
Feature Selection for Android Malware Detection with Random Forest on Smartphones

Ibrahim Mahmood Ibrahim1* , Amira Bibo Sallow2

1 Technical College of Informatics-Akre, Duhok Polytechnic University, Duhok 42001, Iraq
2 Technical College of Administration-Duhok, Duhok Polytechnic University, Duhok 42001, Iraq

Corresponding Author Email: ibrahim.mahmood@dpu.edu.krd

https://doi.org/10.18280/ria.370405 ABSTRACT

Received: 12 June 2023

Revised: 22 July 2023

Accepted: 28 July 2023

Available online: 31 August 2023

Android smartphones, integral to everyday life, offer a multifunctional platform for storing

and managing sensitive personal data. However, the ubiquity of Android applications

intensifies their vulnerability to malicious applications. This study presents the Static

Dynamic Hybrid Feature Extraction (SDHFE) tool, a lightweight automation tool designed

for the efficient analysis of Android applications by extracting features from a variety of

sources. The research generated multiple datasets, each representing different feature

categories and their combinations. A novel approach to improve Android malware detection

on smartphones is introduced, leveraging the random forest algorithm. Multiple models

were created and evaluated using metrics such as accuracy, precision, recall, and F1 score.

The model trained on a dataset comprising permissions and intents achieved the highest

average scores, 99.2%, thus outperforming other models. A comparative analysis was

conducted to evaluate the efficiency of the SDHFE tool against two widely used tools,

APKtool and Androguard, in static feature extraction. The results demonstrated that the

SDHFE tool significantly reduced disassembly and analysis time, outperforming APKtool

and Androguard by factors of 2.2 and 4.6, respectively. While this research provides

valuable insights into Android malware detection, it is important to acknowledge potential

limitations. The dynamic nature of malware behavior could affect the generalizability of

our approach. Despite these potential limitations, the results underscore the effectiveness

of our proposed method for enhancing malware detection in Android smartphones.

Keywords:

machine learning, random forest algorithm,

malware, static analysis, dynamic analysis,

hybrid analysis, permissions, API calls,

feature selection, Android application

1. INTRODUCTION

The recent evolution in mobile device technology has led to

the proliferation of smartphones, which operate on various

operating systems (OS) such as Android, iOS, Windows,

Symbian, and Blackberry [1]. Among these, the Android OS

is the most prevalent, offering a multitude of services

including calls, messaging, multimedia, shopping, banking,

internet browsing, file storage, and file sharing. The growing

popularity and open-source nature of Android have

unfortunately resulted in a significant surge in malicious

attacks on both official and third-party Android app stores [2].

Smartphones, due to their extensive service range and the

storage of sensitive data, have become integral to daily life.

This ubiquity has given rise to an increase in the development

of various types of malware aimed at acquiring sensitive

information without user consent [3]. Malware, or malicious

code, encompasses several types of harmful or intrusive

software such as viruses, spyware, worms, Trojan horses,

backdoors, and rootkits. Such software is typically designed

with the explicit intent of attacking systems, whether to

destroy file systems, steal data, or execute other undesirable

activities [4, 5].

In response to the growing threat of malicious code,

researchers have developed various Intrusion Detection

Systems (IDS) to protect mobile devices [6]. These systems

aim to counteract the harmful actions of malware, which range

from stealing sensitive information to damaging the system.

Many procedures for analyzing the behavior of Android

apps have been proposed, and they can be broken down into

three classes: static, dynamic, and hybrid analysis approaches.

These approaches are mainly used to identify the behavior of

the app as either normal or malicious [7]. The static approach

scans the application's source code without executing it to

detect the malware application. It employs reverse engineering

methods to obtain the source code from the APK package.

Several static features such as intents, permissions, activities,

API calls, and opcodes features can be extracted and further

used in the malware detection strategy [8]. The most crucial

dynamic features are system calls and network traffic, which

are retrieved from the executing app in the controlled

environment. Every Android app relies on the operating

system to deliver the most fundamental resources and services

it needs to run. Due to the architecture of the Android system,

applications cannot communicate directly with the operating

system; therefore, the application has to use system calls to do

specific operations, such as file opening, reading, writing, and

closing [9]. The hybrid analysis utilizes both static and

dynamic features [7].

In this study, we conducted the extraction and analysis of

key features, including permissions, intents, API calls, and

system calls. To facilitate this process, a lightweight tool was

developed by the author specifically for extracting and

analyzing these features. Many machine-learning models were

created and trained on the extracted features to discover the

optimal feature set for Android malware detection on the

Revue d'Intelligence Artificielle
Vol. 37, No. 4, August, 2023, pp. 857-869

Journal homepage: http://iieta.org/journals/ria

857

https://orcid.org/0009-0000-5636-6210
https://orcid.org/0000-0002-5102-6193
https://crossmark.crossref.org/dialog/?doi=10.18280/ria.370405&domain=pdf

smartphone. The main contributions of this work can be

summarized as follows:

1. We developed an automated and lightweight tool called

Static Dynamic Hybrid Feature Extraction (SDHFE) to

analyze the behaviors of Android applications. This tool

enables researchers to analyze an unlimited number of apps

sequentially without human intervention or restrictions. It

offers three modes of analysis: static, dynamic, and hybrid,

providing flexibility for researchers.

2. The performance of the SDHFE tool was evaluated by

comparing it with two of the most commonly used tools for

extracting static features: APKtool and Aandroguard. The

results reveal that the SDHFE tool outperforms in terms of

speed, providing quicker de-compilation and extraction of

features from Android apps.

3. A total of 500 benign and 500 malware Android samples

underwent analysis using the proposed tool, which

successfully extracted four distinct types of features:

permissions, intents, API calls, and system calls. Subsequently,

ten distinct datasets were constructed based on the extracted

features.

4. Based on the created datasets, we developed ten models

utilizing the random forest algorithm to determine the most

effective feature set for detecting malicious applications on

smartphones.

The remaining sections of our paper are organized as

follows. Section 2 provides related works. Section 3 shows the

background theory, and Section 4 presents the methodology.

Section 5 shows the experimental environment and result

analysis. Sections 6 and 7 provide a discussion and conclusion.

2. RELATED WORKS

To do research in the area of Android security, we'll need to

gather a set of features that Android apps have to analyze. The

author grouped related studies into groups based on the type

of features used in their studies.

2.1 Studies based on static features

Many researchers have developed and implemented their

own tools for extracting features from Android apps. In 2019,

Kapoor et al. [10] presented a method for the classification of

Android applications based on permissions. The proposed

system collects data from many sources. Benign samples are

collected from the Google Play store while the malware

samples are collected from different websites like virus share

and zeltser. They have developed a Python script to extract

static features (permissions) and save them in a CSV file. In

2020, Bibi et al. [11] proposed a deep learning model based on

Gated Recurrent Unit GRU for the detection of malicious

applications in the Android system. The proposed model can

classify applications into benign, backdoor, and Trojans. The

authors collected samples from AMD and Androzoo datasets.

A Python script was developed to extract useful information

and generate feature vectors from a manifest file. The

developed script thoroughly analyses the manifest file and

extracts many features like permissions, API calls, and intents.

In 2020, Sirisha et al. [12] suggested a sequential neural

network model in order to predict the presence of malware in

Android APK files received from the web or play store. The

dataset consisting of 398 APK files having 331 features was

used for training the model in the proposed model. During the

test, the neural network model will be tested using data from

the Android play store as well as malicious sites, such as

Droidbench, which includes malicious and benign APK files.

The permissions were extracted from the APK file by using

the Androguard tool. In 2019, Hr [13] developed a fully

connected deep-learning model for detecting malicious

applications. Benign data samples are collected from the

Google Play store, while the malware samples are collected

from the virus share repository. The Androguard tool was used

for analyzing APK files to extract permissions from the

application, and the random forest was used for feature

selection. In 2018, Koli [14] presented the RanDroid method

that uses several machine learning algorithms like random

forest, naive Bayes, support vector machine, and decision tree

for classifying malware applications. The RanDroid method

depends on many features, such as API calls and requested

permissions, along with other application features such as

reflection and native code. The researchers used the

Androguard static analysis tool to extract features like

permissions and API calls. In 2020, Alsoghyer and Almomani

[15] presented a model that deeply analyzed the extracted

permissions that enabled them to differentiate ransomware

from benign applications on the Android device. The

important permissions are used and are comparable between

ransomware and benign applications. The presented study

takes a proactive approach to identifying ransomware before

damaging the device. The present work used the APK tool to

decompile APK files and then extract features. In 2018, Zhao

et al. [16] suggested a deep neural network-based mobile

Android malware detection system that employs optimized

deep neural networks to learn from opcode sequences to detect

malicious code. With the proposed method, the optimized

CNN was trained several times on the operation code (Opcode)

sequence extracted from the Android app after the de-

compilation process by the APK tool. Opcodes represent

specific instructions that the Android runtime executes to

perform various tasks within the app. The suggested model

collected data from many sources, such as Drebin for

malicious applications and many Chinese app markets for

benign applications. In 2019, Ma et al. [17] presented an

ensemble model that detects malware applications based on

the machine learning algorithms. The proposed model

constructs a control flow graph from the source code after the

application is de-compiled by using the flowdroid framework,

then extracts API calls from the control flow graph and builds

three datasets. In 2022, Kumar et al. [18] introduces a

methodology for malware detection in Android applications

by extracting features such as permissions, intent filters,

activities, and services from the manifest file. The androguard

utility is employed to disassemble the code and identify

suspicious API calls from the dex code. To improve retrieval

efficiency, the extracted features are serialized in feather data

format. Finally, the XGBoost algorithm is utilized for effective

malware detection.

In this section of the related works, it is observed that both

the APK tool and the Androguard tool have been utilized in

most studies for the analysis of Android apps. The APK tool

is developed in the Java language used for reverse engineering

Android apps. It has the capability to decode Android apps and

create decompiled resources, encompassing components like

the manifest and smali files. Androguard is a Python-based

reverse engineering tool for Android apps, possesses the

ability to decode resources and additionally perform bytecode

disassembly to convert them into Java source code [19]. The

858

APK tool lacks built-in functions or APIs for feature extraction.

Researchers utilizing this tool need to develop their own

programs to extract features from files extracted from Android

apps. In contrast, the Androguard tool provides functions to

directly extract static features from files derived from Android

apps. Both the APK tool and the Androguard tool only support

static features.

2.2 Studies based on dynamic features

In 2018, Feng et al. [20] developed an approach that

depends on a dynamic analysis called EnDroid for detecting

malware apps based on multiple dynamic features. For feature

extraction, the authors used Droidbox and the strace tool to

extract dynamic features such as network traffic, file

operations, and system calls from the executing app in the

emulator. Based on these features, the developed method can

achieve an accuracy of 96.32%. In 2019, Esmaeili and

Shahriari [21] proposed a method named PODBot for

detecting mobile phone botnets that utilize both network and

host-based metrics. The detection is based on application

features like permissions, APIs, and network traffic analysis.

Androguard and MobSF tools were used to perform analysis.

In 2020, Lê et al. [22] proposed a method of machine learning

to identify Android malware apps. The features that are used

to train machine learning are built based on the behavior,

requisite permissions, and other features of malicious

applications extracted by the Dexdump tool. In 2018, Kumar

et al. [23] proposed a framework for machine learning (ML)

to counter mobile threats rapidly. The model depends on the

network's flow-based features. The proposed model utilizes 40

time-based network traffic features derived from malicious

and benign apps in real time. The Cuckoo sandbox and the

Anubis sandbox are publicly available and were used to

generate network traffic. In 2023, Manzil and Naik [24]

Introduced a novel approach for generating feature vectors by

employing Huffman encoding. The experimental findings

demonstrate that this innovative strategy significantly

improves the effectiveness of the malware detection model. By

extracting dynamic behavior patterns of malware through the

utilization of system call frequencies as features, the proposed

method contributes to the detection process. The performance

of the model is evaluated by applying deep learning and

machine learning techniques. In 2020, Mahdavifar et al. [25]

introduced a simple and effective Android classification

framework for malware on the basis of mining system-call

dynamically observed behaviors. The authors depended on the

CopperDroid virtual machine to extract dynamic features like

system calls. The framework is built on a deep neural network

that uses a semi-supervised technique to input behaviors that

are dynamically observed and that allows the classification of

the categories of malware.

2.3 Studies based on hybrid features

In 2018, Arora and Peddoju [26] introduced a hybrid system

for detecting malware, named NTPDroid. This system

effectively combines network traffic features and permissions

extracted from applications. The approach employed the FP-

Growth technique to identify prevalent patterns present in both

malicious and benign datasets. The author utilize APK tool to

extract static features. Importantly, the results indicated that

integrating network traffic features with permissions resulted

in improved detection rates, surpassing the efficacy of using

either network traffic features or permissions in isolation. In

2019, Garg and Baliyans [27] suggested an ensemble approach

comprising a number of algorithms, including support vector

machine, multilayer perceptron, ripple down rule learner, and

rule-based classification tree. This ensemble model works

concurrently to create a resilient framework capable of

accurately and efficiently distinguishing between benign and

malware. The author employed many tools to extract features

such as the APK tool, ADB, and strace tools. The extraction

process involves capturing an array of static and dynamic

attributes from applications and devices, encompassing API

calls, permissions, and system components, network traffic,

and battery usage. Experimental outcomes demonstrated

exceptional performance, with the proposed system achieving

an impressive accuracy level of 98.27%.

Upon reviewing the related works, the author observed that

the previous works mainly focused on the accuracy of the

models or developing new methods for Android malware

detection, with less attention given to the complexities

associated with the extraction of features. Several of the

developed models have demonstrated promising results;

however, when subjected to testing on mobile devices, they

may encounter challenges in acquiring features from the

installed applications. This can potentially impact the overall

device's performance. Therefore, the main aim of this study is

to analyze Android applications and extract features from

many sources to get lightweight features that achieve high

accuracy with less computation on mobile devices.

3. BACKGROUND THEORY

3.1 Android application package

Every Android application is distributed in the form of

Application Package (APK) files. They are primarily ZIP files

that contain all of the data and metadata essential for an

application to run [28]. The main component of the APK file

is illustrated in Figure 1 [27-29].

Figure 1. APK components [27]

AndroidManifes.xml is a critical file that provides the

operating system with fundamental information about the

application in order to ensure its proper execution. It includes

a list of all the components required for the app to run, and

permissions required to access critical resources. The META-

INF folder stores the application's signature information. The

signature information can be used to validate the APK's

integrity. classes.dex file contains references to any classes or

methods used by the application. Essentially, each activity,

object, or fragment in the code base will be converted to bytes

within a Dex file that can be executed as an Android

application. Assets folder: used to keep static files that must

859

be packed together with the APK, such as text, XML, and

HTML. Res folder: contains external resources like images,

videos, fonts, and languages to support the settings of a

specific device. resources.arsc file: Compiled Android-

generated application resource. For a precompiled binary

translation resource, it stores value types of resources as well

as other non-asset types of resource-related information.

Libraries folder: contains compiled libraries that are

particular to different types of processors and are intended for

use with the appropriate application [29].

3.2 Android apps analysis techniques

There are three major techniques used in analyzing mobile

apps, which are static analysis, dynamic analysis, and hybrid

analysis techniques. Researchers use these techniques to

analyze the behavior of mobile apps to determine malicious

activity produced by mobile apps [30].

Static analysis is a method that analyzes mobile apps

without executing them. The procedure aids in the

understanding of code structure as well as the functions it will

execute. Classes files and Android Manifest files are the most

crucial files in the static analysis process. From these files,

many features can be extracted, such as permissions, intents,

API calls, and many other features. The process of extracting

static features is very fast and doesn't need many resources

[31]. In the dynamic approach, the application is executed in a

controlled environment, monitors the running code, and

inspects its interaction with the system. The dynamic analysis

traces many features of an application and system, such as

system calls, system components, network traffic, CPU

consumption, memory usage, battery usage, and user

interaction with the system [32]. Hybrid analysis gathers static

and dynamic features together to detect malware applications.

The benefit of using hybrid analysis is to improve the accuracy

of the system, while the disadvantage is that the required time

for hybrid analysis will be more than that required for static or

dynamic analysis [33].

4. METHODOLOGY

Figure 2 depicts the framework of the Android malicious

detection system. The system employed many types of

features obtained from various sources, and many datasets (DS)

are built based on a single feature category and a possible

combination of two feature categories to identify the optimal

feature sets suitable for devices with limited resources, such as

smartphones. This approach aimed to effectively detect

applications exhibiting malicious behavior while considering

the constraints imposed by resource-constrained devices.

Figure 2. Schematic representation of the proposed system

4.1 Collecting samples

Numerous resources provide Android app samples

specifically intended for research purposes. For the present

study, 500 samples of malware were gathered from diverse

databases, namely Drebin (https://www.sec.tu-

bs.de/~danarp/drebin/), CICMalDroid 2020

(https://www.unb.ca/cic/datasets/maldroid-2020.html), the

Android Botnet dataset

(https://www.unb.ca/cic/datasets/android-botnet.html), and

Malware Bazaar (https://bazaar.abuse.ch/browse/tag/apk/).

For benign apps, this study collects samples from Google Play

(https://play.google.com/store/apps), and the AndroZoo

databases (https://androzoo.uni.lu/).

4.2 SDHFE tool

Most researchers analyze Android applications for security

purposes to determine whether the application is malware or

benign. Therefore, researchers are looking for a tool that helps

them analyze mobile applications and extract the essential

features. Many reverse engineering tools on the market can

perform static and dynamic analyses of Android APK files.

Still, no supporting tools that offer three fundamental analyses

(static, dynamic, and hybrid) and have the capability to

automatically extract features from a bulk of APK files

without the need for human intervention during the analysis

process. This paper presents the development of the SDHFE

tool, a comprehensive solution offering three distinct analysis

modes. The SDHFE tool is a lightweight and automated tool,

developed using shell script programming. It relies on

essential libraries like AXMLPrinter and Baksmali. This tool

is designed to the extraction of features and enable the analysis

of a large number of APK files within a short time frame

without the need for human intervention. Figure 3 shows the

general mechanism of the SDHFE tool.

860

Figure 3. Overview of the SDHFE tool's organizational

structure

4.3 Feature set extraction

This study involves the analysis of 1000 Android apps,

which are evenly distributed between malware and benign

applications. Our emphasis centers on permissions, intents,

API calls, system calls, and possible combinations of two

feature categories. The analysis is conducted using the SDHFE

tool.

4.3.1 Feature sets extracted from the manifest file

Permissions and intent filters are important features in the

Android manifest file that govern access to devise resources

and define how the application interacts with other

components. However, these features are susceptible to

exploitation by malicious applications. For instance, the

android. permission.SEND_SMS permission is commonly

utilized in benign applications for sending and receiving SMS

messages, it can be maliciously employed to send

unauthorized premium-rate messages or utilized in phishing

attacks, where deceptive SMS messages containing malicious

links or requests for sensitive information are sent. Another

exploit involves a malicious app registering itself to receive

the "android.intent.action.PHONE_STATE" intent, enabling

it to eavesdrop on phone conversations. This unauthorized

access grants the app the ability to obtain call-related

information, such as phone numbers, call durations, and even

the audio content of the calls. Figure 4 illustrates the

pseudocode algorithm for extracting permissions and intents,

as well as generating profiles for applications by the SDHFE

tool.

Figure 4. Generating profiles for APK files based on

permissions and intents

The process of analyzing and extracting features from a

manifest file is relatively fast and lightweight as the manifest

file is typically small. Figure 5 depicts the steps of deriving

features from an app using the SDHFE tool, which involves

parsing the structured XML data present within the manifest

file, resulting in the retrieval of crucial information.

Figure 5. Process of sample analysis and feature extraction from the manifest file

4.3.2 Feature sets extracted from the source code

Source code analysis provides deep insight into the inner

workings of an Android application. By examining the source

code, security analysts can understand how the app functions,

accesses sensitive data, communicates with external services,

and handles user inputs. The most important features in the

source code are API calls. Malicious applications often

incorporate API calls that enable unauthorized access to

sensitive information or smartphone resources. A malicious

app can exploit a certain API call to perform some action

without user consent, such as getDeviceId(), getSubscriberId(),

and getNetworkOperator(), from the telephony manager class.

These APIs provide access to sensitive device information of

the user and can lead to privacy breaches and unauthorized

861

data collection. Another prominent API call that malware app

developers frequently used is the sendTextMessage() method.

This API is intended for sending SMS messages

programmatically, but its misuse can lead to various malicious

activities. The SDHFE tool plays a crucial role in identifying

and extracting these API calls from the source code. Figure 6

provides an illustrative pseudocode algorithm that outlines the

process of extracting API calls and generating profiles for

applications using the SDHFE tool.

Extracting features from the source code (classes.dex file)

after converting it into smali files demands more time and

computational resources compared to extracting features from

manifest files. This conversion process involves creating

multiple folders and smali files that mirror the package

structure of the Android application. The number of folders

and smali files created varies based on the complexity and size

of the Android application. The procedure of extracting API

calls from a class.dex by the SDHFE tool is depicted in Figure

7.

Figure 6. Generating profiles for APK files based on API

calls

Figure 7. Process of sample analysis and feature extraction from the class file

4.3.3 Feature sets extracted from application behavior

Monitoring and analyzing system calls made by the

application can reveal its interaction with the underlying

operating system. Features such as the frequency, types, and

sequences of system calls can provide insights into the app's

resource utilization, file operations, network communication,

and potentially malicious activities. For example, the "exec"

system call is used to execute a command or launch an external

program from within an application. A malicious app can

abuse the "exec" system call to execute arbitrary commands or

launch malicious programs without the user's knowledge or

consent. The process of capturing system calls by the SDHFE

tool passes through the following steps: 1) install the APK file

on the emulated device (Genymotion) with the help of the

ADB tool. 2) Start running the installed app. 3) Retrieve the

process id of the currently running. 4) Trace the running

process by process id for a specific time (here we used the

monkey runner to send 500 pseudo-random events to the

running application). 5) Terminate the running process using

the kill process id. 6) Remove the installed application. 7) Pull

the log file from the emulated device containing the

application's system call and generate a profile for the

application. Steps 1 to 7 are repeated for every application.

Figure 8 provides a visual representation of dynamic analysis

using the SDHFE tool to examine an application's behavior,

including system calls. Dynamic analysis typically demands

more time and computational resources compared to analyzing

manifest and classes.dex files due to the following reasons:

1. Monitoring system calls involves tracking the

interactions between the app and the operating system in real-

time. This real-time analysis demands continuous monitoring,

data collection, and processing, which can be resource-

intensive.

2. Monitoring system calls may involve tracking resource

usage such as memory, file access, network activity, and more.

Collecting and analyzing this information further contributes

to the computational load.

862

Figure 8. Process of extracting system call features from Android application

4.4 Preparing dataset

For each feature set discussed in the preceding section, a

feature vector is generated for every application using a

Python program specifically developed by the author for this

purpose. This program is responsible for producing a file in

the Comma-Separated Values (CSV) format, wherein the

feature names are arranged as columns and their respective

values are recorded as rows. To accomplish this, the program

employs a one-dimensional array to store the names of the

columns. During execution, the Python program compares the

elements of the array with each line of the application's profile.

If a feature name is found within the profile, the corresponding

value in the array is replaced with 1 in the case of the feature

type belonging to (permission, intent, API call). However, if

the feature type corresponds to system calls, the value in the

array is replaced with its frequency call. Conversely, if a

feature name does not match, the value is replaced with 0.

Subsequently, the feature vector of the application is appended

to the CSV file. This process is repeated for all applications.

4.5 Mutual information

For feature selection, we employed the mutual information

feature selection algorithm. The mutual information between

feature F and class C can be employed to quantify their level

of relevance.

𝑀𝐼 (𝐹, 𝐶) = ∑ ∑ 𝑝(𝐹 = 𝑓𝑖 , 𝐶 = 𝑐𝑗)

𝑐𝑗𝑓𝑖

∗ log
𝑝(𝐹 = 𝑓𝑖 , 𝐶 = 𝑐𝑗)

𝑝(𝐹 = 𝑓𝑖) ∗ 𝑝(𝐶 = 𝑐𝑗)

(1)

where, P(C = cj) is the frequency count of class C with value

cj, P(F = fi) is the frequency count of feature F with value fi,

and P(F = fi, C = cj) is the frequency count of F with value fi

in class cj. The values of the class are 0 or 1, where 0 indicates

a benign sample and 1 indicates a malware sample. And

feature values (boolean for permissions, intents, and API;

frequency count for system calls). The mutual information is a

non-negative value ranging between 0 and 1. A mutual

information value of 1 indicates a strong correlation between

the feature and the class, while a value of 0 signifies no

correlation between the feature and the class.

5. EXPERIMENTAL ENVIRONMENT AND RESULT

ANALYSIS

The findings presented in this paper can be categorized into

three sub-sections: Firstly, we conducted thorough testing and

evaluation of our proposed tool on a selection of Android

applications, comparing its performance with well-known

tools used for similar purposes. Secondly, we computed the

time required for feature extraction using SDHFE. And finally,

we employed the random forest algorithm to train and test on

ten different datasets in order to identify the most effective

feature set for detecting malicious apps in Android devices.

The evaluation of the SDHFE tool was performed on a Linux

Santoku operating system 64-bit, version 0.5 which was

installed within VirtualBox 7.0.8 on a Windows 10 64-bit host

system equipped with an Intel(R) Core(TM) i5-2320 CPU @

3.00 GHz, 4 CPU cores and 4 logical processor, NVIDIA

Quadro 4 GB, and 16 GB of RAM. The hardware

configuration chosen for the Santoku operating system

includes 6 GB of RAM, 1 CPU, and 100 GB of storage. The

implementation of our machine learning models was carried

out on the Anaconda platform version 1.7.2, utilizing Python

version 3. Key libraries utilized in this work include Pandas

version 1.0.5, NumPy version 1.18.5, and Scikit-learn version

0.23.1.

5.1 SDHFE tool evaluation and comparison

The APK package is a compressed file containing various

components as shown in Figure 1. The static analysis involves

two steps: decompiling the APK package and extracting the

main files, followed by the conversion of the manifest file to

its original XML format and the conversion of classes to smali

files, which contain human-readable APIs and opcodes. Static

features such as permissions, intents, and APIs are then

extracted from these files. To evaluate the performance of the

proposed tool, the authors downloaded ten Android apps from

the Androzoo database and compared the time required for the

first step of static analysis using SDHFE, with two other

863

commonly used tools in reverse engineering, APKTool, and

Androguard. Tables 1 and 2 present the hash codes, alternative

names of downloaded applications, and the respective time

taken by each tool for decompiling apps and converting the

extracted files into readable formats.

Table 1. Application hash codes (SHA-256) and alternative names

No Application Hash Codes Alternative Name

1 00F437B674B208055122A1465AE385F0BB0B68A7D6C25BE182028FEDD88B3B5A.APK App1

2 001E621FE5BF38AEC2F29762A3235A45B6C6D2A946EFBE5DB846369D6827475E.APK App2

3 0013437B05773AFBC48F1B0422A262DD925690A765CE43377CD0C6E8F1A379AF.APK App3

4 0029566D768782F2B8A713A4C3C3C2FB266A86930D4396DE9E97A6EA76B2BEE1.APK App4

5 001C5184A1578728C810EC5227EB7B2BC07F488D98886A8835CFD7323A449572.APK App5

6 00069DD64B3D5D97C63B1ACF3FEA0C5BEA909C8D19A4EA42989ECB0A02125DB3.APK App6

7 000B39F83E95385C35ED8C36438939D1B7BD2F1AEA67F70B2FCF424D713C3666.APK App7

8 0023F64B6A69F24E8AF6E9F12835A93E4C23347796B10B9DADDD1A681BFEAA26.APK App8

9 001E492C1DCFEE402802A0A6D957FA6981FD9A0285694AB8A297795D4045270C.APK App9

10 00F3FCF02941D4A40FEAF22853FEE8695134058184113BC15DDFF67D5D55FEF9.APK App10

Table 2. Time required for APK package extraction and decompilation by APKTool, Androguard, and the SDHFE tool

App No. App Name App Size
Required Time in Seconds to Analyze and Decompile APK Package by:

APK Tool Androguard SDHFE

1 App1 1.05 MB 21.96 20.48 6.354

2 App2 12.1 MB 25.96 36.26 10.132

3 App3 22.4 MB 30.67 43.49 10.068

4 App4 33.9 MB 25.15 48.90 9.835

5 App5 41.3 MB 25.78 70.02 13.650

6 App6 53.8 MB 26.98 73.28 14.711

7 App7 60.2 MB 35.45 75.45 16.248

8 App8 70.1 MB 34.94 75.04 19.453

9 App9 82.7 MB 38.31 74.85 15.724

10 App10 91.3 MB 34.71 103.85 19.493

Table 2 presents the analysis results, consisting of 10 apps

with a total size of 468.85 MB. The time taken to analyze this

dataset using APKTool was 299.91 seconds, while

Androguard required 621.22 seconds. In contrast, our

proposed tool completed the analysis in just 135.668 seconds.

Notably, the SDHFE tool demonstrated a substantial time

reduction, approximately 2.2 times faster than APKTool and

4.6 times faster than Androguard. This significant

improvement enables researchers to efficiently analyze a large

number of apps within a shorter timeframe. Figure 9 provides

a visual representation of how long it took APKTool,

Androguard, and the SDHFE tools to extract and decompile

each APK package.

Figure 9. Extraction and decompilation time comparison of

APKTool, Androguard, and the SDHFE tool

Another important point is the size of each tool, APKTool

has a size of 18.4 MB, Androguard occupies 5.88 MB, while

our proposed tool occupies only 0.84 MB. Figure 10 provides

a visual representation of the tool sizes, including their

corresponding dependencies, in megabytes.

Figure 10. APKTool, Androguard, and SDHFE tool size

comparison

In terms of usability, the SDHFE tool doesn't require

programming experience. A researcher simply needs to select

the path of applications that wants to analyze and selects the

type of features to extract. The APK tool offers robust analysis

capabilities. However, it does necessitate programming

expertise for feature extraction. It decompiles Android

applications, converting their files into readable formats.

Subsequently, a researcher needs to write specific

programming statements to extract the desired features. In

addition to the decompilation of the application, the

Androguard tool offers APIs and functions for feature

extraction; utilizing these APIs and functions to extract desired

features and create the application's profile necessitates

familiarity and experience with the tool. Given that the APK

tool lacks APIs or functions to extract features after the

864

decompilation process, a comparison between the accuracy of

the SDHFE tool and the Androguard tool was conducted for

feature extraction. During analyzing the applications listed in

Table 1, the author observed that the Androguard tool allows

the extraction of repeated features from the manifest file. This

requires additional analysis by the researcher to eliminate

these redundant features. For example, as depicted in Figure

11, the Androguard tool extracts a total of thirteen permissions

from App1. However, it is noteworthy that three permissions

are duplicated:

'android.permission.ACCESS_NETWORK_STATE',

'android.permission.ACCESS_WIFI_STATE', and

'android.permission.INTERNET'. In contrast, the SDHFE tool

efficiently retrieved ten permissions without duplication from

the same app and recorded them alphabetically in a text file as

shown in Figure 12. This comparison underscores the higher

accuracy of the SDHFE tool over the Androguard tool.

Figure 11. Permissions extraction by the Androguard tool

Figure 12. Permissions extraction by the SDHFE tool

Table 3. Duration of static feature extraction (in seconds)

App No. App Name Permissions Intents API Calls Permissions + Intent Permissions + API Calls Intent + API Calls

1 App1 0.61 0.574 6.632 0.647 6.932 6.805

2 App2 0.777 0.752 10.674 0.821 15.322 14.989

3 App3 1.212 1.231 11.799 1.257 14.068 13.682

4 App4 1.198 1.198 11.249 1.199 12.884 12.132

5 App5 3.766 3.793 15.302 3.798 17.481 17.273

6 App6 5.063 5.121 17.641 5.170 20.967 20.087

7 App7 6.302 6.236 19.066 6.316 22.522 22.653

8 App8 8.535 8.356 20.656 8.719 28.369 28.088

9 App9 4.314 3.591 19.465 4.394 22.194 21.590

10 App10 8.205 8.295 21.303 8.301 29.865 29.545

5.2 The run-time overhead of feature extraction

The process of static analysis fundamentally differs from

dynamic analysis. The applications listed in Table 1 are

utilized for the analysis and extraction of static and dynamic

features using the SDHFE tool in two different cases.

5.2.1 Case one static feature

The process of extracting static features involves two steps.

Firstly, the application is decompiled, enabling access to its

internal structure. Subsequently, a targeted search is conducted

within a specific file(s) to extract the desired features.

Permissions and intents are extracted from the manifest file,

whereas the API features are extracted from the smali files.

Table 3 presents the time required in seconds to extract

features from the manifest and smali files for ten applications

of varying sizes. The obtained data in Table 3 are plotted to

get its related graph, as shown in Figure 13.

During the analysis process, it is sometimes observed that

smaller APK packages may require a longer duration

compared to larger APK packages, despite the disparity in

their file sizes. The reason behind this is that other factors

affect the delay in the analysis process, such as structural

intricacies and complexity of the underlying code, the

865

optimization techniques employed to compress certain files

within the APK package, and the sources that the analysis tool

focuses on.

Figure 13. Time required for extraction features from

manifest and smali files for ten Android applications

5.2.2 Case two dynamic features

The time required to extract system call features from an

application depends on the duration of the application's

execution by the user. In this study, all applications were

executed in the Genymotion emulator for an equal period (60

seconds) and subjected to 500 pseudo-random events. The

author utilized the Monkey tool to generate pseudo-random

events to simulate user interactions or actions that mimic real

user behavior when interacting with an Android application

running on Genymotion. These events are generated to test the

application's functionality. Some examples of pseudo-random

events generated by Monkey include touch events, keystrokes,

random navigation between activities and menus, scrolling,

sending SMS, and a number of system-level events such as

changing the settings of the system. Generally, dynamic

features demand more time compared to static features due to

the additional steps involved, such as the installation and

uninstallation of applications within the emulator, alongside

the actual execution time.

5.3 Contribution of the feature set to detect malware

This study focuses on single-feature categories and possible

combinations of the two-feature categories while excluding

the consideration of a multi-feature category. The higher

computational requirements of the multi-feature category,

which could potentially affect the model's performance when

deployed and tested in real-time on smartphones.

Table 4. Description of datasets

Dataset Source Feature Type No. of Samples No. of Features

DS1 Manifest file Permission
500 Benign

500 Malware
146

DS2 Manifest file Intent
500 Benign

500 Malware
114

DS3 Smali files API calls
500 Benign

500 Malware
246

DS4 Behavior execution System calls
500 Benign

500 Malware
80

DS5 Manifest file Permissions and Intents
500 Benign

500 Malware
260

DS6 Manifest file + smali files Permissions and APIs
500 Benign

500 Malware
392

DS7 Manifest file + smali files APIs and Intents
500 Benign

500 Malware
360

DS8 Manifest file + Behavior execution Permissions and system class
500 Benign

500 Malware
226

DS9 smali files + Behavior execution APIs and system calls
500 Benign

500 Malware
326

DS10 Manifest file + Behavior execution Intent and system calls
500 Benign

500 Malware
194

Table 5. Results of 10 random forest models

Dataset
Random Forest

Models

Accuracy (%)
Precision

 (%)

Recall

 (%)

F1 Score

 (%)

Average Test

Scores (%)

Train Test Test Test Test Test

DS1 Model 1 98.26 98 96.87 99.2 98.02 98.02

DS2 Model 2 90.66 91.6 95.61 87.2 91.21 91.41

DS3 Model 3 99.46 95.6 93.84 97.6 95.68 95.68

DS4 Model 4 100 96.8 98.34 95.19 96.74 96.77

DS5 Model 5 98.26 99.2 100 98.4 99.19 99.2

DS6 Model 6 100 98.8 99.19 98.4 98.79 98.8

DS7 Model 7 95.06 90.8 96.36 84.8 90.21 90.54

DS8 Model 8 100 94 100 88 93.61 93.9

DS9 Model 9 100 91.6 96.42 86.4 91.13 91.39

DS10 Model 10 100 97.2 97.58 96.8 97.18 97.19

866

As illustrated in Figure 2, our study comprises ten distinct

datasets (DS), denoted as DS1, DS2, DS3, DS4, DS5, DS6,

DS7, DS8, DS9, and DS10. The details of each dataset are

shown in Table 4. For each dataset, a split of 75% was

allocated for training purposes, while the remaining 25% was

reserved for testing. To facilitate the selection of meaningful

features, we employed the mutual information algorithm,

which identified 75 significant features from each dataset.

These selected features were subsequently utilized for training

and testing the random forest algorithm separately. Various

evaluation metrics were employed to discern the optimal

model for the detection of Android malware. The results

obtained by the random forest algorithm on all datasets are

presented in Table 5. The average scores of each model in

Table 5 are plotted to generate related graphs as shown in

Figure 14.

Figure 14. Average scores of 10 random forest models

Illustrated in Figure 14, the model trained on DS5, which is

a combination of permissions and intents, displayed

remarkably elevated average scores. In contrast, the model

trained on DS7, comprised of APIs and Intents, showcased the

least favorable outcomes. Furthermore, Figure 15 illustrates

the Receiver Operating Characteristic (ROC) curve, derived

from an ensemble of ten random forest models, presenting a

comprehensive visualization of the model's performance

across different thresholds.

Figure 15. ROC curve of 10 random forest models

6. DISCUSSION

The findings of this study can be categorized into two parts.

The initial part primarily centers on examining the time and

complexity necessary to extract each specific type of feature.

The process of extracting features from the Manifest file

generally entails parsing the XML structure and retrieving

significant information. This procedure is typically

lightweight and computationally efficient due to the Manifest

file's small size and uncomplicated nature. While extracting

features from source code requires converting the class.dex

file into smali files. This process demands more time due to

the following reasons:

1. Smali files contain low-level bytecode representations of

the app's source code. Decompiling and analyzing

bytecode is inherently more complex and resource-

intensive than parsing structured XML data.

2. Extracting features from multiple smali files requires

additional processing time and computational resources.

Figures 5 and 7 also confirm that the process of extracting

features from the source code is more complicated than from

the manifest file. The obtained results in Table 3 as well

support the fact that the permission and intent features from

the manifest file need less time than API calls from the source

code. The computational effort required for analyzing system

calls can vary based on factors such as app execution duration,

the number of system calls made, and the complexity of the

interactions. Profiling dynamic features (system calls) can

potentially be more computationally intensive than compared

to profiling static features due to the reasons mentioned in

Section 4.3.3.

The second part of the study focuses on machine learning

models. Actually, the author evaluate each model by many

metrics including accuracy, precision, recall, and F1 score.

The accuracy provides an overall measure of correct

predictions across all classes. The recall emphasizes the ability

to capture positive instances; this metric is useful when

missing positive cases has serious consequences, minimizing

false negatives. Precision focuses on the accuracy of positive

predictions, minimizing false positives. F1 scores strike a

balance between precision and recall. In this study, the positive

class represents malware samples, and the negative class

represents benign samples. The accuracy of the overall model

is very important. However, it needs to check the value of

other metrics, especially recall, which focuses on the rate of

detecting malware samples. During experiments, certain

models demonstrated 100% accuracy during the training phase.

Nevertheless, their performance in the testing phase was less

reliable, particularly in detecting malware samples. For

example, models 8 and 9 exhibited lower recall scores in the

testing phase, which means these models produce a lower true

positive rate. Model 7, which was trained using APIs and

intents features, attained a notably lower average score.

Similarly, models 2, 8 and 9, trained on intents and the

combination of (permissions and system calls) and (API calls

and system calls) respectively, also exhibited comparatively

lower performance. This is an indicator of a weak relationship

between features. Some models got acceptable average test

scores, such as models 1, 6, and 10. However, based on the

results presented in Table 5, it is evident that model 5, which

combines permissions and intents, achieved notably higher

average scores during the testing phase.

Another metric called AUC-ROC curve was utilized to

visually represent the performance of all models on a single

curve. Figure 15 demonstrates that models 5 and 6 achieved

higher AUC scores, which are 99%, indicating superior

performance. However, considering the results in Table 3, the

feature extraction process for model 5 requires less time

867

compared to model 6. Actually, permissions and intents are

closely related. An app might require specific permissions to

perform certain actions triggered by intents. For example, the

Banking Trojan application is appeared as a legitimate

banking application for users but is designed to steal sensitive

user information, such as login credentials and financial data.

This example will illustrate how the permissions with intents

feature sets might be strongly related. The malicious app

requests permission to access SMS

(android.permissions.RECEIVE_SMS) and contacts

(android.permissions.READ_CONTACTS). The app registers

an intent filter to intercept incoming SMS messages containing

keywords related to banking transactions or authentication

codes. It uses intercepted SMS data to extract sensitive

information and send it to a remote server.

Overall, model 5, which combines permissions and intents,

is the optimal feature set based on the majority of criteria

employed in this study for real-time malware detection on

smartphones. However, like any other machine learning model,

this model can have weaknesses. The possible weakness of

this model appears when both malware and benign apps utilize

similar permissions and intents. This might increase the risk of

false positives and false negatives, flagging benign apps as

malware and flagging malware as benign.

7. CONCLUSION

In this study, we conducted a comprehensive analysis of

1000 Android applications, comprising both malicious and

benign samples, utilizing the SDHFE tool. This tool enabled

the extraction of features from diverse sources, including

manifest files, smali files, and runtime behavior within an

isolated environment. Subsequently, we generated multiple

datasets (DS1 to DS10) encompassing various feature

categories, both individually and in combinations.By

harnessing the power of the random forest algorithm, we

developed numerous machine-learning models to discern the

optimal feature set for detecting malicious apps on Android

smartphones. Through meticulous evaluation using accuracy,

precision, recall, and F1 score metrics, we consistently

achieved impressive average scores surpassing the 90% score.

Notably, the DS5 dataset exhibited the highest average scores,

while DS7 demonstrated relatively lower scores.

An important observation emerged from our study: the DS5

dataset, enriched with manifest-based features, showcased

reduced computational demands, rendering it particularly

suitable for resource-constrained devices like smartphones.

This discovery underscores the potential advantages of

leveraging manifest-based features for efficient malware

detection in such environments.

Moving forward, this research paves the way for several

avenues of exploration. To advance the field of Android

malware detection, we recommend an in-depth investigation

into the integration of hybrid feature sets, combining static and

dynamic attributes. Furthermore, the exploration of ensemble

learning techniques and the integration of more advanced

malware behavior analysis mechanisms could contribute to

even higher accuracy levels. Overall, this study not only sheds

light on effective feature selection for malware detection but

also opens doors for innovative enhancements to address

emerging challenges in the ever-evolving landscape of mobile

security.

REFERENCE

[1] Qamar, A., Karim, A., Chang, V. (2019). Mobile

malware attacks: Review, taxonomy & future directions.

Future Generation Computer Systems, 97: 887-909.

https://doi.org/10.1016/j.future.2019.03.007

[2] Qiu, J., Zhang, J., Lou, W., Nepal, S., Wang, Y., Xiang,

Y. (2019). A3CM: Automatic capability annotation for

android malware. IEEE Access, 7: 147156-147168.

https://doi.org/10.1109/ACCESS.2019.2946392

[3] Choudhary, M., Kishore, B. (2018). Haamd: Hybrid

analysis for android malware detection. In 2018

International Conference on Computer Communication

and Informatics (ICCCI), Coimbatore, India, pp. 1-4.

https://doi.org/10.1109/ICCCI.2018.8441295

[4] Ding, Y., Zhang, A., Hu, J., Xu, W. (2020). Android

malware detection method based on bytecode image.

Journal of Ambient Intelligence and Humanized

Computing, 1-10. https://doi.org/10.1007/s12652-020-

02196-4

[5] Salih, H.M., Mohammed, M.S. (2020). Spyware

injection in android using fake application. 2020

International Conference on Computer Science and

Software Engineering (CSASE), Duhok, Kurdistan

Region, Iraq.

https://doi.org/10.1109/CSASE48920.2020.9142101

[6] Wang, H., Si, J., Li, H., Guo, Y. (2019). Rmvdroid:

Towards a reliable android malware dataset with app

metadata. In 2019 IEEE/ACM 16th International

Conference on Mining Software Repositories (MSR),

Montreal, QC, Canada.

https://doi.org/10.1109/MSR.2019.00067

[7] Almomani, I., Qaddoura, R., Habib, M., Alsoghyer, S.,

Khayer, A.A., Aljarah, I., Faris, H. (2021). Android

ransomware detection based on a hybrid evolutionary

approach in the context of highly imbalanced data. IEEE

Access, 9: 57674-57691.

https://doi.org/10.1109/ACCESS.2021.3071450

[8] Khan, K.N., Ullah, N., Ali, S., Khan, M.S., Nauman, M.,

Ghani, A. (2022). OP2VEC: An opcode embedding

technique and dataset design for end-to-end detection of

android malware. Security and Communication

Networks. https://doi.org/10.1155/2022/3710968

[9] Wang, X., Zhang, L., Zhao, K., Ding, X., Yu, M. (2022).

MFDroid: A stacking ensemble learning framework for

Android malware detection. Sensors, 22(7): 2597.

https://doi.org/10.3390/s22072597

[10] Kapoor, A., Kushwaha, H., Gandotra, E. (2019).

Permission based android malicious application

detection using machine learning. In 2019 International

Conference on Signal Processing and Communication

(ICSC), Noida, India.

https://doi.org/10.1109/ICSC45622.2019.8938236

[11] Bibi, I., Akhunzada, A., Malik, J., Iqbal, J., Musaddiq, A.,

Kim, S. (2020). A dynamic DL-driven architecture to

combat sophisticated Android malware. IEEE Access, 8:

129600-129612.

https://doi.org/10.1109/ACCESS.2020.3009819

[12] Sirisha, P., Kamala, P.B., Aditya, K.K., Anuradha, T.

(2019). Detection of permission driven malware in

android using deep learning techniques. In 2019 3rd

International conference on Electronics, Communication

and Aerospace Technology (ICECA), Coimbatore, India.

https://doi.org/10.1109/ICECA.2019.8821811

868

[13] Hr, S. (2019). Static analysis of android malware

detection using deep learning. In 2019 International

Conference on Intelligent Computing and Control

Systems (ICCS), Madurai, India.

https://doi.org/10.1109/ICCS45141.2019.9065765

[14] Koli, J.D. (2018). RanDroid: Android malware detection

using random machine learning classifiers. In 2018

Technologies for Smart-City Energy Security and Power

(ICSESP), Bhubaneswar, India, pp. 1-6.

https://doi.org/10.1109/ICSESP.2018.8376705

[15] Alsoghyer, S., Almomani, I. (2020). On the effectiveness

of application permissions for Android ransomware

detection. In 2020 6th conference on data science and

machine learning applications (CDMA), Riyadh, Saudi

Arabia, pp. 94-99.

https://doi.org/10.1109/CDMA47397.2020.00022

[16] Zhao, L., Li, D., Zheng, G., Shi, W. (2018). Deep neural

network based on android mobile malware detection

system using opcode sequences. In 2018 IEEE 18th

International Conference on Communication

Technology (ICCT), Chongqing, China, pp. 1141-1147.

https://doi.org/10.1109/ICCT.2018.8600052

[17] Ma, Z., Ge, H., Liu, Y., Zhao, M. Ma, J. (2019). A

combination method for android malware detection

based on control flow graphs and machine learning

algorithms. IEEE Access, 7: 21235-21245.

https://doi.org/10.1109/ACCESS.2019.2896003

[18] Kumar, U.S., Yadav, A., Singh, V. (2022). Detecting

malware in android applications by using Androguard

tool and XGBoost Algorithm. In 2022 IEEE 9th Uttar

Pradesh Section International Conference on Electrical,

Electronics and Computer Engineering (UPCON),

Prayagraj, India, pp. 1-6.

https://doi.org/10.1109/UPCON56432.2022.9986470

[19] Feng, R., Chen, S., Xie, X., Ma, L., Meng, G., Liu, Y.,

Lin, S.W. (2019). Mobidroid: A performance-sensitive

malware detection system on mobile platform. In 2019

24th International Conference on Engineering of

Complex Computer Systems (ICECCS), Guangzhou,

China, pp. 61-70.

https://doi.org/10.1109/ICECCS.2019.00014

[20] Feng, P., Ma, J., Sun, C., Xu, X., Ma, Y. (2018). A novel

dynamic Android malware detection system with

ensemble learning. IEEE Access, 6: 30996-31011.

https://doi.org/10.1109/ACCESS.2018.2844349

[21] Esmaeili, S., Shahriari, H.R. (2019). PodBot: a new

botnet detection method by host and network-based

analysis. In 2019 27th Iranian Conference on Electrical

Engineering (ICEE), Yazd, Iran, pp. 1900-1904.

https://doi.org/10.1109/IranianCEE.2019.8786432

[22] Lê, N.C., Nguyen, T.M., Truong, T., Nguyen, N.D., Ngô,

T. (2020). A Machine learning approach for real time

Android malware detection. In 2020 RIVF International

Conference on Computing and Communication

Technologies (RIVF), Ho Chi Minh City, Vietnam, pp.

1-6. https://doi.org/10.1109/RIVF48685.2020.9140771

[23] Kumar, S., Ari., V., Timo, H. (2018). A network-based

framework for mobile threat detection. In 2018 1st

International Conference on Data Intelligence and

Security (ICDIS), South Padre Island, TX, USA, pp. 227-

233. https://doi.org/10.1109/ICDIS.2018.00044

[24] Manzil, H.H.R., Naik, S.M. (2023). Android malware

category detection using a novel feature vector-based

machine learning model. Cybersecurity, 6(1): 6.

https://doi.org/10.1186/s42400-023-00139-y

[25] Mahdavifar, S., Kadir, A.F.A., Fatemi, R., Alhadidi, D.,

Ghorbani, A.A. (2020). Dynamic android malware

category classification using semi-supervised deep

learning. In 2020 IEEE Intl Conf on Dependable,

Autonomic and Secure Computing, Intl Conf on

Pervasive Intelligence and Computing, Intl Conf on

Cloud and Big Data Computing, Intl Conf on Cyber

Science and Technology Congress

(DASC/PiCom/CBDCom/CyberSciTech), Calgary, AB,

Canada, pp. 515-522. https://doi.org/10.1109/DASC-

PICom-CBDCom-CyberSciTech49142.2020.00094

[26] Arora, A., Peddoju, S. (2018). NTPDroid: A hybrid

Android malware detector using network traffic and

system permissions. In 2018 17th IEEE International

Conference on Trust, Security and Privacy in Computing

and Communications/12th IEEE International

Conference on Big Data Science and Engineering

(TrustCom/BigDataSE). New York, NY, USA.

https://doi.org/10.1109/TrustCom/BigDataSE.2018.001

15

[27] Garg, S., Baliyan, N. (2019). A novel parallel classifier

scheme for vulnerability detection in android. Computers

& Electrical Engineering, 77: 12-26.

https://doi.org/10.1016/j.compeleceng.2019.04.019

[28] Somasundaram, S., Kasthurirathna, D., Rupasinghe, L.

(2019). Mobile-based malware detection and

classification using ensemble artificial intelligence. In

2019 International Conference on Advancements in

Computing (ICAC), Malabe, Sri Lanka, pp. 351-356.

https://doi.org/10.1109/ICAC49085.2019.9103424

[29] Wang, Z., Liu, Q., Chi, Y. (2020). Review of android

malware detection based on deep learning. IEEE Access,

8: 181102-181126.

https://doi.org/10.1109/ACCESS.2020.3028370

[30] Wu, Q., Li, M., Zhu, X., Liu, B. (2020). Mviidroid: A

multiple view information integration approach for

android malware detection and family identification.

IEEE MultiMedia, 27(4): 48-57.

https://doi.org/10.1109/MMUL.2020.3022702

[31] Chen, L., Xia, C., Lei, S., Wang, T. (2021). Detection,

traceability, and propagation of mobile malware threats.

IEEE Access, 9: 14576-14598.

https://doi.org/10.1109/ACCESS.2021.3049819

[32] Lei, T., Qin, Z., Wang, Z., Li, Q., Ye, D. (2019).

EveDroid: Event-aware android malware detection

against model degrading for IoT devices. IEEE Internet

of Things Journal, 6(4): 6668-6680.

https://doi.org/10.1109/JIOT.2019.2909745

[33] Agrawal, P., Trivedi, B. (2019). A survey on android

malware and their detection techniques. In 2019 IEEE

International Conference on Electrical, Computer and

Communication Technologies (ICECCT), Coimbatore,

India, pp. 1-6.

https://doi.org/10.1109/ICECCT.2019.8868951

869

