researchers then collected various pieces of freshly roasted 

coffee beans. They stored them in the device's concentrate 

container to capture the resulting coffee fragrance after a 

sufficient period of the discharge method. After that, the 

aromatic gas was transported to the e-nose device, where it 

interacted with sensors. The sensor data that emerged was then 

collected and preprocessed so that the procedure could be 

applied to as much relevant information as possible. The 

extracted fragrance dataset was utilized to train the machine-

learning models that were chosen for the recognition task as 

illustrated in Figure 2. 

 

 
 

Figure 2. System architecture 

 

3.2 Coffee roasting techniques 

 

Water covers 7 to 11% of the weight of a green coffee bean 

from various varieties such as Arabica, Indiana, Keny’s, S.795, 

Cauvery, and Chandragiri and is evenly distributed throughout 

the grain structure. Coffee beans cannot turn brown if there is 

water in the coffee cherry, hence the Stage 1 drying process is 

required. After the water in the coffee beans has evaporated, 

the first browning reaction occurs. The beans remain hard and 

substantial, with a faint aroma of Indian rice and a hint of bread 

flavor. The coffee beans will grow in size, and the silk cover 

will begin to peel away. Stage 2 is when the wind blows into 

the roasting cage and removes the silk skin from the coffee 

beans, which are then safely gathered to avoid burning. The 

initial break is stage 3 caused by the evaporation of Carbon 

dioxide gas and water vapour. The roasting process continues 

for flavor and aroma development, and the sourness will 

rapidly subside at this stage 4 [30]. After the second burst of 

roasting, the oil will begin to trickle over the surface of the 

coffee beans, and ordinary coffee flavor will develop. 

 

3.3 Experimental process 

 

The Experimental process is broadly divided into four 

stages. Stage one coffee is roasted and processed to the final 

stage. Stage two roasted samples as shown in Table 1, odors 

from processed samples are collected depending on several 

characteristics such as Arabica, Indiana, Keny's, S.795, 

Cauvery, and Chandragiri. Some measures are made based on 

VOC by comparing them to the aroma of newly roasted coffee 

placed in a chamber for the measurement process. The 

researchers next experimented with freshly roasted ground 

coffee, taking samples and roasting green coffee beans in a 
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lab-specific machine. Once the coffee had been suitably 

roasted, it was crushed and combined with hot water, which 

facilitated the measurement process because liquid coffee 

produced more volatiles, as seen in Table 2. Sample testing 

can be done by simply exposing the Electronic Nose 

Application to the coffee aroma in the liquid samples or air. 

Once the sample is gathered, the Electronic Nose Application 

employs conducting polymer sensors to determine the 

chemical makeup of the coffee aroma. Each sensor is tailored 

to detect a single chemical component or combination of 

chemicals. The sensors' data are then analyzed using 

algorithms to determine the distinct pattern of signals linked 

with the coffee fragrance. To identify the coffee odor, this 

pattern is compared to a database of known patterns. 

Depending on the application, the output of the Electronic 

Nose Application can be shown in a variety of ways. In a 

quality control predicament, the output might simply be a 

success or failure indicator depending on whether or not the 

coffee scent fits the required requirements. 

A complete examination of the chemical content of the 

coffee smell may be generated in a controlled laboratory 

setting. High quantities of 2-Phenylethanol and Citric acid in 

Arabica may imply a more flowery and acidic scent, but high 

amounts of Furaneol may indicate a sweeter, caramel-like 

aroma. High quantities of 3-methyl butanal and 2-methyl 

propanol in Robusta may suggest a nuttier and earthy scent, 

whilst high amounts of 2-Ethyl-3, 5-dimethyl pyrazine may 

indicate a smoky and somewhat bitter aroma. Greater 

quantities of 2-Methylbutanal in Keny's could point to a nutty 

and caramel-like scent, even with greater levels of 2-

Furfurylthiol may indicate a more intense roasted aroma. In 

S.795, higher 2-methylbutanal levels may imply a nutty and 

caramel-like scent, whilst higher 2-furfurylthiol levels may 

indicate a stronger roasted aroma. Greater quantities of 2-

methylbutanal in Chandragiri may imply a nutty, caramel-like 

scent, whilst greater levels of 2-Furfurylthiol may indicate a 

more determined roasted aroma. Representative coffee 

samples are selected based on variety and quality parameters, 

such as origin, roast level, and processing method. Once the 

samples have been selected, they are prepared for testing using 

standard procedures such as grinding and weighing. 

 

3.4 Electronic nose application 

 

Subsequently receiving coffee specimens and Electronic 

Nose Application will examine the aroma profile of the coffee 

by identifying and measuring the volatile organic compounds 

(VOCs) contained in the sample, as indicated in Table 3. These 

VOCs contribute to the coffee's distinct odor and flavor 

qualities, which the Electronic Nose Application can deeply 

analyze by the variety of chemical sensors, each of which is 

programmed to respond to a certain volatile organic compound 

(VOC). Conducting polymer sensors, conducting polymers, 

and carbon nanotubes are some of the materials that can be 

used to make these sensors. Each sensor's response is recorded 

and analyzed to determine the individual odors present in the 

sample. The Electronic Nose Application combines a variety 

of chemical sensors to detect and quantify the various volatile 

organic compounds (VOC) in coffee samples. It then 

compares the measured VOC patterns to a collection of known 

aroma profiles to determine the coffee's variety, age, and other 

features. Based on this study, the Electronic Nose Application 

can provide an exhaustive sensory rating of the coffee, 

including smell intensity, complexity, and balance. Coffee 

producers may utilize the aforementioned data to improve the 

quality and consistency of their coffee, allowing coffee 

enthusiasts to better understand and enjoy the coffee they are 

experiencing. 

 

Table 3. Characteristics of coffee aroma 

 
Coffee Type Chemical Compound Unique Aroma Method 

Arabica 

Coffee 

2-Phenylethanol 

2-Methylbutanal 2, 

3-Butanedion 

2,5-Dimethyl-4-hydroxy 

3(2H)-furanone (Furaneol) 

Floral Aroma 

Bright and Acidic Aroma 

Sweet Aroma 

Buttery or Creamy 

Caramel 

(GC-MS) Gas Chromatography-Mass 

Spectrometry 

Robusta 

Coffee 

3-Methylbutanal 

2-Methylpropanal 

2-Ethyl-3, 2-Ethyl-3,5-dime 

2-Methoxyphenol (Guaiacol) 

2-Isopropyl-3 methoxypyrazine 

Nutty Aroma 

Earthy Aroma 

Smoky and Bitter Aroma 

Woody and Spicy Aroma 

Strong and Pungent Aroma 

(GC-MS) Gas 

chromatography-Mass Spectrometry 

Keny’s 

Coffee 

2-Methylbutanal 

2-Furfurylthiol 

2-Isobutyl-3 -methoxypyrazine 

Dimethyl sulfide 

Nutty and Caramel Aroma 

Roasted and Burnt Aroma 

Green, Herbal, and Vegetative Aroma 

Sulfurous Aroma 

Volatile Organic 

Compounds 

S.795 

Coffee 

2-Methylbutanal 

2-Furfurylthiol 

2-Isobutyl-3 

Methoxypyrazine 

Guaiacol 

Nutty and Caramel Aroma 

Roasted and Burnt Aroma 

Green, Herbal, and Vegetative Aroma 

Sulfurous Aroma 

(GC-MS) Gas 

chromatography-Mass Spectrometry 

Carvery 

Coffee 

2-Methylbutanal 

2-Furfurylthiol 

2-Isobutyl-3 

Methoxypyrazine 

Guaiacol 

Nutty and Caramel Aroma Roasted and 

Burnt Aroma 

Green, Herbal, and Vegetative Aroma 

Sulfurous Aroma 

((GC-MS) Gas 

chromatography-Mass Spectrometry 

Chandragiri 

Coffee 

2-Phenylethanol 

2-Methylbutanal 

2-Furfurylthiol 

2-Isobutyl-3 -methoxypyrazine 

Guaiacol 

Roasted and Burnt Aroma 

Green, Herbal and 

Vegetative Aroma 

Sulfurous Aroma 

(GC-MS) Gas- Chromatography-Mass 

Spectrometry 
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3.5 Electronic signal processing 

 

E-signal processing is a technique used for processing and 

analyzing the signal generated by an e-nose sensor using VOC 

present in coffee samples. The quantity and variation in 

volatile organic compounds (VOCs) in Arabica, Keny’s and 

Robusta coffee samples might vary based on several 

parameters, including coffee bean variety, origin, processing 

methods, roast degree, and storage circumstances. Some 

common VOC found in coffee are Aldehydes: The 

concentrations can range from a few parts per billion (ppb) to 

a few parts per million (ppm) depending on the particular 

aldehyde molecule. Pyrazines: Concentrations can range from 

a few parts per billion (ppb) to a few parts per trillion (ppt), 

with roasted and nutty pyrazines standing out. Concentrations 

of ketones can range from a few ppb to a few ppm, with 

components like diacetyl and acetoin adding to buttery and 

creamy aromas. 

 

3.6 Hierarchical agglomerative clustering algorithm 

 

Hierarchical agglomerative clustering is a clustering 

algorithm that clusters comparable data points together based 

on their pairwise distances. It is a bottom-up strategy that 

begins with each data point as a separate cluster and then 

merges the closest clusters iteratively until a stopping 

requirement is reached. The similarity metric is the input 

parameter for hierarchical clustering. It quantifies the 

proximity between two data points. There are many different 

similarity metrics available, such as the Euclidean distance. 

The linkage method is used to merge clusters. There are many 

different linkage methods available, such as the complete 

linkage method. The number of clusters desired number of 

clusters that the algorithm will output. As a result, a 

hierarchical cluster structure is formed represented as a tree-

like structure known as a dendrogram. The process of 

hierarchical agglomerative clustering. 

Steps involved in Hierarchical agglomerative clustering: 

Step 1: Initialization: Each data point is created and 

assigned to its cluster. 

I. The hierarchical_Agglomerative_Clustering function 

initializes the clusters by calling the initialize Clusters function. 

II. Each data point is assigned to its cluster. 

Step 2: Compute similarity matrix: The similarity between 

each pair of clusters is computed using a similarity metric such 

as Euclidean distance. 

I. The algorithm enters a loop that continues until only 

one cluster is left. 

II. Inside the loop, the compute_Similarity-Matrix 

function is called to calculate the similarity between each pair 

of clusters. 

Step 3: Merge closest clusters: The closest pair of clusters 

is identified based on the similarity matrix and merged to form 

a new cluster. 

I. The Find_Closest-Clusters function is called to find 

the closest pair of clusters based on the similarity matrix. 

II. The Merge_Clusters function is called to merge the 

closest pair of clusters into a new cluster. 

Step 4: Update similarity matrix: The similarity matrix is 

updated to reflect the similarity between the new and 

remaining clusters. 

Step 5: Repeat steps 3 and 4 until all data points belong to a 

single cluster and return to the final cluster. Section 4 discusses 

the Results Analysis based on the Principal Components 

Analysis for coffee aromas. 

 

 

4. RESULTS 

 

To facilitate the advancement of a real-time, high-

performance coffee aroma detection system. The experimental 

setup utilized in this study involved the utilization of a gas 

chromatograph (GC) to separate the volatile compounds 

present in coffee aroma. Additionally, a mass spectrometer 

(MS) was employed to identify the different compounds. The 

entire process was controlled by a computer, which also 

facilitated the storage and analysis of the acquired data. 

Furthermore, software specifically designed for data analysis 

and machine learning Tensor Flow was employed to process 

the collected data. 

 

4.1 Collection of datasets 

 

Finding specific datasets on coffee odors can be challenging 

as the availability of such datasets may be limited 415 coffee 

odor datasets are collected. Coffee odor samples are collected 

from various coffee factories based on stages of maturity, 

texture, aroma, and consistency. The dataset is divided 

according to their aroma flavors Class-A has a Floral Aroma 

and Sweet Aroma, Class-B has Acidic Aroma, Sulphurus 

Aroma, Class-C has a Roasted, Burnt Aroma, Class-D has 

Woody Spicy Aroma, Class-E has an Earthy Woody Aroma, 

and Class-F has Nutty Caramel Aroma is tested manually in 

Indian coffee manufacturing to compare and listed the final 

samples as indicated in Table 4. Used online datasets such as 

Google Search, Kaggle, and open data platforms. Visited 

various sensor analysis database institutions and collected 

aroma-related descriptive analysis. Browsed relevant research 

papers in search of datasets based on aroma and a variety of 

aromas. 

 

Table 4. Odor samples for coffee datasets 

 

Coffee Odor Samples Class A Class B Class C Class D Class E Class F Total Samples 

Arabica 22 12 07 14 21 33 109 

Robusta 18 15 09 11 11 21 85 

Keny’s 14 19 04 08 02 04 51 

S.795 09 14 03 08 15 01 50 

Carvery 08 18 11 16 22 04 79 

Chandragiri 05 09 02 11 09 12 48 
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4.2 Experiments 

 

In our trials, we use Python alongside the Keras and Tensor 

Flow frameworks in our model. The network was trained on a 

system with an Intel Core i5-11400 CPU running at 2.60GHz. 

The research was conducted utilizing an NVIDIA RTX A5000 

GPU, a 64-bit operating system, and 16GB of RAM. The 

specifics are listed in Table 5. For coffee roasting and grinding 

blade grinder and drum roaster are used. 

 

Table 5. Experiment required 

 
Equipment Details Parameters 

Blade Grinder 
Model NO-J-235C, Capacity 

455mm/18inch 

Drum Roaster 0.25-2HP, 25kg 

Electronic Nose 

Application 

FS7002-B, Sensing Range 0-5m/s, 

gas, 

System Type Windows 10, 64bit 

CPU, GPU 
Intel Core i9-12900K, AMD Ryzen 9 

5950X 

Library Tens flow 

Creation Tool Python 3.10.1 

 

4.3 Coffee odor-processing 

 

The preprocessing technique improves the quality of 

information acquired via electronic signal processing. Noise, 

drift, and undesired abnormalities may be present in signals. 

Signal processing methods such as amplification and filtering 

are used to boost signal quality. Filtering techniques (such as 

low-pass, high-pass, and band-pass filters) can remove noise 

or undesired frequency components, while amplification helps 

to improve signal intensity. Baseline correction is used to 

eliminate any regular drift or offset in sensor signals. This 

entails estimating and subtracting a baseline value from the 

signals to bring them all to the same reference level. 

Calibration is required to ensure consistent and dependable 

performance. The sensors are calibration models, which can 

then be used to quantify or classify unknown samples. Thiols, 

which are often found in trace concentrations in the low ppb 

range, can contribute to sulfur-like or skunky odors. 

Concentrations of phenols can range from a few ppb to a few 

ppm, with substances such as Guaiacol contributing to 

Smokey and phenolic overtones. Fruity esters add to the aroma 

complexity of the coffee, with concentrations ranging from a 

few ppb to a few ppm as indicated. Acids: Organic acids such 

as acetic acid, formic acid, and quinic acid can be found in 

concentrations ranging from a few ppm to tens of ppm, 

contributing to the acidity and flavor character of coffee. 

 

4.4 Principal Components Analysis 

 

Principal Component Analysis (PCA) is an approach for 

reducing dimensionality and its goal is to reduce a high-

dimensional dataset to a lower-dimensional space while 

retaining the most relevant information or patterns in the data. 

Each major component is a linear combination of the initial 

variables. The first principal component is responsible for the 

greatest possible variance in the data, the second for the second 

largest variance, and further on. Eqs. (1)-(3) show the mean 

and SD. 

 

μ_j = (1/n) ∗ Σ(H_ij) (1) 

 

In data standardization, if the variables in the dataset have 

different scales, it is common practice to standardize them to 

have zero mean and unit variance. This step ensures that 

variables with larger scales do not dominate the analysis. To 

calculate data standardization, mean and variables are 

observed where H_ij represents the value of the jth variable 

for the ith observation, n data points. 

 

σj = sqrt ((
1

n − 1
) ∗ Σ ((Hij − μj)

2
)) (2) 

 

To calculate data standardization, the standard deviation (σ) 

for each variable across all the observations. Subtract the mean 

from each variable value and divide it by the standard 

deviation to obtain the standardized value for each observation 

and variable. Assemble the standardized values into an n x m 

matrix called H. Each column of H represents a standardized 

variable, and each row represents an observation. 

 

H_ij(standardized) = (H_ij − μ_j)/σ_j (3) 

 

In Covariance Matrix Calculation provides information 

about the relationship between variables and how they vary by 

comparing them together. Let H be the standardized data 

matrix with dimensions n x m, where n is the number of 

observations and m is the number of variables. Eq. (4) where 

X^T is the transpose of X 

 

C = (X^T ∗ X)/(n − 1) (4) 

 

The eigenvectors in Eigen composition represent the 

amount of variance explained by each principal component, 

and the eigenvectors in Eigen composition represent the 

direction of each principal component. The eigenvectors are 

ranked in principle component selection according to their 

corresponding eigenvalues. The major components are the 

eigenvectors with the highest eigenvalues that explain the 

most variance in the data. The original dataset is projected onto 

the selected principal components in dimensionality reduction 

to obtain the lower-dimensional representation. This 

projection involves taking a dot product between the 

standardized data and the eigenvector. The projected data 

matrix Z has dimensions’ n x k and can be computed as, where 

* denotes matrix multiplication. 

 

Z = X ∗ V (5) 

 

4.4.1 Principal Components Analytical Pseudo code 

1. Function PCA (dataset, num_components). 

2. Standardize the dataset by subtracting the mean and 

dividing it by the standard deviation for each variable. 

3. Compute the covariance matrix C of the standardized 

dataset. 

4. Perform Eigen decomposition on C to obtain the 

eigenvectors and eigenvalues. 

5. Sort the eigenvectors based on their corresponding 

eigenvalues in descending order. 

6. Select the top num_components eigenvectors to form 

the principal components matrix V. 

7. Project the standardized dataset onto the principal 

components. 

8. Return the transformed data, which represents the 

lower-dimensional representation of the dataset. 
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Transformed Data = Dataset ∗ V (6) 

 

Mean is the average of all the values in a set of data. It is 

calculated by adding all the values and dividing by the number 

of values. Standard deviation is a measure of how spread out 

the values in a set of data is. It is calculated by taking the 

square root of the variance. P-value is a probability value that 

is used to determine statistical significance. It is calculated by 

comparing the observed results to the expected results under 

the null hypothesis. 

 

4.5 Model architecture selection 

 

Hierarchical Agglomerative Clustering (HAC) is a bottom-

up clustering algorithm that recursively merges data points or 

clusters to form a hierarchical structure of clusters. After 

completing the Principal Components Analysis statistical 

dataset is moved into the initialization process where each data 

point is set as an individual cluster. Calculate the distance 

between each pair of clusters using Euclidean distance which 

is used to calculate the distance between two points (A1, A2) 

and (B1, B2) in an Euclidean space, S represents distance Eq. 

(7). 

 

S = sqrt((A2 − A1)2 + (B2 − B1)2 + (C2 − C1)2) (7) 

 

 
 

Figure 3. Working flow of proposed work 

 

To find the two closest merging or linkage criteria merge 

closest is used. Four closest are compared and used such as 

Single linkage for calculating the smallest pair of distances, 

Complete linkage for calculating the maximum smallest pair 

of distances, Average Linkage for calculating the smallest 

average pair of distances, and Ward’s linkage. After merging, 

try to reduce the rise in total within-cluster variation. After 

merging two clusters, update the distance matrix to reflect the 

distances that exist between the newly formed cluster and the 

existing clusters. The distance between the merged cluster and 

another cluster can be determined via several methodologies, 

such as the minimum distance, maximum distance, or average 

distance between their respective members. Repeat the 

merging and distance matrix updating stages until all data 

points or clusters are merged into a single cluster or an initial 

number of clusters is reached. The merging process represents 

the relationships between clusters at different levels of 

granularity and is called a Hierarchical cluster tree also called 

a dendrogram. To determine the desired number of clusters, 

the dendrogram can be visually analyzed. The final clusters are 

determined by cutting the dendrogram at a specified height or 

by a distance criterion as indicated in Figure 3. 

 

4.6 Training and validation 

 

Datasets of coffee aroma are collected based on features and 

voltaic components. The dataset was preprocessed by cleaning, 

normalizing, and transforming the aroma features as needed. 

Based on different aroma level factors such as coffee origin, 

roast level, and brewing method using Hierarchical 

Agglomerative Clustering [31, 32]. The dataset is separated 

into training and validation to fit the Hierarchical 

Agglomerative Clustering for analyzing coffee aroma and the 

trained model to make predictions on the validation dataset. 

 

4.6.1 Training set 

Initially, the data preparation process involves splitting the 

available coffee aroma 415 samples into a training set, 

validation set, and test set 291:62:62 ratios. Model 

initialization involves assigning each data point to its cluster 

so that each data point is considered a singleton cluster. Firstly, 

the distance between each pair of data points is calculated 

using Euclidean distance in each iteration two clusters are 

merged into a new cluster until all data points are merged. 

Finally, create a cluster hierarchy that represents the history of 

merging clusters, allowing for different levels of granularity in 

the clustering solution. A training loop operates to acquire and 

train the data to forecast the accurate value for each epoch. 

Forward propagation is the process of computing output 

values by moving input data from the input layer to the output 

layer across the network's layers. The loss calculation function 

determines the loss value using the expected output and the 

true labels as input. The loss value represents the algorithm's 

current performance on the given input. Back propagation 

calculates the gradient loss concerning the model parameters 

again loss calculation is done to maintain the data accuracy as 

indicated in Figure 4. 

 

 
 

Figure 4. Coffee variety and flavors 

 

4.6.2 Validation set 

The validation set helps monitor and hyper-fine-tune the 

models and is an intermediate between the training and test 

sets. Clustering-based validation set has multiple performance 

evaluation metrics that can be used depending on the specific 

task and the nature of the data. The measurement of 

performance can be clustered using External Measurements: 

Rand Index (RI), Jaccard Coefficient, Calinski-Harabasz 

Index, Normalized Mutual Information (NMI), and Fowlkes-

Mallows index. Internal Measurements: Silhouette Coefficient, 

Dunn Index, and Davies-Bouldin Index. 

Silhouette Coefficient: This metric assesses how well each 

data point fits within its given cluster compared to others. It 

has a value between -1 and 1, with higher values indicating 

stronger clustering. The average distance between one point 
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and all other points in the same class. This score represents the 

closeness of points in the same cluster. The average distance 

between a sample and the nearest cluster's other points. This 

score computes the distance between points in various clusters, 

where, a (i) represents the intra-clustering distance and b (i) 

represents the inter-clustering distance 

 

Silhouette coefficient
= b(i) − a(i)/max{a(i), b(i)} 

(8) 

 

Calinski-Harabasz Index: This is a clustering evaluation 

metric that is used to evaluate the quality of clustering results. 

It calculates the ratio of between-cluster to within-cluster 

dispersion. The index attempts to capture cluster compactness 

and separation, where CH is the Calinski-Harabasz Index. B is 

the dispersion between clusters. W is the dispersion inside the 

cluster. The total number of data points is denoted by N. The 

number of clusters is k. 

 

CH = (B/W) ∗ ((N − K)/(k − 1)) (9) 

 

Davies-Bouldin Index: Clustering evaluation metric that 

calculates the average similarity across clusters by considering 

intra-cluster and inter-cluster distances. It provides a 

quantitative evaluation of the clustering results' quality. Where 

DB represents the Davies-Bouldin Index and k represents the 

number of clusters. R (i, j) represents the average distance 

between clusters I and j. The average intra-cluster distance of 

cluster i is represented by R (j, i). 

 

DB = (1/k) ∗ ϵ(max (R(i, j) + R(i, j)))f (10) 

 

Dunn Index: The ratio of the minimum inter-cluster distance 

to the maximum intra-cluster distance. The greater the Dunn 

Index, the superior the clustering result, where min-inter is the 

shortest distance between any two clusters and max-intra is the 

shortest distance between any two data points within the same 

cluster. 

 

Dunn Index = min_inter/max_intra (11) 

 

Normalized Mutual Information (NMI): calculates the 

normalized mutual information between two sets of labels, 

such as the predicted cluster labels and the true class labels. It 

provides a measure of how well the clustering aligns with the 

true underlying structure of the data where MI is the mutual 

information between the two label sets, H1 is the entropy of 

the first label set, and H2 is the entropy of the second label set. 

 

NMI = (2 ∗ MI)/(H1 + H2) (12) 

 

Rand Index (RI): Calculates the similarity measure between 

two data clustering, where w is the number of data points in 

both clustering that belong to the same cluster (true positives). 

H is the number of data point pairs that belong to different 

clusters in both clustering (true negatives). V2 is the total 

number of data point pairs. 

 

RI =
w + h

v2
 (13) 

 

Jaccard Coefficient: The similarity measure quantifies the 

overlap between two sets, where C denotes the set of data 

points assigned to a specific cluster by the clustering algorithm. 

D is a set of data points that belong to a given class or ground 

truth cluster. 

 

𝐽𝐶 = (|𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑐𝑜𝑚𝑚𝑜𝑛|)
/|𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠| 

(14) 

 

Fowlkes-Mallows index (FMI): calculates the measure of 

similarity between two clustering. It combines precision and 

recall to evaluate the agreement between the two clustering 

where TP (True Positives) represents the number of pairs of 

data points that are in the same cluster in both clustering 

(agreements). FP (False Positives) represents the number of 

pairs of data points that are in the same cluster in the clustering 

result but not in the ground truth clustering. FN (False 

Negatives) represents the number of pairs of data points that 

are in the same cluster in the ground truth clustering but not in 

the clustering result. 

 

FMI = (TP/√(TP + FP) ∗ √TP + FN) (15) 

 

The initialize Clusters function creates individual clusters 

for each data point using Python code. 

Function initialize Clusters (data): 

Clusters= [] 

For each data point in data: 

cluster=create a cluster (data Point) 

Clusters. Append (cluster) 

Return clusters 

 

The compute_Similarity-Matrix function computes the 

similarity between each pair of clusters and stores the values 

in a similarity matrix using Python code. 

Function compute_Similarity-Matrix (clusters) 

Similarity matrix=empty matrix of size (num Clusters, num 

Clusters) 

For i=1 to num Clusters 

For j I I+1 to num Clusters 

Similarity=compute Similarity (clusters [i], clusters [j]) 

Similarity matrix [i, j] =similarity 

Similarity matrix [j, i] =similarity 

Return similarity matrix 

Function compute_Similarity (cluster1, cluster2) 

 

The find Closest_Clusters function identifies the pair of 

clusters with the minimum distance in the similarity matrix 

using Python code. 

Function find Closest-Clusters (similarity matrix) 

Instance=infinity 

Merge Indices= (0, 0) 

For i=1 to num clusters 

For j=i+1 to num clusters 

Similarity matrix [i, j] <instance: 

Instance=similarity matrix [i, j] 

Merge Indices = (i, j) 

Return merge Indices 

 

The merge_Clusters function merges the closest pair of 

clusters into a new cluster, removes the original clusters from 

the list of clusters, and adds the new cluster using Python code. 

Function merge clusters (clusters, mergeIndices) 

cluster1=clusters [merge Indices [0]] 

cluster2=clusters [merge Indices [1]] 

Merged Cluster=create a cluster () 

Merged cluster. Add (cluster1.getData ()) 
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Merged cluster. Add (cluster2.getData ()) 

Clusters. Remove (cluster1) 

Clusters. Remove (cluster2) 

Clusters. Append (merged Cluster) 

External Measurements (Rand Index-RI, Jaccard 

Coefficient-JC, Calinski-Harabasz Index-CHI, Normalized 

Mutual Information-NMI, and Fowlkes-Mallows Index-FMI) 

for predicted and true values, the predicted cluster 

assignments, and the true class labels or ground truth as 

indicated in Figure 5. The measurements for RI, JC, CHI, 

NMI, and FMI. The "Predicted Value" column represents the 

values obtained from the clustering algorithm, while the "True 

Value" column represents the values from the ground truth or 

true class labels. 

 

 
 

Figure 5. Clustering measurements for external values 

 

Table 6. External measurements for predicted and true value 

 
Label’s RI JC CHI NMI FMI 

True Value:1 0.82 0.73 130.25 0.81 0.62 

Predicted:1 0.75 0.65 150.21 0.88 0.75 

True Value:2 0.78 0.71 128.32 0.75 0.61 

Predicted:2 0.75 0.66 145.32 0.82 0.71 

True Value:3 0.72 0.74 111.22 0.75 0.61 

Predicted:3 0.75 0.66 145.32 0.83 0.71 

True Value:4 0.82 0.73 130.25 0.81 0.62 

Predicted:4 0.75 0.67 150.21 0.84 0.79 

True Value:5 0.85 0.73 130.25 0.81 0.62 

Predicted:5 0.79 0.65 150.21 0.88 0.75 

 

Table 7. Internal measurements for predicted and true value in clustering 

 

Label’s 
Silhouette 

Coefficient 

Dunn 

Index 

Davies-

Bouldin 

Index 

True 

Value:1 
0.73 0.75 0.68 

Predicted:1 0.75 0.79 0.74 

True 

Value:2 
0.79 0.81 0.72 

Predicted:2 0.81 0.83 0.78 

True 

Value:3 
0.75 0.92 0.79 

Predicted:3 0.83 0.93 0.88 

In the Rand Index, the true value is calculated as 0.82 after 

1st iteration and the predicted value is 0.75, the true value is 

calculated as 0.78 after 2nd iteration, and the predicted value 

is 0.75, the true value is calculated as 0.72 after the 3rd 

iteration and the predicted value as 0.75, the true value is 

calculated as 0.82 after the 4th iteration and the predicted value 

as 0.75, the true value is calculated as 0.85 after 5th iteration 

and predicted values as 0.79. 
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In Jaccard Coefficient, the true value is calculated as 0.73 

after 1st iteration, and the predicted value is 0.65, the true 

value is calculated as 0.71 after 2nd iteration and the predicted 

value is 0.66, the true value is calculated as 0.74 after 3rd 

iteration and predicted values as 0.66, the true value is 

calculating as 0.73 after 4th iteration and predicted values as 

0.67, the true value is calculating as 0.73 after 5th iteration and 

predicted values as 0.65. Similarly, for JC, CHI, NMI, and 

FMI true value calculation is indicated in Table 6. Internal 

measurements such as the Silhouette Coefficient, Dunn Index, 

and Davies-Bouldin Index involve the comparison between 

predicted and true values as indicated in Table 7. Instead, they 

assess the quality of the clustering results based on the internal 

characteristics of the data and the clustering solution itself. 

Therefore, these measurements are typically presented in a 

table format comparing predicted and true values based on 

Volatile compounds and Principal Components Analysis. 

 

4.7 Performance evaluation 

 

Through the internal and external values calculation 

predicted and true values are observed using Volatile 

compounds and Principal Components Analysis. Performance 

is evaluated based on cluster models. Accuracy, Precision, 

Recall, and F1 score are calculated as shown in Eqs. (16)-(19). 

Accuracy is the proportion of data points that have been 

appropriately grouped. It is computed as follows: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠
 (16) 

 

Precision is defined as the percentage of data points labeled 

as belonging to a specific cluster that belongs to that cluster. It 

is determined as follows: 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
= (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠)
/(𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 

𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑡ℎ𝑎𝑡 𝑐𝑙𝑢𝑠𝑡𝑒𝑟) 

(17) 

 

Recall is the percentage of data points labeled as belonging 

to a specific cluster that belong to that cluster. It is determined 

as follows: 

 

𝑅𝑒𝑐𝑎𝑙𝑙
= (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡𝑠)
/(𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 𝑡ℎ𝑎𝑡  

𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑦 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑡ℎ𝑎𝑡 𝑐𝑙𝑢𝑠𝑡𝑒𝑟) 

(18) 

 

The F1 score is the harmonic mean of precision and recall. 

It is determined as follows: 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (19) 

 

Classified as groups and subgroups of coffee aroma patterns 

that were already known. These groups could be classified on 

the kind of coffee, roasted level, and smell, and whether or not 

there are any diseases. These analyzed coffee flavor profiles 

into groups by using a method called hierarchical 

agglomerative clustering (HAC). They matched up the results 

of clustering with the known groups and subsets. The Jaccard 

index between the two sets of names was used to figure out 

how to do this. The Jaccard index is a way to figure out how 

much two sets are alike as shown in Eq. (14). Section 5 

discusses the Results Analysis based on Principal Components 

Analysis for coffee aromas. 

 

 

5. DISCUSSION 

 

An electronic nose application is used to detect the coffee 

aroma based on the purity and quality of each stage based on 

Hierarchical Agglomerative Clustering for Identification, 

Quantification, and Disease Detection. In the existing work, 

coffee aroma is observed based on two qualities good or bad, 

stages of coffee aroma are not observed properly, and results 

are not accurate. In the current work, using electronic nose 

application by conducting polymer sensors. Coffee aroma is 

measured using internal and external measurements. Internal 

measurements are assessments or evaluations made by 

individuals based on their personal experience with the coffee 

fragrance. This encompasses fragrance notes, intensity, 

complexity, and overall quality. Internal measurements are 

subjective and based on own sensory perception. External 

measurements of coffee fragrance might refer to objective 

measurements or quantifiable factors. These measurements 

could include the use of analytical devices or techniques to 

evaluate certain characteristics of the fragrance. Gas 

chromatography-mass spectrometry (GC-MS), for example, 

can be used to identify and quantify distinct volatile 

components in coffee scents as indicated in Figure 6. Using 

the Hierarchical Agglomerative Algorithm, compare internal 

and exterior measures using predicted and true results. Internal 

Dimensions: Silhouette Coefficient: This metric assesses 

cluster tightness and separation. It can be determined given the 

HAA's expected cluster assignments. 

 

 
 

Figure 6. Clustering measurements for internal values 

 

External Dimensions: Rand Index (RI): The RI compares 

the expected clustering result to the true class labels or ground 

truth. The Jaccard Coefficient (JC) quantifies the agreement 

between anticipated cluster assignments and genuine class 

labels. The Fowlkes-Mallows Index (FMI) assesses the 

similarity between predicted clustering and genuine class 

labels as indicated in Figure 7. Evaluation of currently 

available coffee smell predicts with multiple algorithms for 

Machine Learning Techniques that include support vector 

machine, Random forest, Convolution neural network, 

Gaussian Mixture Models, Artificial Neural Networks based 

on performance evaluation, and various volatile compounds 
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released during the roasting process, as shown in Figure 8. 

Reviewed existing model Artificial Neural Network achieved 

93.99%. After 15 iterations, the support vector machine 

(SVM) achieved a 74.8% accuracy, the Random forest 

algorithm achieved an 84.11% accuracy, the Convolution 

Neural Network achieved an 87.3% accuracy, and the 

Gaussian Mixture Models achieved a 91.78% accuracy. 

Electronic nose applications that use conducting polymer 

sensors might be difficult to implement since they require a 

data acquisition system, pattern recognition, and a sensor array. 

Sensor readings are converted to digital signals, and individual 

coffee aromas are then identified. This is mostly used to assess 

the concentration of volatile organic compounds (VOCs) in 

the air. The e-nose can be used to check coffee quality, identify 

coffee varieties, and even diagnose coffee-related illnesses. 

The accuracy of VOC concentration measurements is 

impacted by environmental factors such as temperature, 

humidity, and pressure. If the measurements don't match up, 

the patterns might shift. Capturing up the aroma was a 

laborious process. 

 

 

 

 

 

 

 
 

Figure 7. Comparing measurements for external and internal 

value with a coffee variety 

 

 
 

Figure 8. Comparison between existing models 
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6. CONCLUSION 

 

The primary objective of this study is to classify the aroma 

of coffee by considering both the roasting technique and the 

specific variety of coffee beans. In previous studies conducted 

before the roasting step, coffee berry stages were categorized 

to track the subsequent development of coffee aroma and 

identify any potential diseases. This study highlights the 

challenges of detecting many coffee aromas utilizing a 

Hierarchical Agglomerative Algorithm-created E-nose 

prototype. Principal Components Analysis compares organic 

volatile chemical aroma samples from different coffee aromas. 

Inspired by Machine Learning, external and internal 

parameters categorize coffee aroma. E-Nose's qualitative as 

well as quantitative performance and dependability have 

improved significantly after applying Machine Learning 

Techniques. The performance of testing samples was 

compared by accuracy. (1) Rand Index (RI), Jaccard 

Coefficient, Calinski-Harabasz Index, NMI, and Fowlkes-

Mallows Index create external measures. (2) The Silhouette 

Coefficient, Dunn Index, and Davies-Bouldin Index are used 

to calculate internal measures and compare external and 

internal accuracy. Performance is evaluated based on cluster 

models. Accuracy, Precision, Recall, and F1 score achieved 

97.08% accuracy in finding accurate coffee aroma. The future 

strategy will focus on coffee flavor with quality measurement 

in various stages of coffee progression using AI agents. This 

rigorous look at coffee aroma analysis and factory control can 

help manufacturers standardize operations, save money, and 

defend consumer rights. 
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