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The rapid proliferation and increasing adoption of electric vehicles (EVs) have rendered 

them a fundamental component of intelligent transportation networks, contributing 

significantly to the reduction of harmful greenhouse gas emissions. The surge in the number 

of EVs necessitates an equally expanding infrastructure to meet their charging 

requirements. Accurate prediction of EV charging demand, therefore, is critical to alleviate 

strain on power systems and associated costs. This study presents a novel hybrid deep 

learning model aimed at predicting the charging needs of electric vehicles. The 

Convolutional Neural Network (CNN), an integral part of this model, is employed for data 

collection. The CNN effectively extracts local features of the data, focuses on localized 

information, and reduces computational demands. The Bidirectional Gated Recurrent Unit 

(BGRU) contributes to superior performance with time-series data due to its inherent ability 

to analyze such data. The Empirical Mode Decomposition (EMD) is used to decompose the 

input time series data while preserving their characteristics. The parameters of the BGRU 

prediction model are then fine-tuned using a hybrid Jarratt-Butterfly optimization algorithm 

(JBOA) model. The innovative EMD—CNN—BGRU predictor is evaluated using the EV 

charging dataset collected from the Georgia Institute of Technology in Atlanta, Georgia, 

USA. The simulation results achieved an impressive 98% accuracy in prediction. A 

comparative analysis with existing methods in the literature reveals the superior predictive 

metrics of the proposed deep learning neural forecaster for the dataset under consideration. 
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1. INTRODUCTION

In recent years, societal focus has progressively shifted 

towards the development and implementation of distributed 

photovoltaics (PVs), electric vehicles (EVs), and other 

distributed energy resources (DERs). This shift is largely 

driven by the urgent need to mitigate environmental pollution, 

address energy crises, and combat climate change [1]. The 

proliferation of DERs at the load side has led to the emergence 

of an increasing number of prosumers — consumers 

possessing the capacity to produce power [2]. As has been 

noted, the global transition towards a sustainably powered 

society heavily depends on the active participation of these 

prosumers at the end-user energy side. One prominent 

example of prosumers in the current energy landscape is 

commercial buildings equipped with electric vehicle charging 

points and solar photovoltaic panels. The building energy 

management system (BEMS) within such structures can be 

optimized to maximize energy efficiency, largely driven by 

financial incentives offered by electricity rates [3]. This 

implies that commercial building energy management holds 

substantial potential to reduce power costs, balance loads, and 

enhance the consumption of distributed generation. 

The BEMS uses a sequential decision-making process, 

informed by the characteristics of the DERs, to carry out 

energy management. The present literature often uses an 

optimisation model to achieve optimal outcomes in building 

energy management [4]. This approach relies heavily on 

models and carefully adheres to the principles of physics. In 

order to ensure that the discharging of each EV is independent, 

complementarity constraints must typically be introduced into 

the EV-related BEMS optimisation model [5]. As a result, 

BEMS optimisation is a non-convex and challenging problem 

to tackle. Mixed-integer linear programming (MILP), 

intelligent algorithms, iterative-based smoothing approaches, 

and accurate penalty methods are just some of the solutions 

that have been offered for this issue [6]. However, the 

aforementioned BEMS optimisation models [7, 8] must be 

solved in a finite time horizon to ensure the coupling 

limitations of each EV's state of charge (SOC) over successive 

time steps. Therefore, the BEMS is under significant 

calculational demand due to the increasing number of 

dispatchable EVs and considered time steps. It is also 

challenging to obtain an accurate prediction in the horizon, 

which is required for the online solution of the optimisation 

model. 
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Recent advances in high-performance computation 

infrastructures have made machine learning techniques an 

attractive option for addressing the shortcomings of 

optimisation models [9]. Coordination of EV scheduling in 

commercial buildings presents unique challenges that are not 

yet fully handled by existing machine learning algorithms. 

First, the training efficiency and generalisation ability of the 

aforementioned machine learning algorithms must be 

enhanced [10, 11] to account for the unique characteristics of 

each EV, including charging demand, scheduling time 

constraint, and capacity. Second, most of the aforementioned 

sources still rely on prediction in online implementation of the 

BEMS problem, notwithstanding the importance of temporal 

correlation. However, time-step-adjacent coupling in the SOC 

of EV must be taken into account [12]. Thirdly, the output 

outcomes are totally dependent on the generalisation ability of 

the model, which is not evident because the machine learning 

model is a data-driven model. There is no assurance that the 

results of these machine learning techniques will always be 

feasible in terms of physical constraints and scheduling needs 

[13]. 

The major goal of this work is to create and construct a 

prognostic perfect for estimating the charging requirements of 

electric cars; this will help maintain a healthy balance between 

range, range cost, charging time, and charging cost [14]. Given 

the rising need for electricity and the growing number of EVs 

on the road, it's important to anticipate the demand for 

electricity to charge those vehicles, so that both the company 

and its customers can plan accordingly. Customers will be able 

to anticipate their travel distance and choose alternative 

charging stations before their battery runs out thanks to the EV 

charging demand prediction. In this research, we present a 

hybrid deep learning tactic to the online BEMS scheduling 

problem in order to achieve optimal speed. The following are 

the unique contributions of this study in comparison to the 

aforementioned research: 

❖ We build a scheduler for the system using a CNN-based 

BGRU. The BGRU network may be trained 

independently of its actual use in this architecture. 

Online, in a decentralised fashion, the BGRU may 

swiftly create the scheduling result for each EV after 

being taught offline to acquire generalisation ability. 

❖ In this research, we present a JBOA that employs 

Jarratt's iterative approach to enhance the search 

apparatus in BOA and speed up its rate.  

❖ The BGRU is a cutting-edge DL architecture with 

exceptional memory capacity, making it ideal for time-

series prediction challenges. Therefore, the BGRU 

does not need to make any predictions because it has a 

good understanding of the temporal correlation of the 

BEMS problem based on past data. 

Organisation of paper 

Following is a breakdown of the remaining parts of the 

paper: In Section 2, relevant works from the literature are 

presented in depth. The datasets used and the process by which 

the proposed predictive model was developed are described in 

Section 3. The obtained solution set is discussed, and the 

simulated results are shown, in Section 4. The paper's verdicts 

are presented and deliberated in Section 5. 

 

 

2. RELATED WORKS 

 

In order to identify fraudulent communications in an IoT 

setting, Luo et al. [15] present a classifier technique based on 

machine learning. A real-world IoT dataset constructed from 

proposed approach. The effectiveness of several classifiers is 

compared. Both binary and multiclass models yielded positive 

results. A significant sum of cyberattacks that might disrupt 

day-to-day activities can be prevented if the suggested 

algorithm is implemented in the IoT- engine that supports 

electric car charging stations.  

When directing electric vehicles (EVs) to charging 

positions, the machine learning (ML)-based charge 

management system described by Mazhar et al. [16] takes into 

account conventional charging, rapid charging, technologies. 

Costs related with charging, high voltages, are mitigated by 

this process. Different machine learning (ML) strategies are 

studied and compared for their efficiency. Deep Neural 

Networks, K-Nearest Neighbours, Vector Machine, and 

Decision Tree are all examples of these methods. The findings 

suggest that LSTM might be employed to provide EV control 

in specific scenarios. When the load curve is compressed, the 

model may all be enhanced. Our billing rates are also among 

the lowest in the industry. 

Battery overcharging and discharge may be avoided with 

the use of a hybrid deep learning technique, as proposed by 

Venkitaraman and Kosuru [17]. It is recommended that the 

feature extraction procedure utilise Recursive Neural 

Networks (RNNs) to gather sufficient battery-related feature 

data. In order to forecast the EV's condition, the research built 

the bidirectional (GRU). The output of the RNNs is fed into 

the GRU, which greatly improves the model's accuracy. The 

RNN-GRU is worse in terms of computing performance 

because of its simplified structure. The results of the 

experiments show that the GRU approach may be used to keep 

track of the distance travelled by the electric car. Extensive 

empirical testing shows that a hybrid deep learning-based 

prediction technique may outperform traditional models for 

estimating the status of charge with more speed and accuracy. 

Data-driven demand-side organisation for a solar-powered 

EV charging station connected to a microgrid is shown in 

Hafeez et al. [18]. The suggested solution uses a solar-powered 

EVCS to make up for the energy needed during peak demand, 

cutting back on the use of traditional energy sources and 

providing a quicker solution to the shortage of EVCS in the 

current scenario. In order to replicate PV power plants, 

commercial loads, home loads, and electric car charging 

stations, we used the real-time data we obtained. A deep 

learning method was also created to regulate the microgrid's 

energy output and facilitate off-peak charging of the EV from 

the grid. In addition, we examined two machine learning 

techniques for estimating the level of charge of a battery. 

Finally, a 24-hour case study was conducted using the 

suggested architecture for the demand management system. A 

charging station for electric vehicles was able to reduce 

demand during peak hours, as shown by the findings. 

To improve the precision of a deep-learning perfect 

designed to predict the demand for electricity from electric 

vehicle (EV) charging stations, Aduama et al. [19] offer a 

forecasting approach based on multi-feature data fusion. The 

suggested technique employs a (LSTM) model of past weather 

data to reliably estimate charging loads. The way that EV 

drivers act and the routes they take are greatly affected by the 

weather. The drivers' charging habits are affected by their 

behaviour and driving styles. Three forecasts of EV charging 

loads (energy demands) were generated in response to diverse 

multi-feature inputs, as opposed to the single prediction made 
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by traditional LSTM models. Combining and optimising the 

various charging load forecast findings was achieved using 

data fusion. Mean absolute prediction error was used to assess 

how well the final model performed once it was put into 

production. The prediction error of the actualized model was 

3.29 percent. This prediction error was less than that seen in 

the LSTM model's first predictions. As shown by the 

numerical findings, the suggested model has the potential to 

optimise and enhance EV load estimates for electric stations, 

allowing them to better fulfil the energy needs of EVs.  

It is becoming increasingly significant to anticipate the 

charging demand for electric vehicles, as noted by Kotapati et 

al. [20]. Traditional and deep learning time series methods are 

used to forecast charging demand. Traditional methods 

include ARIMA and SARIMA whereas deep learning 

approaches include RNN, LSTM, and transformers. This study 

is among the first to apply the Transformer model to the 

problem of estimating the number of times electric vehicles 

will need to be charged. Short- forecasts of EV charging load 

are evaluated over three time steps: 7 days, 30 days, and 90 

days. The accuracy of each model was evaluated using RMSE 

and MAE. In terms of both short-term and long-term 

projections, the findings show that the Transformer excels 

above the other models, highlighting its efficacy in dealing 

with time series issues and, more specifically, EV charging 

forecasting. The suggested Transformers outline and the 

achieved findings may be applied to the smooth and efficient 

management of power grids.  

The (AST-GIN) structure developed by Luo et al. [21] 

enhances prediction accuracy and interpretability by transport 

data. During training, attribute augmented encoders model the 

environmental effects as a set of varying attributes. The AST-

GIN perfect was tested using data from results presented that 

the perfect is superior to prior baselines since it accounts for 

the effect of exogenous factors over varying time horizons. 

 

 

3. PROPOSED SYSTEM 

 

Here, we discuss our effort in creating a unique deep neural 

network for predicting the charging needs of electric vehicles. 

There is also a summary of the deep learnings and the 

empirical mode decomposition method. This portion of the 

study also includes a comprehensive description of the 

proposed EMD-CNN-BGRU prediction model and its 

methodology. 

 

3.1 Empirical mode decomposition 

 

Using the series data collected must be broken down into a 

new set of sub-series that can be detected, predicted, and 

rebuilt to arrive at the overall forecasting demand value. The 

raw data for charging electric vehicles looks like this: 

 

𝑆(𝑡) = ∑ 𝑋𝑗(𝑡) + 𝐷𝑚(𝑡)𝑚
𝑗=1   (1) 

 

In Eq. (1), 𝑋𝑗(𝑡) for 𝑗 = 1, 2, . . . , 𝑚 defines the number of 

iterations through the intrinsic mode functions (IMF) for a 

given decomposition, and 𝐷𝑚(𝑡)  represents the resulting 

residue. The zero crossing and the number of extrema must be 

equal or at least one apart for EMD to be performed, and at 

any given position, the regular value of the enclose represented 

by the local must be zero [21, 22]. Here are the measures 

required to execute EMD on the time series data of electric car 

charging: 

Step 1: Find all the minimum and maximum points in the 

series. [𝑆(𝑡)]. 
Step 2: Generate the upper cover [𝑆𝑢𝑝𝑝(𝑡)] by linking all 

the local maxima by a cubic spline and produce the lower 

wrapper [𝑆𝑙𝑜𝑤(𝑡)] by linking all the local minima. 

Step 3: Assess the average value of the wrapper [𝐴(𝑡)] 
using the wrappers obtained from step 2. 

 

𝐴(𝑡) = [
𝑆𝑢𝑝𝑝(𝑡)+𝑆𝑙𝑜𝑤(𝑡)

2
]  (2) 

 

Step 4: Extract the info from the unique signal and regular 

signal. 
 

Υ(𝑡) = 𝑆(𝑡) − 𝐴(𝑡) (3) 
 

Step 5: Test for 𝑌(𝑡) to be an intrinsic mode purpose. 

- On [Y(t)] being an IMF then set replace [S(t)] with the 

remaining [𝐷(𝑡)  =  𝑆(𝑡) − 𝑋(𝑡)]. 
Recurrence steps 2–4, until the stopping disorder gets 

satisfied. The stopping ailment is distinct to b. 
 

∑
(Υ𝑘−1(𝑡)−Υ𝑘(𝑡))2

(Υ𝑘−1(𝑡))2 ≤ 𝜇(𝑘 = 1,2, … 𝑚; 𝑡 =𝑛
𝑡=1

1,2, … , 𝑛)  
(4) 

 

Eq. (4) has the signal length ('n'), the stopping parameter 

('m') in the range of 0.2 to 0.3, and the number of iterations 

('k'). 

Sixth, repeat steps one through five until all intrinsic mode 

functions are known. 

Since 30 filters are used, the output of U5030 matrix. At the 

conclusion exists and produces an output of U2530. The 

output layer comprises the weight of one filter. After the max 

pooling layer's 70 neurons, a BGRU operational layer follows, 

where a vector of U170 is calculated and the recurrent dropout 

probability is set at 30%.  

The final soft-max layer then serves as the forecaster for the 

whole 70-neuron network that was constructed using linear 

activations. To avoid over-fitting, the EMD-CNN-BGRU 

model looks at both the error value and the frequent drop out. 

Encoder activation function ('Gencode') and labelled sample 

data points ('Xdata') form the basis of the encode matrix for 

the simulated new DLSTM, 
 

𝐸𝑛𝑣𝑒𝑐𝑡𝑜𝑟 = 𝐺𝑒𝑛𝑐𝑜𝑑𝑒𝑟(𝑋𝑑𝑎𝑡𝑎) (5) 
 

From the CNN-BGRU, the rebuilt data output is given by, 
 

𝑂𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 = 𝐺𝑑𝑒𝑐𝑜𝑑𝑒(𝐸𝑛𝑣𝑒𝑐𝑡𝑜𝑟) (6) 
 

In order to minimise the error criteria and maximise the 

prediction metrics throughout the reconstruction process, the 

developed deep learning adapt. The latest CNN-BGRU loss 

function may be written as, 
 

𝑔(𝑙𝑜𝑠𝑠𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) =
1

𝑁
∑ (𝑋𝑑𝑎𝑡𝑎, 𝐺𝑑𝑒𝑐𝑜𝑑𝑒(𝐺𝑒𝑛𝑐𝑜𝑑𝑒𝑟(𝑋𝑑𝑎𝑡𝑎)))𝑁

𝑗=1   
(7) 

 

The existence of non-linearity is assessed with the help of, 
 

𝐺𝑒𝑛𝑐𝑜𝑑𝑒𝑟(𝑋) = 𝑔𝑓_𝑒𝑛𝑐𝑜𝑑𝑒(𝑊0 + 𝑊𝑥)

𝐺𝑑𝑒𝑐𝑜𝑑𝑒(𝑋) = 𝑔𝑓𝑑𝑒𝑐𝑜𝑑𝑒
(𝑊0 + 𝑊𝑥

𝑇)
  (8) 
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In Eq. (8), ‘ 𝑔𝑓_𝑒𝑛𝑐𝑜𝑑𝑒 ’ and ‘ 𝑔𝑓𝑑𝑒𝑐𝑜𝑑𝑒
’ stipulates the 

activation function of the deep learning forecaster model, ‘𝑊0’ 

signifies the bias component and the weight matrices are ‘𝑊𝑥’ 

and ‘𝑊𝑥
𝑇’. The error is assessed during deep training procedure 

using, 

 

𝐸𝑟𝑟𝑜𝑟𝐶𝑁𝑁−𝐵𝐺𝑅𝑈(𝑋𝑑𝑎𝑡𝑎 , 𝑂𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡) = ‖𝑋𝑑𝑎𝑡𝑎 −
𝑂𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡‖2  

(9) 

 

For all the deep CNN-BGRU layers, the encoder vectors are 

assessed using, 

 
𝐸𝑛𝑣𝑒𝑐𝑡𝑜𝑟1 = 𝐺𝑒𝑛𝑐𝑜𝑑𝑒1(𝑋𝑑𝑎𝑡𝑎)
𝐸𝑛𝑣𝑒𝑐𝑡𝑜𝑟2 = 𝐺𝑒𝑛𝑐𝑜𝑑𝑒2(𝑋𝑑𝑎𝑡𝑎)

𝐸𝑛𝑣𝑒𝑐𝑡𝑜𝑟3 = 𝐺𝑒𝑛𝑐𝑜𝑑𝑒3(𝑋𝑑𝑎𝑡𝑎)
⋮

𝐸𝑛𝑣𝑒𝑐𝑡𝑜𝑟𝑛 = 𝐺𝑒𝑛𝑐𝑜𝑑𝑒𝑛(𝑋𝑑𝑎𝑡𝑎)

  (10) 

 

The final predicted yield from the CNN-BGRU neural 

perfect is, 

 

Υ𝑝𝑟𝑒𝑑𝑐𝑖𝑡𝑒𝑑_𝐷𝐿𝑜𝑢𝑡 = 𝐺𝑒𝑛𝑐𝑜𝑑𝑒𝑁+1(𝐸𝑛𝑣𝑒𝑐𝑡𝑜𝑟𝑛) (11) 

 

In Eq. (11), ‘𝐺encodeN+1’ evaluates the new weights based 

on the gradients and reflects the training values at the CNN-

BGRU output layer, 

 

𝑊𝑛𝑒𝑤_𝑒𝑛 = 𝑊𝑜𝑙𝑑_𝑒𝑛 + 𝑎 ×
𝜕𝐸𝑟𝑟𝑜𝑟𝐶𝑁𝑁−𝐵𝐺𝑅𝑈

𝜕𝑊𝑛𝑒𝑤_𝑒𝑛

𝑊𝑛𝑒𝑤_𝑑𝑒 = 𝑊𝑜𝑙𝑑_𝑑𝑒 + 𝑎 ×
𝜕𝐸𝑟𝑟𝑜𝑟𝐶𝑁𝑁−𝐵𝐺𝑅𝑈

𝜕𝑊𝑛𝑒𝑤_𝑑𝑒

  (12) 

 

During deep learning BGRU training, JBOA optimises the 

weight and bias component supplied as starting values. The 

aforementioned procedures are carried out iteratively on the 

suggested predictor model until the error value is as small as 

feasible. The mean square error measure is calculated by 

comparing the assessed anticipated output to the original data. 

 

𝑀𝑆𝐸𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 =
1

𝐼𝑡𝑒𝑟𝑚𝑎𝑥
∑ (Υ𝐷𝐿_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 , Υ𝑂𝑟𝑔𝑖𝑛𝑎𝑙_𝑑𝑎𝑡𝑎)

2𝐼𝑡𝑒𝑟𝑚𝑎𝑥
𝑖=1   

(13) 

 

3.2 Prediction using deep learning models 

 

3.2.1 Convolutional neural network (CNN) 

One of the most emblematic deep learning techniques, a 

depth structure. In other words, CNN can learn to represent 

data. It may choose relevant information from incoming data 

and extract characteristics based on their hierarchical structure. 

Also, it requires fewer calculations, cutting down on training 

time. output layer are the building blocks of a convolutional 

neural network. There are multiple convolution cores in each 

convolution layer. Data characteristics are extracted 

substantially following a convolution operation, however a 

typical flaw of convolution calculations is the high-

dimensionality problem. Since the robustness of the recovered 

features is enhanced, and the data is then placed into the 

activation function to match nonlinear difficulties, adding a 

pooling layer after the convolution calculation is an excellent 

solution to the problematic of high data dimension. 

Calculation details are presented in formula (14),  

 

𝑃𝑡 = 𝑅𝑒𝑙𝑢(𝑥𝑡 ∗ 𝑤𝑡 + 𝑏𝑡) (14) 

where, 𝑃𝑡  is the output consequence, Relu is the activation 

purpose, 𝑥𝑡  is the input statistics, 𝑤𝑡  is the weight of kernel, 

and 𝑏𝑡 is the bias. 

 

3.2.2 Bidirectional gated recurrent unit (BGRU) 

A (RNN) is a network in which the nodes are connected in 

a chain and it repeatedly processes sequence data in the 

direction of the sequence's evolutionary trajectory. Common 

examples of Recurrent Neural Networks are the Bidirectional 

Recurrent Neural Network and the Long Short-Term Memory 

Network. But they suffer from issues like disappearing 

gradients and exploding gradients. When compared to 

traditional RNNs, LSTM is superior since it avoids the issues 

of gradient vanishing and gradient explosion. It excels in the 

areas of automatic language detection, language modelling, 

and machine translation. At the same time, it's used to a wide 

variety of issues that include time series properties. 

Bidirectional GRU requires an understanding of GRU as a 

prerequisite. GRU only has two gates, an update gate and a 

reset gate, but LSTM has three (input, forgetting, and output). 

In LSTM, the update gate serves a purpose comparable to that 

of the forgetting gate and the input gate. It chooses which facts 

to keep in memory and which to replace with more recent ones. 

In order to determine whether data from the past is irrelevant 

to the present time calculation, the reset gate is utilised. GRU 

outperforms LSTM in terms of computation speed since it uses 

fewer gates. The following is the formula used to determine 

GRU: 

 

𝑧𝑡 = 𝜎(𝑊𝑧 . [ℎ𝑡−1, 𝑥𝑡]) (15) 

 

𝑟𝑡 = 𝜎(𝑊𝑟 . [ℎ𝑡−1, 𝑥𝑡]) (16) 

 

ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ̃𝑡 (17) 

 

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊. [𝑟𝑡
∗ℎ𝑡−1, 𝑥𝑡]) (18) 

 

𝑆(𝑥) =
1

1 + 𝑒−𝑥
 (19) 

 

𝑆′(𝑥) =
𝑒−𝑥

(1+𝑒−𝑥)
= 𝑆(𝑥)(1 − 𝑆(𝑥))  (20) 

 

where is the function used to squish all output data into the 

interval 0–1. Formulas 19 and 20 display the sigmoid function 

and its derivation, respectively. The update gate 𝑧𝑡  has a 

weight of 𝑊𝑧, while the reset gate 𝑟𝑡 has a weight of 𝑊𝑟. The 

past is represented by ℎ𝑡−1 and the present by ℎ𝑡; the past is 

contained in the present by ℎ𝑡. Information at this time is a 

function of both historical data ℎ𝑡−1  and the current input. 

Bidirectional GRU shares the same basic framework as the 

GRU model. Both forward and backward time series exist. The 

final output results are a combination of the outcomes 

corresponding to the last state of the positive time series and 

the reverse time series. Both historical and prospective data 

can be used by the model simultaneously. Bidirectional GRU 

model is used in this work. Forward status and backward status 

are two of the network's subnetworks that stand in for forward 

and reverse transmission, respectively. 

Hyper-parameter tuning using JBOA The suggested JBOA 

model is used to optimise the BGRU hyper-parameter. To 

solve nonlinear equations, one can use Jarratt's approach, 

which is an advancement on Newton's method and is provided 

by: 
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{
𝑦𝑛 = 𝑥𝑛 −

2𝑓(𝑥𝑛)

3𝑓′(𝑥𝑛)                                    

𝑥𝑛+1 = 𝑥𝑛 − (
3𝑓′(𝑦𝑛)+𝑓′(𝑥𝑛)

6𝑓′(𝑦𝑛) − 2𝑓′(𝑥𝑛)
)

𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)

  (21) 

 

The iterative approach taken by Jarratt has two stages and 

converges at a fourth-order. Therefore, the strategy converges 

to within four significant digits at each iteration, making the 

method quicker in solving NSE. To solve nonlinear systems of 

equations, one must be aware that not all iterative strategies 

work. This benefit is crucial for any strategy because many 

issues are made up of NSE or may be changed into such a 

system. 

Luo et al. [21] have generalised Jarratt's original approach 

such that it may be used to solve NSE for this very reason. In 

addition, Kung and Traub hypothesised that the best order of 

convergence for an iterative method that requires m functional 

evaluations each iteration is 2(m-1). Each iteration of Jarratt's 

technique requires evaluating three functions: (𝑥𝑛), 𝑓(𝑥𝑛), and 

𝑓(𝑦𝑛). Because 2(3-1)=4 is the ideal order of convergence, 

Jarratt's approach proves Kung-Traub's hypothesis. 

Additionally, several studies have been conducted on Jarratt's 

technique, leading to various proposed enhancements. 

The convergence of the Jarratt technique is of the fourth 

order, meaning that the number of right decimals after each 

iteration increases by a factor of four. The following nonlinear 

equation serves to illustrate the concept of the order of 

convergence of Jarratt's technique. Think of f(x) = cos(x) - x. 

This equation has a unique solution of a=0:739085133215... 

We choose to use x0=1:7 as our starting point. 

The table above shows that the convergence of the 

estimated root to the precise root improves by a factor of four 

for each repetition. The choice of starting points, becoming 

stuck at local optimums, and divergence problems are all 

problems that plague Jarratt's technique and other iterative 

approaches. 

Butterfly optimization algorithm (BOA) 

Each BOA fragrance has its own unique feel and aroma. The 

BOA's signature aroma sets it apart from other metaheuristic 

algorithms; it is determined in this way: 

 

𝑓 = 𝑐𝐼𝑎 (22) 

 

where, f is the fragrance intensity, or how strongly other 

butterflies pick up on the scent, The power exponent an allows 

for the changing degree of absorption across modalities and 

stands in for the scent sensory modality, c, which is utilised to 

distinguish smell from other modalities. Both a and c can take 

on values between zero and one. Parameter an is influenced by 

the butterfly's scent. If we suppose that a=1, then all butterfly 

pheromones smell the same. Given that each butterfly has the 

same sensory capabilities, there is no smell absorption. This 

makes it simple to arrive at a unique (often worldwide) 

optimum. When a=0, on the other hand, no other butterflies 

can detect the scent released by a single butterfly. 

In order to get the optimal answer, the BOA algorithm 

mimics the behaviour of butterflies as they forage for nectar. 

The following is a summary of the key features of butterfly 

flight. 

1. One, all butterflies release a scent that draws in 

similar species. 

2. Two- Each butterfly will either fly at random or 

towards the finest butterfly, the one giving out the 

most fragrant aroma. 

3. Third, the stimulus a butterfly experiences is affected 

by the impartial function. 

BOA, like most metaheuristic algorithms, has an 

initialization stage, an iteration stage, and a termination stage. 

In the first stage of the algorithm, the goal function and the 

solution space are defined. Furthermore, values have been set 

to BOA parameters. The method then generates an initial 

butterfly population to use in the optimisation process. Due to 

the constancy of the butterfly population, the memory 

available to them during the BOA simulation is set at a 

constant value. The iteration stage follows the validation stage 

in BOA. The method is iterated over and over. All butterflies' 

fitness values in the solution space are calculated at the end of 

each cycle. At their locations, the butterflies produce odours 

according to Eq. (22). The search strategy used by the 

algorithm might be either global or local. In the global search, 

the butterfly with the highest fitness value is gravitated 

towards since it represents the optimal solution. Eq. (23) is a 

representation of the global search equation: 

 

𝑥𝑖
𝑡+1 = 𝑋𝑖

𝑡 + (𝑟2 × 𝑔 − 𝑥𝑖
𝑡) × 𝑓𝑖 (23) 

 

where, 𝑋𝑖
𝑡  represents the vector 𝑥i  of the i th butterfly in 

repetition t, while g* is the finest solution for the current 

repetition. 𝑓𝑖 signifies the butterfly, and r is a random number 

between 0 and 1. 

On the other hand, the butterflies in their potential regions, 

following Eq. (24) as shadows: 

 

𝑥𝑖
𝑡+1 = 𝑋𝑖

𝑡 + (𝑟2 × 𝑥𝑗
𝑡 − 𝑥𝑘

𝑡 ) × 𝑓𝑖 (24) 

 

where, 𝑋𝑖
𝑡 and 𝑥𝑗

𝑡 are the jth and kth butterflies from the key 

space. Thus, Eq. (24) achieves a local random walk. 

Based on the probability value p, which is often a number 

between 0 and 1, BOA toggles between a standard global 

search and a detailed local search. The iteration process 

continues until one of the exit conditions is satisfied. However, 

the criteria are established in a variety of methods, including 

the use of CPU time, the crossing of an iteration threshold, or 

the achievement of a certain error rate. In the end, we go with 

the solution that gives us the highest fitness score. 

Jarratt-Butterfly optimization algorithm (JBOA) 

BOA is a powerful optimisation technique that has been 

used in several contexts with good results. However, the no 

free lunch (NFL) theorem states that no algorithm is foolproof 

in that it can solve every problem. Furthermore, BOA may 

have divergence issues or get stuck at local optimums when 

attempting to solve NSE. Therefore, JBOA's performance in 

finding the best solution for BGRU has been much enhanced 

by the incorporation of BOA and Jarratt's approaches.  

In all versions of BOA, Jarratt's approach is used. The 

BOA's top butterfly locale is automatically considered a top 

contender. The candidate site is then fed into the Jarratt 

technique, which often results in an enhanced butterfly 

location. The Jarratt approach is then used on the candidate 

site to boost butterfly location accuracy. Finally, the fitness of 

the potential sites is compared to the results of Jarratt's 

methodology, and the best option is selected.  

Due to its high order of convergence, Jarratt's technique 

may find optimal solutions with less iterations. This enhances 

JBOA's already potent search method for resolving NSE. At 

the conclusion of each cycle, JBOA makes the adjustments 

shown by the red box. On the basis of fitness values, the 

position found by Jarratt's approach (X (n+1)) is compared to 

that found by the BOA butterfly (𝑋𝑖
𝑡). In the end, the optimal 
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answer is the site that maximises fitness. 

 

3.2.3 Method based on CNN-BGRU-JBOA 

This research proposes a hybrid perfect based on CNN and 

BGRU. Feature extraction is handled using CNN, while time 

series processing is handled by BGRU. In this work, we break 

down the hybrid model into its component pieces, which we 

refer to as "layers." These layers are the "input," 

"Normalisation," "CNN," "BGRU," "full connection," and 

"output" layers. CNN-BGRU is the most used method of 

prediction. Convolution kernel, pooling layer, and a flatten 

layer make up the CNN module. With the option to use many 

layers, convolutional layers improve feature extraction. 

Similarly, adjusting the size of the convolutional core can 

boost feature selection performance. The standard size for a 

convolution kernel is nxn, which allows for the most efficient 

use of data. The pool layer can have any number of layers, and 

each layer can have any size from nxn. The information from 

the CNN feature extraction is then passed on to the BGRU 

layer. Due to BGRU's capacity to handle time series properties, 

increasing the number of BGRU layers and the sum of units in 

each layer can substantially increase the model's prediction 

accuracy. Additionally, by adjusting the dropout layer, over-

fitting may be effectively avoided. The BGRU layer, the 

complete connection layer, and the output layer are all ways 

that data can be sent out. This study proposes a hybrid CNN-

GRU model improvement, which it calls the CNN-BGRU 

model. Many articles have detailed the usefulness of the CNN-

GRU model, and successful outcomes have been attained. 

The characteristics retrieved by CNN are fed into BGRU for 

prediction in the CNN-BGRU model. BGRU is particularly 

adept at handling time series. When applied to time series, 

BGRU outperforms the GRU and solves the gradient 

disappearance and gradient descent problems. Using the CNN-

BGRU model as a foundation, this work builds out the whole 

procedure. See "Experiment" for a detailed depiction of the 

procedure followed in the lab. 

If the prediction result is poor, try increasing or decreasing 

the sum of CNN convolution cores and BGRU units. The 

process begins with data collection, continues with feature 

selection and data normalisation (FS-N), then the 

convolutional neural network (CNN), then the bidirectional 

graphical reaction function (GRU) with time-series attributes, 

and concludes with the evaluation of the gotten and predicted 

results via the full layer. 

 

 

4. RESULTS AND DISCUSSIONS 

 

At Georgia Tech in Atlanta, USA, a unique EMD-CNN-

BGRU predictor model has been created to estimate the energy 

consumption for charging stations for electric vehicles. An 

Intel dual-core i5 CPU with 8GB of RAM is used to run 

simulations in MATLAB R2021. After applying empirical 

mode decomposition and extracting other IMFs from the 

original EV charging time-series data with CNN, the data is 

rotten, and the resulting sub-series data is used as input for a 

deep BGRU-JBOA perfect. 

 

4.1 Performance metrics 

 

The suggested model and state-of-the-art approaches were 

compared using the following performance metrics: First, 

there's precision (positive predictive value; ppv), then there's 

accuracy (accuracy), then there's sensitivity (recall), then 

there's specificity (npv), then there's fit (F1), and then there's 

area under the curve (AUC). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
  (25) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (26) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (27) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
  (28) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (29) 

 

𝑇𝑃  and 𝑇𝑁  represent the number of correct outcomes 

(positive or negative), whereas FP and FN represent the 

number of incorrect results (positive or negative). In addition 

to these measurements and the ROC curve analysis the 𝐴𝑈𝐶. 

 

Table 1. Example datasets of charging electric vehicle 

 
Charging 

Time 

(hh:mm:ss) 

GHG 

Savings 

(kg) 

Gasoline 

(Gallons) 

Energy 

(kWh) 

Savings 

Cost 

(USD) 

01:11:50 2.625 0.784 6.249 1.02 

05:07:46 5.181 1.548 12.336 4.36 

04:18:45 6.122 1.829 14.575 3.67 

00:58:15 1.828 0.546 4.352 0.83 

01:11:24 1.823 0.545 4.341 1.02 

03:19:30 3.3 0.986 7.857 4.12 

01:58:14 2.551 0.762 6.075 1.68 

02:23:58 3.258 0.974 7.758 2.04 

01:37:25 4.011 1.199 9.55 1.39 

03:24:24 4.735 1.415 11.275 2.9 

02:29:45 3.816 1.14 9.085 2.12 

01:54:49 2.164 0.647 5.153 1.78 

06:20:20 8.098 2.42 19.28 6.17 

04:47:36 5.18 1.548 12.334 4.73 

03:12:16 4.19 1.252 9.975 2.73 

03:10:19 5.382 1.608 12.815 2.7 

03:27:05 5.807 1.735 13.826 2.94 

04:37:06 5.211 1.557 12.408 4.25 

04:48:07 7.674 2.293 18.272 5.56 

03:57:31 4.03 1.204 9.594 4.52 

04:43:32 5.446 1.627 12.967 4.5 

02:06:29 2.011 0.601 4.789 1.96 

06:11:21 8.2 2.45 19.524 8.96 

04:45:17 6.451 1.927 15.359 4.05 

01:01:50 2.546 0.761 6.061 0.88 

01:23:29 1.688 0.504 4.019 1.19 

00:01:34 0.034 0.01 0.081 0 

 

4.2 Dataset description 

 

Around 150 electric cars were being driven around the 

Georgia Institute of Technology campus in Atlanta, USA 

while they were being charged at the conference centre 

parking station [22]. This was the dataset used to test and 

validate the suggested predictor model. The cars have an 

average driving range of 31 km. The sample datasets used to 

examine how often people charge their electric vehicles are 

listed in Table 1. Dataset inputs include Charge Time 

(hh:mm:ss), Energy (kWh), GHG savings (kg), petrol savings 

(gallons) and Expenses (USD). Predicting the energy (kWh) 

required for charging is represented by the output variable. 
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In below Table 2 and Figure 1 represent that the Validation 

Analysis on Testing Values. In this analysis we have used 

different models to compare with proposed model to evaluate 

the results, by achieve the presentation of the projected model. 

In the initial model of AE model reaches the accuracy metrics 

of 0.7876 and the precision value of 0.8654 and also the recall 

value as 0.7258 and specificity value as 0.8627 and then the 

F1-score value as 0.7895 and then finally the AUC score as 

0.9089 respectively. And another model as RNN model 

reaches the accuracy metrics of 0.8407 and the precision value 

of 0.8793 and also, the recall value as 0.8226 and specificity 

value as 0.8627 and then the F1-score value as 0.8500 and then 

finally the AUC score as 0.9203 respectively. And another 

model as LSTM model reaches the accuracy metrics of 0.8407 

and the precision value of 0.8929 and also the recall value as 

0.8065 and specificity value as 0.8824 and then the F1-score 

value as 0.8475 and then finally the AUC score as 0.9064 

correspondingly. And another model as CNN model reaches 

the accuracy metrics of 0.8407 and the precision value of 

0.8929 and also the recall value as 0.8065 and specificity value 

as 0.8824 and then the F1-score value as 0.8475 and then 

finally the AUC score as 0.9089.After that the BGRU model 

reaches the accuracy metrics of 0.8053 and the precision value 

of 0.8030 and also the recall value as 0.8548 and specificity 

value as 0.7451 and then the F1-score value as 0.8281 and then 

finally the AUC score as 0.8786 correspondingly. And another 

model as proposed model reaches the accuracy metrics of 

0.9792 and the precision value of 0.917and also the recall 

value as 0.897 and specificity value as 0.9884 and then the F1-

score value as 0.8962 and then finally the AUC score as 0.9944 

respectively. 

In Table 3 represent that the Comparative analysis on 

Training Values, in this analysis, the AE model reached the 

accuracy of 0.8407 and the precision value as 0.8667 and the 

recall value as 0.8387 and the specificity value of 0.8431 and 

another F1-Score value as 0.8525 and finally AUC score value 

as 0.9190 respectively. And RNN model reached the accuracy 

of 0.8673 0.9073 and the specificity value of 0.8226 and 

another F1-Score value as 0.9216 and finally the AUC value 

as 0.9219. Also, another type of LSTM model reached the 

accuracy of 0.8584 and the precision value as0.8929 and the 

recall value as 0.8966 and the recall value as 0.8387 and the 

specificity value of 0.8824 and another F1-Score value as 

0.8667 and finally the AUC value as 0.9330 respectively. And 

another, CNN model reached the accuracy of 0.8850 and the 

precision value as 0.9016 and the recall value as 0.8871 and 

the specificity value of 0.8824 and another F1-Score value as 

0.8943 0.9374 correspondingly. Next BGRU model reached 

the accuracy of 0.8584 and the precision value as 0.8594 and 

the recall value as 0.8871 and the specificity value of 0.8235 

and another F1-Score value as 0.8730 and finally the AUC 

value as 0.9282 respectively. And finally, the proposed model 

reached the accuracy of 0.9818 and the precision value as 

0.9293 and the recall value as 0.9082 and the specificity value 

of 0.9899 and another F1-Score value as 0.9081 and finally the 

AUC value as 0.9953 respectively. By this comparisons 

analysis, the proposed model reaches the better results than 

another compared model. This analysis is shown in Figures 2, 

3, 4, 5 and 6. 

 

 
 

Figure 1. Accuracy analysis 

 

Table 2. Validation analysis on testing values 

 
Models Accuracy Precision Recall Specificity F1 Score  AUC Score 

AE 0.7876  0.8654  0.7258  0.8627  0.7895  0.9089 

RNN 0.8407  0.8793  0.8226  0.8627  0.8500  0.9203 

LSTM 0.8407  0.8929  0.8065  0.8824  0.8475  0.9064 

CNN 0.8407  0.8929  0.8065  0.8824  0.8475  0.9089 

BGRU 0.8053  0.8030  0.8548  0.7451  0.8281  0.8786 

Proposed 0.9792 0.917 0.897 0.9884 0.8962 0.9944 

 

Table 3. Comparative analysis on training values 

 
Models Accuracy Precision Recall Specificity F1 Score AUC Score 

AE 0.8407 0.8667 0.8387 0.8431 0.8525 0.9190 

RNN 0.8673 0.9073 0.8226 0.9216 0.8718 0.9219 

LSTM 0.8584 0.8966 0.8387 0.8824 0.8667 0.9330 

CNN 0.8850 0.9016 0.8871 0.8824 0.8943 0.9374 

BGRU 0.8584 0.8594 0.8871 0.8235 0.8730 0.9282 

Proposed 0.9818 0.9293 0.9082 0.9899 0.9081 0.9953 
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Figure 2. Validation analysis based on precision 

 

 
 

Figure 3. Performance analysis 

 

 
 

Figure 4. Specificity validation 

 

 
 

Figure 5. Graphical representation in terms of F1-score 

 
 

Figure 6. AUC analysis 

 

Table 4. Performance analysis of proposed model 

 
Methods Accuracy 

MLP 87.5 

AE 90.1 

RNN 92.16 

LSTM 93.08 

CNN 94.7 

BGRU 95.0 

Proposed 98.18 

 

In above Table 4 represent that the Performance analysis of 

proposed model. In this analysis, we used MLP model reached 

the accuracy score of 87.5 respectively. After the AE model 

reached the accuracy score of 90.1 respectively. Another RNN 

model reached the accuracy score of 92.16 respectively. In 

next LSTM model reached the accuracy score of 93.08 

respectively. Afterward CNN model reached the accuracy 

score of 94.7 respectively. And then BGRU model reached the 

accuracy score of 95.0 respectively. And finally, the proposed 

model reached the accuracy score of 98.18 respectively. It is 

shown in Figure 7. 

 

 
 

Figure 7. Validation analysis of proposed model in terms of 

accuracy 

 

 

5. CONCLUSIONS 

 

This paper introduces a unique CNN-BGRU-JBOA 

predictor model, which is used to estimate the charging needs 

for EV in the datasets under consideration. The proposed 

predictor model incorporated the strengths of various methods 
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to improve prediction accuracy, including the empirical mode 

decomposition for lossless signal sub-series decomposition, 

the arithmetic optimisation algorithm for improved 

exploration and exploitation, the BGRU model with memory 

states for long-term memory retention, and deep learning for 

improved architecture layer depth and intensive training. The 

suggested predictor has been put through extensive simulation 

testing on the EV datasets, with results demonstrating its 

superiority over previously available prediction models for 

these data. Forecast accuracy of 98.18% with a very minimum 

MSE in the range of 10-10 demonstrates its efficacy, and 

training and testing efficiencies of the modelled predictor were 

assessed at 97 and 98, respectively, which is healthier than 

other state-of-the-art methodologies. With improved 

prediction accuracy and reduced error values, the CNN-

BGRU-JBOA predictor has proven its worth in predicting the 

charging needs of EVs. The next study will involve giving the 

ideal features by employing optimisation models, as the 

irrelevant features may lead to low classification accuracy. 
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