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Nematodes constitute a crucial component of soil ecosystems, contributing significantly to 

soil ecology. The ability to differentiate between non-parasitic and plant-parasitic species 

is a critical aspect of efficient crop management. However, manual identification methods 

are labor-intensive, time-consuming, and susceptible to errors. Recent developments in the 

realm of machine and deep learning have paved the way for their application in the field of 

nematode identification. This study implements a hybrid convolution and attention 

network, termed CoAtNet-0, which integrates a Convolutional Neural Network (CNN) and 

a transformer for the identification of nematode genera. The performance of this model is 

anticipated to be robust across various dataset sizes. The current investigation employed a 

combined dataset, comprising both a self-collected nematode dataset and a public dataset, 

to evaluate the performance of CoAtNet-0 under single and double data augmentation 

conditions. Furthermore, it explored the efficacy of the Adam, Stochastic Gradient Descent 

(SGD), and RMS optimizers to identify the most effective optimizer for the CoAtNet-0 

model. Adam was selected due to its typically satisfactory performance, while SGD was 

chosen as it often delivers superior results in deep learning applications. RMSprop was 

utilized for performance comparison among adaptive optimizers devoid of momentum. 

Upon evaluation, it was determined that the highest performance was achieved by the 

CoAtNet-0 model using the SGD optimizer on the non-augmented dataset, delivering an 

accuracy of 97.22%. Thus, the selection of suitable data augmentation methods and an 

appropriate optimizer is instrumental in optimizing the performance of the CoAtNet-0 

model for nematode identification. 
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1. INTRODUCTION

Nematodes serve as integral constituents of soil ecology, 

contributing significantly to the functionality of soil 

ecosystems. Alongside other soil-dwelling organisms, they 

partake in intricate food webs to perform key functions and 

deliver crucial ecological services, such as soil structure 

conservation [1, 2]. Their role in soil ecology is multifaceted, 

participating in various biological processes, including 

nitrogen cycling, and subsequently influencing plant 

cultivation. In the context of agricultural systems, soil 

nematodes play a diverse array of roles. Soil nematodes can be 

broadly classified into two categories: beneficial non-parasitic 

nematodes and detrimental plant-parasitic nematodes. A 

majority of soil nematode species are not plant parasites but 

instead, contribute positively to ecological processes. For 

instance, through microbial grazing, these non-parasitic 

nematodes can alter the microbial community, thereby 

modulating the rate of decomposition [3-5]. These non-

parasitic nematode groups possess inherent systems that 

maintain and regulate the life balance of numerous organisms. 

Contrastingly, plant-parasitic nematodes pose a significant 

threat to agricultural productivity. These nematodes are 

implicated in the damage to plants and consequent global yield 

losses. Estimates suggest that plant-parasitic nematodes 

account for 12-14% of economic crop loss, equating to 

approximately 125-173 billion USD [6-8]. However, due to a 

lack of awareness, particularly among farmers in 

underdeveloped countries, the actual extent of damage caused 

by plant-parasitic nematodes is likely underestimated [9]. 

Accurate identification of the contradictory behavior 

exhibited by these two types of nematodes is necessary to 

choose the best crop management strategy. The nematode 

identification process is complicated because of their small 

size, the enormous diversity of nematodes presents in a sample, 

and the need for specific morphological characteristics. 

Image-based identification is the technique that is the most 

employed and easiest to use [10]. The nematologist uses the 

visual inspection of the nematode microscopic pictures to 

carry out the currently used manual identification method. 

This procedure is labor-intensive and time-consuming, 

especially when working with numerous specimens.  

Deep learning was proven to perform satisfactorily in 

several related studies regarding nematode classification from 

microscopic images. Convolutional neural networks (CNN) 

have also proven crucial for expediting nematode 

identification. A CNN is a type of multi-layer neural network 

that specializes in identifying, recognizing, and classifying 

objects in images, as well as detecting and segmenting them. 

This technique can automatically learn a hierarchy of features, 

which can then be utilized for classification [11]. CNN 

technique is adapted for handling massive quantities of data 
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and identifying various objects under challenging settings, 

such as objects in microscopic images.  

A deep convolutional selective encoder architecture was 

created to recognize and count soybean cyst nematodes (SCN) 

in clutter-field images [12]. The suggested approach achieves 

results similar to the expert's; SCN achieved 92% and 95% 

accuracy in less and highly cluttered images, respectively. A 

new design integrating DenseNet121 and Inception Blocks 

was suggested by research [13] for identifying 

phytonematodes. The proposed method, employing the 

transfer learning technique, resulted in an accuracy rate of 

98.99%.   

A self-acquired, non-public dataset is used in research [14] 

to conduct nematode classification using an Xception deep 

learning model. However, model selection and training were 

constrained by hardware limitations. A variety of nematode 

genus produced by research [15] is now publicly available, and 

this dataset was used to train several deep-learning models. 

According to the authors, the ResNet family model exhibits 

the most astounding precision performance. To differentiate 

between non-parasitic and plant-parasitic nematodes, Faster 

Region-based Convolutional Neural Networks were employed 

by research [16] utilizing microscopic images. The technique 

produced an accuracy of up to 87.5%. Several deep-learning 

models were employed to identify self-acquired Indonesian 

plant-parasitic nematode identification. This study obtained 

the highest accuracy of more than 90% [17-19]. 

This study aims to enhance previous research on nematode 

identification by examining a novel hybrid convolutional and 

attention-based model named CoAtNet-0. The CoAtNet-0 

model combines the CNN architecture with transformers to 

generate new building blocks and achieve state-of-the-art 

performance. This new model has the generalization capability 

of CNN and the high scalability of transformers [20]. 

CoAtNet-0 was selected for this study because it demonstrated 

exceptional performance in image classification when 

compared to other models in the ImageNet benchmark [21]. 

This study incorporated the datasets from studies [15, 17] and 

analyzed the performance of the CoAtNet-0 model with 

respect to both single and double-data augmentation. Five 

different image augmentation techniques, including noise 

addition, flipping (both horizontally and vertically), brightness 

change, blurring, and contrast adjustment, were selected. 

Moreover, this study also examined three optimizer functions, 

namely Adam, SGD, and RMSProp, during the training stage 

to determine the optimum optimizer for CoAtNet-0 in the 

nematode identification task.  

 

 

2. METHOD 

 

2.1 Research workflow 

 

The research workflow for identifying nematodes using 

hybrid convolution and attention models is depicted in Figure 

1. The self-collected nematode dataset [17] was combined 

with the public dataset from the study [15]. The acquired 

dataset is then preprocessed using several techniques. First, 

samples were cropped utilizing edge detection to eliminate 

space and lessen unnecessary information. Grayscale images 

of the samples were then created since classification only 

relies upon the nematode's morphological characteristics. 

Then, to fit the input size of the CoAtNet-0 model, each image 

is reduced to 224 by 224. Last, all images were then 

augmented using single and two augmentations before they 

were used as the input of the CoAtNet-0 model. The model's 

training process utilized several optimizer functions, namely 

Adam, SGD, and RMSProp optimizer. The result was then 

evaluated using several metric evaluations, such as test 

accuracy, mean class accuracy, F1 score, precision, and recall. 

 

 
 

Figure 1. Research workflow 

 

2.2 Nematode datasets 

 

The nematode dataset was collected in the agricultural area 

of Indonesia. Each nematode genus was captured using an 

optical connection with a light microscope Olympus CX31 

with a magnification of 40-1000 [22]. However, due to the 

limitation of the data, the self-collected dataset was combined 

with the public nematode dataset from the study [15] for this 

study. The dataset is divided into three parts, namely the 

training, validation, and test dataset, with a ratio of 80:10:10. 
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The nematode dataset has 26 classification classes with a total 

of 3595 Nematoda images, divided into 2876 data for training, 

360 data for validation, and 359 data for testing. The 

distribution and sample of the nematode genus dataset used in 

this study are presented in Table 1. The sample image for each 

genus used in this study is given in Figure 2. 

 

Table 1. Class distribution on the dataset 

 
Nematode Genus Number of Samples 

Genus Acrobeles 71 

Genus Acrobeloides 184 

Genus Amplimerlinius 24 

Genus Aphelenchoides 347 

Genus Aporcelaimus 128 

Genus Axonchium 170 

Genus Criconema 3 

Genus Criconemoides 103 

Genus Ditylenchus 330 

Genus Dorylaimus 38 

Genus Eudorylaimus 86 

Genus Helicotylenchus 213 

Genus Hemicycliophora 6 

Genus Hirschmanniella 130 

Genus Hoplolaimus 151 

Genus Meloidogyne 211 

Genus Mesodorylaimus 96 

Genus Miconchus 57 

Genus Mylonchulus 139 

Genus Panagrolaimus 327 

Genus Pratylenchus 402 

Genus Pristionchus 196 

Genus Radopholus 12 

Genus Rhabditis 81 

Genus Trichodorus 30 

Genus Xiphinema 60 

Total 3595 

 

2.3 CoAtNet-0 architecture 

 

Convolutional models provide more powerful 

generalization and faster convergence speed, while 

transformer-based models have more capacity and might 

benefit from more extensive and more varied datasets. By 

combining the advantages of both architectures, CoAtNet, a 

hybrid model that incorporates both depthwise Convolution 

and self-Attention, can be unified using simple relative 

attention. The vertical stacking of convolution layers and 

attention layers in a principled way has also been found to be 

effective in improving generalization, capacity, and efficiency. 

The CoAtNet architecture comprises five stages arranged in a 

linear sequence. These stages include an ordinary 

convolutional layer (S0), First MBConv (S1), Second 

MBConv (S2), First Transformer (S3), and Second 

Transformer (S4). The CoAtNet model has five basic versions 

from CoAtNet-0 to CoAtNet-4 and three variations of 

CoAtNet-5 to CoAtNet-7 with variable block parameters [20]. 

Figure 3 depicts the CoAtNet-0 model implemented in this 

study. The CoAtNet-0 model which merges the CNN structure 

with transformers create novel building blocks and obtain 

state-of-the-art results on the ImageNet benchmark [21]. The 

outstanding performance of the CoAtNet model makes it an 

ideal choice for the feature extraction and classification of 

microscopic images of nematodes. 

 

2.4 Data augmentation 

 

The data augmentation is carried out on the dataset to 

increase the variation and prevent overfitting when carrying 

out the training process by performing various image 

transformation operations. The selected image transformation 

is flipping the image (vertically and horizontally), adding 

noise, blurring the image, changing the brightness, and 

changing the contrast. This image transformation type is 

commonly used to increase the variety of datasets in deep 

learning problems. Other augmentations, such as translations 

or affine transformations, are not chosen because some of their 

augmentation results will cover essential features, such as the 

head or tail of the nematode genus and can reduce the model's 

performance. The following implementation is employed in 

the data augmentation process. 

 

 
(a) Acrobeles [15] 

 
(b) Acrobeloides [15] 

 
(c) Amplimerlinius [15] 

 
(d) Aphelenchoides [15] 

 
(e) Aporcelaimus [15] 

 
(f) Axonchium [15] 

 
(g) Criconema 

 
(h) Criconemoides 

 
(i) Ditylenchus [15] 

 
(j) Dorylaimus [15] 

 
(k) Eudorylaimus [15] 

 
(l) Helicotylenchus 
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(m) Hemicycliophora (n) Hirschmanniella (o) Hoplolaimus (p) Meloidogyne

(q) Mesodorylaimus [15] (r) Miconchus [15] (s) Mylonchulus [15] (t) Panagrolaimus

(u) Pratylenchus (v) Pristionchus [15] (w) Radopholus (x) Rhabditis [15]

(y) Trichodorus (z) Xiphinema

Figure 2. Sample of nematode dataset 

Figure 3. CoAtNet-0 architecture 

• Image flipping is performed randomly for each data in

the dataset with a 50% probability for each operation.

The average distribution of the result is about 25% of the

images with no flip, 25% horizontal flip, 25% vertical

flip, and 25% of the images with both operations.

• Noise addition is utilized by generating random white

Gaussian noise to images with a standard deviation of

0.15 and a mean value of 0, with a probability of 50%

for each data.

• The process of blurring the image is utilized randomly

with a probability of 50% using a 3 x 3 kernel size of

Gaussian filter with a standard deviation of 1.

• Brightness adjustment is applied using a random

increase in image brightness, ranging from 0-0.3. This

transformation is applied to all the datasets.

• Changing the contrast is applied by randomly increasing

the contrast, with a minimum factor of 0.3 and a

maximum of 3. This transformation is applied to all the

datasets.

The augmentation process is continued by combining two 

augmentation methods. The previous five augmentation 

methods determine the choice of augmentation combination. 

Depending on the model's performance against an 

augmentation method, that method may be excluded from the 

selection of the combination. All data augmentation is only 

applied to the training dataset. 

2.5 Optimizer functions 

In the training stage, three different optimizers were utilized 

to determine the optimum optimizer for the CoAtNet-0 model. 

This also eliminates the unfair advantage of the CoAtNet-0 

model in cases where a hyperparameter perfectly matches the 

need for a certain model-dataset combination capable of 

achieving more remarkable performance. Adam, SGD, and 

RMSprop were three of the optimizers employed in the 

experiments. Adam was chosen because of its superb 

performance in contrast to other optimization methods and 

because it works well in practice [23]. SGD is utilized for 

depicting gradient descent optimizers and is frequently 

employed to create cutting-edge findings in deep-learning 

studies. Moreover, SGD can improve generalization 
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performance [24]. RMSProp was selected due to its 

satisfactory performance in non-convex and non-stationary 

issues [25]. 

2.6 Systems implementations 

The CoAtNet-0 model was constructed and trained using 

TensorFlow and Keras, which were implemented with the 

Google Colab Pro version featuring specifications for a GPU 

in the form of an NVIDIA P100 or T4, a CPU in the form of 

Xeon Processing @2.3 GHz, and a maximum memory 

capacity of 25 GB, all based on availability. Each model is 

trained using identical hyperparameter settings as follows. 

• SoftMax for dense layer and sparse cross-entropy for

loss function

• Input size of 224 x 224 x 3, batch size of 32 and epoch

of 100

• Learning rate of 0.001 for Adam and RMSprop and 0.01

for SGD

2.7 Metric evaluation 

Several metrics evaluations will be used to assess the 

performance of the CoAtNet-0 model. The two main metrics 

that will be utilized are the metrics used by previous studies 

[15] namely the Test Accuracy and Mean Class Accuracy

metrics. The Test Accuracy metric is used to calculate the

accuracy of all images in the test dataset. The Mean Class

Accuracy metric is used to measure the average classification

accuracy of each genus in the dataset to assess whether the

model can learn the morphological characteristics of each

nematode genus. Other metrics that will be used are the F1-

Score and the average of Precision and Recall. The F1-Score

metric is a classification scoring metric that is calculated by 

taking the symmetrical average of recall and precision, 

appropriate for use when the class in the dataset is unbalanced. 

The F1-Score average method applied in this study is a 

weighted average to obtain accuracy on unbalanced datasets. 

The formula for Test Accuracy, Mean Class Accuracy, F1-

Score, Precision, and Recall are given in Eqs. (1)-(5). 

𝑇𝑒𝑠𝑡 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
(1) 

𝑀𝑒𝑎𝑛 𝐶𝑙𝑎𝑠𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

𝑐
∑

1

𝑛𝑖
∑ 𝑎𝑗

𝑖𝑛𝑖
𝑗=1

𝑐
𝑖=1 (2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
(3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
(4) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
(5) 

3. RESULT AND DISCUSSIONS

The CoAtNet-0 model implemented using single 

augmentation obtained the highest accuracy of 97.22% for 

non-augmented datasets using SGD as an optimizer. The 

lowest accuracy of 68.61% was acquired when CoAtNet-0 

model trained using RMSprop optimizer and non-augmented 

dataset. The complete result of CoAtNet-0 for identifying 

nematode implemented using single augmentation is presented 

in Table 2.  

Figure 4. Example of genus trichodorus implemented using two augmentations 

Table 2. CoAtNet-0 performance using single augmentation 

Optimizer Augmentation Test Accuracy Mean Class Accuracy F1 Score Precision Recall 

Adam 

No Augmentation 90.00% 0.9065 0.8991 0.9069 0.9 

Flip  76.67% 0.7647 0.7667 0.7956 0.7667 

Brightness 80.00% 0.8232 0.8147 0.8739 0.8 

Contrast 81.67% 0.7981 0.8028 0.8415 0.8167 

Gaussian Blur  87.78% 0.8667 0.8829 0.8948 0.8778 

Gaussian Noise 82.78% 0.8148 0.8283 0.8545 0.8278 

SGD 

No Augmentation 97.22% 0.9798 0.9722 0.9742 0.9722 

Flip  91.67% 0.8485 0.9148 0.9226 0.9167 

Brightness 93.89% 0.9402 0.9393 0.9436 0.9389 

Contrast 93.89% 0.9461 0.9387 0.941 0.9389 

Gaussian Blur  93.61% 0.8923 0.9351 0.9382 0.9361 

Gaussian Noise 85.83% 0.8141 0.8557 0.8621 0.8583 

RMSprop 

No Augmentation 81.39% 0.8082 0.8148 0.8579 0.8139 

Flip  73.33% 0.6772 0.7223 0.775 0.7333 

Brightness 82.78% 0.7805 0.8239 0.8464 0.8278 

Contrast 68.61% 0.6897 0.6749 0.743 0.6861 

Gaussian Blur  83.89% 0.8168 0.8388 0.8793 0.8389 

Gaussian Noise 65.83% 0.666 0.6583 0.7501 0.6583 
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Table 3. CoAtNet-0 performance using combination of two augmentations 

 

Optimizer Augmentation Test Accuracy Mean Class Accuracy F1 Score Precision Recall 

ADAM 

No Augmentation 90.00% 0.9065 0.8991 0.9069 0.9 

Brightness + Blur 87.22% 0.8565 0.8677 0.8903 0.8722 

Brightness + Noise 79.44% 0.8036 0.7947 0.8221 0.7944 

Blur + Noise 75.00% 0.6565 0.7603 0.8296 0.75 

Brightness + Contrast 85.28% 0.8628 0.8543 0.8786 0.8528 

Blur + Contrast 84.44% 0.7895 0.8453 0.8707 0.8444 

Noise + Contrast 74.44% 0.7116 0.7389 0.7952 0.7444 

SGD 

No Augmentation 97.22% 0.9798 0.9722 0.9742 0.9722 

Brightness + Blur 95.00% 0.9058 0.9484 0.9515 0.95 

Brightness + Noise 83.89% 0.747 0.8338 0.8463 0.8389 

Blur + Noise 84.44% 0.7489 0.837 0.8465 0.8444 

Brightness + Contrast 93.33% 0.8976 0.9338 0.943 0.9333 

Blur + Contrast 93.33% 0.9267 0.9334 0.9372 0.9333 

Noise + Contrast 81.39% 0.713 0.8126 0.8382 0.8139 

RMSprop 

No Augmentation 81.39% 0.8082 0.8148 0.8579 0.8139 

Brightness + Blur 85.28% 0.8403 0.8517 0.8745 0.8528 

Brightness + Noise 73.89% 0.7144 0.7441 0.7962 0.7389 

Blur + Noise 79.44% 0.7547 0.7929 0.8051 0.7944 

Brightness + Contrast 81.11% 0.7943 0.8087 0.8531 0.8111 

Blur + Contrast 73.61% 0.6978 0.727 0.7671 0.7361 

Noise + Contrast 61.39% 0.5994 0.6005 0.7168 0.6139 

 

 
 

Figure 5. Learning curves of CoATNet-0 implemented using SGD optimizer on non-augmented dataset 

 

To determine whether combining augmentation methods 

would enhance the model accuracy, two types of augmentation 

from previous methods were combined, excluding the flip 

method. This method was excluded because in most tests, the 

application of image-flip augmentation resulted in a decrease 

in model accuracy. Consequently, six new dataset variations 

were generated by combining four augmentation methods 

(brightness, contrast, blurring addition, and noise addition). 

An example of the results of applying two augmentations to 

Genus Trichodorus can be seen in Figure 4. Table 3 presents 

the results of CoAtNet-0 model performance with a 

combination of the two augmentations for.  

The performance results of the CoAtNet-0 model with two 

augmentations produce the highest accuracy of 95% for the 

brightness and blur augmentation dataset implemented using 

the SGD optimizer. This result is still below the model's 

accuracy when trained with non-augmented dataset and 

utilized SGD optimizer, which is 97.22%. The dataset 

implemented noise and contrast augmentation using the 

RMSprop optimizer provided the least accuracy, amounting to 

61.39%. 

After observing the model performance results of various 

combinations of augmentations from Table 2 and Table 3, the 

dataset trained using SGD optimizer and non-augmented 

dataset resulted in the highest accuracy of 97.22%. Figure 5 

shows the learning curve for the CoAtNet-0 model 

implemented using the SGD optimizer on a non-augmented 

dataset. This curve can be employed to monitor the learning 

process of the model and diagnose the behavior of a machine 

learning model. The learning curve indicated that the SGD 

optimizer provided good stability during the training of the 

nematode dataset. However, the model still experienced minor 

overfitting, owing to the limited number of datasets. This is 

likely because CoAtNet-0 has more capacity than is necessary 

for the problem. 

The results of the highest-performing CoAtNet-0 confusion 

matrix are shown in Figure 6. From the confusion matrix, the 

majority of the classes were correctly predicted. However, 

there are some nematode genus that are mistakenly predicted, 

such as Acrobeloides, Axonchium, Pratylenchus, and 

Pristionchus, each of which has one mistakenly predicted 

image. Moreover, Genus Hirschmanniella, Meloidogyne, and 

Panagrolaimus are all resulted in two fault prediction. This 

may be due to the similarities between classes, along with the 

image, which is primarily black and white and is distinguished 

by only a combination of nematode morphological traits. 
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Figure 6. Confusion matrix result from CoAtNet-0 implemented using SGD Optimizer on non-augmented dataset 

 

Incorporating more variations into the dataset through data 

augmentation does not always lead to improved performance. 

The selected augmentation techniques do not increase the 

variation of dataset in relation to the feature of each nematode 

genus characteristics. The model's capacity to discern the 

classification issues based on the feature of each nematode 

cannot be enhanced in this way. Furthermore, image 

transformation, in both single and two augmentations, can 

simultaneously cover the morphological features of the 

nematode to be analyzed, which can make the model more 

difficult to learn. 

The results showed that the performance of CoAtNet-0 

varied when different combinations of augmentation 

techniques and optimizers were used. It was found that 

specific augmentations are more effective when used with 

particular optimizers, which can lead to variations in 

performance. It was inferred from the results that the selection 

of the augmentation and optimizer is crucial for achieving the 

best performance of the CoAtNet-0 model. However, future 

research is necessary to address other circumstances, such as 

developing more efficient and high-performance CNN 

architectures specialized for nematode microscopic images. 

Additionally, identifying nematodes under damaged 

conditions is important, as this study only utilized images of 

perfect condition nematodes.  

 

 

4. CONCLUSIONS 

 

Combining convolution and attention implemented using 

transfer learning of the CoAtNet-0 model for identifying 

nematode genus provides satisfactory results. The best model 

performance resulted from the CoAtNet-0 model utilizing 

SGD optimizer and trained with no augmentation. Using the 
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right optimizer is essential to getting the best performance 

from a model. The augmentation used must match 

contextually on the dataset used. Adding variations to the 

dataset using data augmentation only sometimes increases 

performance. If the model's performance on the non-

augmented dataset is inferior, augmentation can help improve 

the model. However, in high-performance models, such as the 

CoAtNet-0 model on non-augmented datasets, the change in 

accuracy varies. In some cases, two image transformations 

cover the features to be studied in the Nematode genus. 

Regarding nematode morphology, the amount of variety in 

each genus's features is not noticeably increased by the 

augmentation applied. Simultaneous use of two augmentations 

also does not guarantee an improvement of the CoAtNet-0 

model's performance as it might obscure the most significant 

features of nematode images, making it more challenging for 

the model to learn. Moreover, given the minor overfitting 

indication from the learning curves, it is likely that the 

CoAtNet-0 model has more capacity than necessary to 

accurately extract and classify nematodes. From the overall 

results, it was concluded that the selection of the augmentation 

and optimizer is crucial for achieving the best performance of 

the CoAtNet-0 model in nematode identification tasks. Further 

research should be conducted to develop or implement a more 

efficient model for nematode classification. The results of this 

research, which can be incorporated into a more user-friendly 

platform, can be used to support and assist nematologists in 

identifying both non-parasitic and plant-parasitic nematodes. 
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