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Android smartphones, integral to everyday life, offer a multifunctional platform for storing 

and managing sensitive personal data. However, the ubiquity of Android applications 

intensifies their vulnerability to malicious applications. This study presents the Static 

Dynamic Hybrid Feature Extraction (SDHFE) tool, a lightweight automation tool designed 

for the efficient analysis of Android applications by extracting features from a variety of 

sources. The research generated multiple datasets, each representing different feature 

categories and their combinations. A novel approach to improve Android malware detection 

on smartphones is introduced, leveraging the random forest algorithm. Multiple models 

were created and evaluated using metrics such as accuracy, precision, recall, and F1 score. 

The model trained on a dataset comprising permissions and intents achieved the highest 

average scores, 99.2%, thus outperforming other models. A comparative analysis was 

conducted to evaluate the efficiency of the SDHFE tool against two widely used tools, 

APKtool and Androguard, in static feature extraction. The results demonstrated that the 

SDHFE tool significantly reduced disassembly and analysis time, outperforming APKtool 

and Androguard by factors of 2.2 and 4.6, respectively. While this research provides 

valuable insights into Android malware detection, it is important to acknowledge potential 

limitations. The dynamic nature of malware behavior could affect the generalizability of 

our approach. Despite these potential limitations, the results underscore the effectiveness 

of our proposed method for enhancing malware detection in Android smartphones. 
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1. INTRODUCTION

The recent evolution in mobile device technology has led to 

the proliferation of smartphones, which operate on various 

operating systems (OS) such as Android, iOS, Windows, 

Symbian, and Blackberry [1]. Among these, the Android OS 

is the most prevalent, offering a multitude of services 

including calls, messaging, multimedia, shopping, banking, 

internet browsing, file storage, and file sharing. The growing 

popularity and open-source nature of Android have 

unfortunately resulted in a significant surge in malicious 

attacks on both official and third-party Android app stores [2]. 

Smartphones, due to their extensive service range and the 

storage of sensitive data, have become integral to daily life. 

This ubiquity has given rise to an increase in the development 

of various types of malware aimed at acquiring sensitive 

information without user consent [3]. Malware, or malicious 

code, encompasses several types of harmful or intrusive 

software such as viruses, spyware, worms, Trojan horses, 

backdoors, and rootkits. Such software is typically designed 

with the explicit intent of attacking systems, whether to 

destroy file systems, steal data, or execute other undesirable 

activities [4, 5]. 

In response to the growing threat of malicious code, 

researchers have developed various Intrusion Detection 

Systems (IDS) to protect mobile devices [6]. These systems 

aim to counteract the harmful actions of malware, which range 

from stealing sensitive information to damaging the system. 

Many procedures for analyzing the behavior of Android 

apps have been proposed, and they can be broken down into 

three classes: static, dynamic, and hybrid analysis approaches. 

These approaches are mainly used to identify the behavior of 

the app as either normal or malicious [7]. The static approach 

scans the application's source code without executing it to 

detect the malware application. It employs reverse engineering 

methods to obtain the source code from the APK package. 

Several static features such as intents, permissions, activities, 

API calls, and opcodes features can be extracted and further 

used in the malware detection strategy [8]. The most crucial 

dynamic features are system calls and network traffic, which 

are retrieved from the executing app in the controlled 

environment. Every Android app relies on the operating 

system to deliver the most fundamental resources and services 

it needs to run. Due to the architecture of the Android system, 

applications cannot communicate directly with the operating 

system; therefore, the application has to use system calls to do 

specific operations, such as file opening, reading, writing, and 

closing [9]. The hybrid analysis utilizes both static and 

dynamic features [7]. 

In this study, we conducted the extraction and analysis of 

key features, including permissions, intents, API calls, and 

system calls. To facilitate this process, a lightweight tool was 

developed by the author specifically for extracting and 

analyzing these features. Many machine-learning models were 

created and trained on the extracted features to discover the 

optimal feature set for Android malware detection on the 

Revue d'Intelligence Artificielle 
Vol. 37, No. 4, August, 2023, pp. 857-869 

Journal homepage: http://iieta.org/journals/ria 

857

https://orcid.org/0009-0000-5636-6210
https://orcid.org/0000-0002-5102-6193
https://crossmark.crossref.org/dialog/?doi=10.18280/ria.370405&domain=pdf


 

smartphone. The main contributions of this work can be 

summarized as follows: 

1. We developed an automated and lightweight tool called 

Static Dynamic Hybrid Feature Extraction (SDHFE) to 

analyze the behaviors of Android applications. This tool 

enables researchers to analyze an unlimited number of apps 

sequentially without human intervention or restrictions. It 

offers three modes of analysis: static, dynamic, and hybrid, 

providing flexibility for researchers. 

2. The performance of the SDHFE tool was evaluated by 

comparing it with two of the most commonly used tools for 

extracting static features: APKtool and Aandroguard. The 

results reveal that the SDHFE tool outperforms in terms of 

speed, providing quicker de-compilation and extraction of 

features from Android apps. 

3. A total of 500 benign and 500 malware Android samples 

underwent analysis using the proposed tool, which 

successfully extracted four distinct types of features: 

permissions, intents, API calls, and system calls. Subsequently, 

ten distinct datasets were constructed based on the extracted 

features. 

4. Based on the created datasets, we developed ten models 

utilizing the random forest algorithm to determine the most 

effective feature set for detecting malicious applications on 

smartphones. 

The remaining sections of our paper are organized as 

follows. Section 2 provides related works. Section 3 shows the 

background theory, and Section 4 presents the methodology. 

Section 5 shows the experimental environment and result 

analysis. Sections 6 and 7 provide a discussion and conclusion. 

 

 

2. RELATED WORKS 

 

To do research in the area of Android security, we'll need to 

gather a set of features that Android apps have to analyze. The 

author grouped related studies into groups based on the type 

of features used in their studies.  

 

2.1 Studies based on static features 

 

Many researchers have developed and implemented their 

own tools for extracting features from Android apps.  In 2019, 

Kapoor et al. [10] presented a method for the classification of 

Android applications based on permissions. The proposed 

system collects data from many sources. Benign samples are 

collected from the Google Play store while the malware 

samples are collected from different websites like virus share 

and zeltser. They have developed a Python script to extract 

static features (permissions) and save them in a CSV file. In 

2020, Bibi et al. [11] proposed a deep learning model based on 

Gated Recurrent Unit GRU for the detection of malicious 

applications in the Android system. The proposed model can 

classify applications into benign, backdoor, and Trojans. The 

authors collected samples from AMD and Androzoo datasets. 

A Python script was developed to extract useful information 

and generate feature vectors from a manifest file. The 

developed script thoroughly analyses the manifest file and 

extracts many features like permissions, API calls, and intents. 

In 2020, Sirisha et al. [12] suggested a sequential neural 

network model in order to predict the presence of malware in 

Android APK files received from the web or play store. The 

dataset consisting of 398 APK files having 331 features was 

used for training the model in the proposed model. During the 

test, the neural network model will be tested using data from 

the Android play store as well as malicious sites, such as 

Droidbench, which includes malicious and benign APK files. 

The permissions were extracted from the APK file by using 

the Androguard tool. In 2019, Hr [13] developed a fully 

connected deep-learning model for detecting malicious 

applications. Benign data samples are collected from the 

Google Play store, while the malware samples are collected 

from the virus share repository. The Androguard tool was used 

for analyzing APK files to extract permissions from the 

application, and the random forest was used for feature 

selection. In 2018, Koli [14] presented the RanDroid method 

that uses several machine learning algorithms like random 

forest, naive Bayes, support vector machine, and decision tree 

for classifying malware applications. The RanDroid method 

depends on many features, such as API calls and requested 

permissions, along with other application features such as 

reflection and native code. The researchers used the 

Androguard static analysis tool to extract features like 

permissions and API calls. In 2020, Alsoghyer and Almomani 

[15] presented a model that deeply analyzed the extracted 

permissions that enabled them to differentiate ransomware 

from benign applications on the Android device. The 

important permissions are used and are comparable between 

ransomware and benign applications. The presented study 

takes a proactive approach to identifying ransomware before 

damaging the device. The present work used the APK tool to 

decompile APK files and then extract features. In 2018, Zhao 

et al. [16] suggested a deep neural network-based mobile 

Android malware detection system that employs optimized 

deep neural networks to learn from opcode sequences to detect 

malicious code. With the proposed method, the optimized 

CNN was trained several times on the operation code (Opcode) 

sequence extracted from the Android app after the de-

compilation process by the APK tool. Opcodes represent 

specific instructions that the Android runtime executes to 

perform various tasks within the app. The suggested model 

collected data from many sources, such as Drebin for 

malicious applications and many Chinese app markets for 

benign applications. In 2019, Ma et al. [17] presented an 

ensemble model that detects malware applications based on 

the machine learning algorithms. The proposed model 

constructs a control flow graph from the source code after the 

application is de-compiled by using the flowdroid framework, 

then extracts API calls from the control flow graph and builds 

three datasets. In 2022, Kumar et al. [18] introduces a 

methodology for malware detection in Android applications 

by extracting features such as permissions, intent filters, 

activities, and services from the manifest file. The androguard 

utility is employed to disassemble the code and identify 

suspicious API calls from the dex code. To improve retrieval 

efficiency, the extracted features are serialized in feather data 

format. Finally, the XGBoost algorithm is utilized for effective 

malware detection. 

In this section of the related works, it is observed that both 

the APK tool and the Androguard tool have been utilized in 

most studies for the analysis of Android apps. The APK tool 

is developed in the Java language used for reverse engineering 

Android apps. It has the capability to decode Android apps and 

create decompiled resources, encompassing components like 

the manifest and smali files. Androguard is a Python-based 

reverse engineering tool for Android apps, possesses the 

ability to decode resources and additionally perform bytecode 

disassembly to convert them into Java source code [19]. The 
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APK tool lacks built-in functions or APIs for feature extraction. 

Researchers utilizing this tool need to develop their own 

programs to extract features from files extracted from Android 

apps. In contrast, the Androguard tool provides functions to 

directly extract static features from files derived from Android 

apps. Both the APK tool and the Androguard tool only support 

static features. 

 

2.2 Studies based on dynamic features 

 

In 2018, Feng et al. [20] developed an approach that 

depends on a dynamic analysis called EnDroid for detecting 

malware apps based on multiple dynamic features. For feature 

extraction, the authors used Droidbox and the strace tool to 

extract dynamic features such as network traffic, file 

operations, and system calls from the executing app in the 

emulator. Based on these features, the developed method can 

achieve an accuracy of 96.32%. In 2019, Esmaeili and 

Shahriari [21] proposed a method named PODBot for 

detecting mobile phone botnets that utilize both network and 

host-based metrics. The detection is based on application 

features like permissions, APIs, and network traffic analysis. 

Androguard and MobSF tools were used to perform analysis. 

In 2020, Lê et al. [22] proposed a method of machine learning 

to identify Android malware apps. The features that are used 

to train machine learning are built based on the behavior, 

requisite permissions, and other features of malicious 

applications extracted by the Dexdump tool. In 2018, Kumar 

et al. [23] proposed a framework for machine learning (ML) 

to counter mobile threats rapidly. The model depends on the 

network's flow-based features. The proposed model utilizes 40 

time-based network traffic features derived from malicious 

and benign apps in real time. The Cuckoo sandbox and the 

Anubis sandbox are publicly available and were used to 

generate network traffic. In 2023, Manzil and Naik [24] 

Introduced a novel approach for generating feature vectors by 

employing Huffman encoding. The experimental findings 

demonstrate that this innovative strategy significantly 

improves the effectiveness of the malware detection model. By 

extracting dynamic behavior patterns of malware through the 

utilization of system call frequencies as features, the proposed 

method contributes to the detection process. The performance 

of the model is evaluated by applying deep learning and 

machine learning techniques. In 2020, Mahdavifar et al. [25] 

introduced a simple and effective Android classification 

framework for malware on the basis of mining system-call 

dynamically observed behaviors. The authors depended on the 

CopperDroid virtual machine to extract dynamic features like 

system calls. The framework is built on a deep neural network 

that uses a semi-supervised technique to input behaviors that 

are dynamically observed and that allows the classification of 

the categories of malware. 

 

2.3 Studies based on hybrid features 

 

In 2018, Arora  and Peddoju [26] introduced a hybrid system 

for detecting malware, named NTPDroid. This system 

effectively combines network traffic features and permissions 

extracted from applications. The approach employed the FP-

Growth technique to identify prevalent patterns present in both 

malicious and benign datasets. The author utilize APK tool to 

extract static features.  Importantly, the results indicated that 

integrating network traffic features with permissions resulted 

in improved detection rates, surpassing the efficacy of using 

either network traffic features or permissions in isolation. In 

2019, Garg and Baliyans [27] suggested an ensemble approach 

comprising a number of algorithms, including support vector 

machine, multilayer perceptron, ripple down rule learner, and 

rule-based classification tree. This ensemble model works 

concurrently to create a resilient framework capable of 

accurately and efficiently distinguishing between benign and 

malware. The author employed many tools to extract features 

such as the APK tool, ADB, and strace tools. The extraction 

process involves capturing an array of static and dynamic 

attributes from applications and devices, encompassing API 

calls, permissions, and system components, network traffic, 

and battery usage. Experimental outcomes demonstrated 

exceptional performance, with the proposed system achieving 

an impressive accuracy level of 98.27%. 

Upon reviewing the related works, the author observed that 

the previous works mainly focused on the accuracy of the 

models or developing new methods for Android malware 

detection, with less attention given to the complexities 

associated with the extraction of features. Several of the 

developed models have demonstrated promising results; 

however, when subjected to testing on mobile devices, they 

may encounter challenges in acquiring features from the 

installed applications. This can potentially impact the overall 

device's performance. Therefore, the main aim of this study is 

to analyze Android applications and extract features from 

many sources to get lightweight features that achieve high 

accuracy with less computation on mobile devices. 

 

 

3. BACKGROUND THEORY 

 

3.1 Android application package 

 

Every Android application is distributed in the form of 

Application Package (APK) files. They are primarily ZIP files 

that contain all of the data and metadata essential for an 

application to run [28]. The main component of the APK file 

is illustrated in Figure 1 [27-29]. 

 

 
 

Figure 1. APK components [27] 

 

AndroidManifes.xml is a critical file that provides the 

operating system with fundamental information about the 

application in order to ensure its proper execution. It includes 

a list of all the components required for the app to run, and 

permissions required to access critical resources. The META-

INF folder stores the application's signature information. The 

signature information can be used to validate the APK's 

integrity. classes.dex file contains references to any classes or 

methods used by the application. Essentially, each activity, 

object, or fragment in the code base will be converted to bytes 

within a Dex file that can be executed as an Android 

application. Assets folder: used to keep static files that must 
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be packed together with the APK, such as text, XML, and 

HTML. Res folder: contains external resources like images, 

videos, fonts, and languages to support the settings of a 

specific device. resources.arsc file: Compiled Android-

generated application resource. For a precompiled binary 

translation resource, it stores value types of resources as well 

as other non-asset types of resource-related information. 

Libraries folder: contains compiled libraries that are 

particular to different types of processors and are intended for 

use with the appropriate application [29]. 

 

3.2 Android apps analysis techniques 

 

There are three major techniques used in analyzing mobile 

apps, which are static analysis, dynamic analysis, and hybrid 

analysis techniques. Researchers use these techniques to 

analyze the behavior of mobile apps to determine malicious 

activity produced by mobile apps [30]. 

Static analysis is a method that analyzes mobile apps 

without executing them. The procedure aids in the 

understanding of code structure as well as the functions it will 

execute. Classes files and Android Manifest files are the most 

crucial files in the static analysis process. From these files, 

many features can be extracted, such as permissions, intents, 

API calls, and many other features. The process of extracting 

static features is very fast and doesn't need many resources 

[31]. In the dynamic approach, the application is executed in a 

controlled environment, monitors the running code, and 

inspects its interaction with the system. The dynamic analysis 

traces many features of an application and system, such as 

system calls, system components, network traffic, CPU 

consumption, memory usage, battery usage, and user 

interaction with the system [32]. Hybrid analysis gathers static 

and dynamic features together to detect malware applications. 

The benefit of using hybrid analysis is to improve the accuracy 

of the system, while the disadvantage is that the required time 

for hybrid analysis will be more than that required for static or 

dynamic analysis [33]. 

 

 

4. METHODOLOGY 

 

Figure 2 depicts the framework of the Android malicious 

detection system. The system employed many types of 

features obtained from various sources, and many datasets (DS) 

are built based on a single feature category and a possible 

combination of two feature categories to identify the optimal 

feature sets suitable for devices with limited resources, such as 

smartphones. This approach aimed to effectively detect 

applications exhibiting malicious behavior while considering 

the constraints imposed by resource-constrained devices. 

 

 

 
 

Figure 2. Schematic representation of the proposed system 

 

4.1 Collecting samples 

 

Numerous resources provide Android app samples 

specifically intended for research purposes. For the present 

study, 500 samples of malware were gathered from diverse 

databases, namely Drebin (https://www.sec.tu-

bs.de/~danarp/drebin/), CICMalDroid 2020 

(https://www.unb.ca/cic/datasets/maldroid-2020.html), the 

Android Botnet dataset 

(https://www.unb.ca/cic/datasets/android-botnet.html), and 

Malware Bazaar (https://bazaar.abuse.ch/browse/tag/apk/). 

For benign apps, this study collects samples from Google Play 

(https://play.google.com/store/apps), and the AndroZoo 

databases (https://androzoo.uni.lu/). 

 

4.2 SDHFE tool 

 

Most researchers analyze Android applications for security 

purposes to determine whether the application is malware or 

benign. Therefore, researchers are looking for a tool that helps 

them analyze mobile applications and extract the essential 

features. Many reverse engineering tools on the market can 

perform static and dynamic analyses of Android APK files. 

Still, no supporting tools that offer three fundamental analyses 

(static, dynamic, and hybrid) and have the capability to 

automatically extract features from a bulk of APK files 

without the need for human intervention during the analysis 

process. This paper presents the development of the SDHFE 

tool, a comprehensive solution offering three distinct analysis 

modes. The SDHFE tool is a lightweight and automated tool, 

developed using shell script programming. It relies on 

essential libraries like AXMLPrinter and Baksmali. This tool 

is designed to the extraction of features and enable the analysis 

of a large number of APK files within a short time frame 

without the need for human intervention. Figure 3 shows the 

general mechanism of the SDHFE tool. 
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Figure 3. Overview of the SDHFE tool's organizational 

structure 

 

4.3 Feature set extraction 

 

This study involves the analysis of 1000 Android apps, 

which are evenly distributed between malware and benign 

applications. Our emphasis centers on permissions, intents, 

API calls, system calls, and possible combinations of two 

feature categories. The analysis is conducted using the SDHFE 

tool.  

 

4.3.1 Feature sets extracted from the manifest file 

Permissions and intent filters are important features in the 

Android manifest file that govern access to devise resources 

and define how the application interacts with other 

components. However, these features are susceptible to 

exploitation by malicious applications. For instance, the 

android. permission.SEND_SMS permission is commonly 

utilized in benign applications for sending and receiving SMS 

messages, it can be maliciously employed to send 

unauthorized premium-rate messages or utilized in phishing 

attacks, where deceptive SMS messages containing malicious 

links or requests for sensitive information are sent. Another 

exploit involves a malicious app registering itself to receive 

the "android.intent.action.PHONE_STATE" intent, enabling 

it to eavesdrop on phone conversations. This unauthorized 

access grants the app the ability to obtain call-related 

information, such as phone numbers, call durations, and even 

the audio content of the calls. Figure 4 illustrates the 

pseudocode algorithm for extracting permissions and intents, 

as well as generating profiles for applications by the SDHFE 

tool. 

 

 
 

Figure 4. Generating profiles for APK files based on 

permissions and intents 

 

The process of analyzing and extracting features from a 

manifest file is relatively fast and lightweight as the manifest 

file is typically small. Figure 5 depicts the steps of deriving 

features from an app using the SDHFE tool, which involves 

parsing the structured XML data present within the manifest 

file, resulting in the retrieval of crucial information. 

 

 
 

Figure 5. Process of sample analysis and feature extraction from the manifest file 

 

4.3.2 Feature sets extracted from the source code 

Source code analysis provides deep insight into the inner 

workings of an Android application. By examining the source 

code, security analysts can understand how the app functions, 

accesses sensitive data, communicates with external services, 

and handles user inputs. The most important features in the 

source code are API calls. Malicious applications often 

incorporate API calls that enable unauthorized access to 

sensitive information or smartphone resources. A malicious 

app can exploit a certain API call to perform some action 

without user consent, such as getDeviceId(), getSubscriberId(), 

and getNetworkOperator(), from the telephony manager class. 

These APIs provide access to sensitive device information of 

the user and can lead to privacy breaches and unauthorized 

861



 

data collection. Another prominent API call that malware app 

developers frequently used is the sendTextMessage() method. 

This API is intended for sending SMS messages 

programmatically, but its misuse can lead to various malicious 

activities. The SDHFE tool plays a crucial role in identifying 

and extracting these API calls from the source code. Figure 6 

provides an illustrative pseudocode algorithm that outlines the 

process of extracting API calls and generating profiles for 

applications using the SDHFE tool. 

Extracting features from the source code (classes.dex file) 

after converting it into smali files demands more time and 

computational resources compared to extracting features from 

manifest files. This conversion process involves creating 

multiple folders and smali files that mirror the package 

structure of the Android application. The number of folders 

and smali files created varies based on the complexity and size 

of the Android application. The procedure of extracting API 

calls from a class.dex by the SDHFE tool is depicted in Figure 

7. 

 

 
 

Figure 6. Generating profiles for APK files based on API 

calls 

 

 
 

Figure 7. Process of sample analysis and feature extraction from the class file 

 

4.3.3 Feature sets extracted from application behavior 

Monitoring and analyzing system calls made by the 

application can reveal its interaction with the underlying 

operating system. Features such as the frequency, types, and 

sequences of system calls can provide insights into the app's 

resource utilization, file operations, network communication, 

and potentially malicious activities. For example, the "exec" 

system call is used to execute a command or launch an external 

program from within an application. A malicious app can 

abuse the "exec" system call to execute arbitrary commands or 

launch malicious programs without the user's knowledge or 

consent. The process of capturing system calls by the SDHFE 

tool passes through the following steps: 1) install the APK file 

on the emulated device (Genymotion) with the help of the 

ADB tool. 2) Start running the installed app. 3) Retrieve the 

process id of the currently running. 4) Trace the running 

process by process id for a specific time (here we used the 

monkey runner to send 500 pseudo-random events to the 

running application). 5) Terminate the running process using 

the kill process id. 6) Remove the installed application. 7) Pull 

the log file from the emulated device containing the 

application's system call and generate a profile for the 

application. Steps 1 to 7 are repeated for every application. 

Figure 8 provides a visual representation of dynamic analysis 

using the SDHFE tool to examine an application's behavior, 

including system calls. Dynamic analysis typically demands 

more time and computational resources compared to analyzing 

manifest and classes.dex files due to the following reasons: 

1. Monitoring system calls involves tracking the 

interactions between the app and the operating system in real-

time. This real-time analysis demands continuous monitoring, 

data collection, and processing, which can be resource-

intensive. 

2. Monitoring system calls may involve tracking resource 

usage such as memory, file access, network activity, and more. 

Collecting and analyzing this information further contributes 

to the computational load. 
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Figure 8. Process of extracting system call features from Android application 

 

4.4 Preparing dataset 

 

For each feature set discussed in the preceding section, a 

feature vector is generated for every application using a 

Python program specifically developed by the author for this 

purpose. This program is responsible for producing a file in 

the Comma-Separated Values (CSV) format, wherein the 

feature names are arranged as columns and their respective 

values are recorded as rows. To accomplish this, the program 

employs a one-dimensional array to store the names of the 

columns. During execution, the Python program compares the 

elements of the array with each line of the application's profile. 

If a feature name is found within the profile, the corresponding 

value in the array is replaced with 1 in the case of the feature 

type belonging to (permission, intent, API call). However, if 

the feature type corresponds to system calls, the value in the 

array is replaced with its frequency call. Conversely, if a 

feature name does not match, the value is replaced with 0. 

Subsequently, the feature vector of the application is appended 

to the CSV file. This process is repeated for all applications. 

 

4.5 Mutual information 

 

For feature selection, we employed the mutual information 

feature selection algorithm. The mutual information between 

feature F and class C can be employed to quantify their level 

of relevance. 

 

𝑀𝐼 (𝐹, 𝐶) = ∑ ∑ 𝑝(𝐹 = 𝑓𝑖 , 𝐶 = 𝑐𝑗)

𝑐𝑗𝑓𝑖

∗ log
𝑝(𝐹 = 𝑓𝑖 , 𝐶 = 𝑐𝑗)

𝑝(𝐹 = 𝑓𝑖  ) ∗ 𝑝(𝐶 = 𝑐𝑗)
 

(1) 

 

where, P(C = cj) is the frequency count of class C with value 

cj, P(F = fi) is the frequency count of feature F with value fi, 

and P(F = fi, C = cj) is the frequency count of F with value fi 

in class cj. The values of the class are 0 or 1, where 0 indicates 

a benign sample and 1 indicates a malware sample. And 

feature values (boolean for permissions, intents, and API; 

frequency count for system calls). The mutual information is a 

non-negative value ranging between 0 and 1. A mutual 

information value of 1 indicates a strong correlation between 

the feature and the class, while a value of 0 signifies no 

correlation between the feature and the class. 

 

 

5. EXPERIMENTAL ENVIRONMENT AND RESULT 

ANALYSIS 

 

The findings presented in this paper can be categorized into 

three sub-sections: Firstly, we conducted thorough testing and 

evaluation of our proposed tool on a selection of Android 

applications, comparing its performance with well-known 

tools used for similar purposes. Secondly, we computed the 

time required for feature extraction using SDHFE. And finally, 

we employed the random forest algorithm to train and test on 

ten different datasets in order to identify the most effective 

feature set for detecting malicious apps in Android devices. 

The evaluation of the SDHFE tool was performed on a Linux 

Santoku operating system 64-bit, version 0.5 which was 

installed within VirtualBox 7.0.8 on a Windows 10 64-bit host 

system equipped with an Intel(R) Core(TM) i5-2320 CPU @ 

3.00 GHz, 4 CPU cores and 4 logical processor, NVIDIA 

Quadro 4 GB, and 16 GB of RAM. The hardware 

configuration chosen for the Santoku operating system 

includes 6 GB of RAM, 1 CPU, and 100 GB of storage. The 

implementation of our machine learning models was carried 

out on the Anaconda platform version 1.7.2, utilizing Python 

version 3. Key libraries utilized in this work include Pandas 

version 1.0.5, NumPy version 1.18.5, and Scikit-learn version 

0.23.1. 
 

5.1 SDHFE tool evaluation and comparison 

 

The APK package is a compressed file containing various 

components as shown in Figure 1. The static analysis involves 

two steps: decompiling the APK package and extracting the 

main files, followed by the conversion of the manifest file to 

its original XML format and the conversion of classes to smali 

files, which contain human-readable APIs and opcodes. Static 

features such as permissions, intents, and APIs are then 

extracted from these files. To evaluate the performance of the 

proposed tool, the authors downloaded ten Android apps from 

the Androzoo database and compared the time required for the 

first step of static analysis using SDHFE, with two other 
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commonly used tools in reverse engineering, APKTool, and 

Androguard. Tables 1 and 2 present the hash codes, alternative 

names of downloaded applications, and the respective time 

taken by each tool for decompiling apps and converting the 

extracted files into readable formats. 

 

Table 1. Application hash codes (SHA-256) and alternative names 

 

No Application Hash Codes Alternative Name 

1 00F437B674B208055122A1465AE385F0BB0B68A7D6C25BE182028FEDD88B3B5A.APK App1 

2 001E621FE5BF38AEC2F29762A3235A45B6C6D2A946EFBE5DB846369D6827475E.APK App2 

3 0013437B05773AFBC48F1B0422A262DD925690A765CE43377CD0C6E8F1A379AF.APK App3 

4 0029566D768782F2B8A713A4C3C3C2FB266A86930D4396DE9E97A6EA76B2BEE1.APK App4 

5 001C5184A1578728C810EC5227EB7B2BC07F488D98886A8835CFD7323A449572.APK App5 

6 00069DD64B3D5D97C63B1ACF3FEA0C5BEA909C8D19A4EA42989ECB0A02125DB3.APK App6 

7 000B39F83E95385C35ED8C36438939D1B7BD2F1AEA67F70B2FCF424D713C3666.APK App7 

8 0023F64B6A69F24E8AF6E9F12835A93E4C23347796B10B9DADDD1A681BFEAA26.APK App8 

9 001E492C1DCFEE402802A0A6D957FA6981FD9A0285694AB8A297795D4045270C.APK App9 

10 00F3FCF02941D4A40FEAF22853FEE8695134058184113BC15DDFF67D5D55FEF9.APK App10 

 

Table 2. Time required for APK package extraction and decompilation by APKTool, Androguard, and the SDHFE tool 

 

App No. App Name App Size 
Required Time in Seconds to Analyze and Decompile APK Package by: 

APK Tool Androguard SDHFE 

1 App1 1.05 MB 21.96 20.48 6.354 

2 App2 12.1 MB 25.96 36.26 10.132 

3 App3 22.4 MB 30.67 43.49 10.068 

4 App4 33.9 MB 25.15 48.90 9.835 

5 App5 41.3 MB 25.78 70.02 13.650 

6 App6 53.8 MB 26.98 73.28 14.711 

7 App7 60.2 MB 35.45 75.45 16.248 

8 App8 70.1 MB 34.94 75.04 19.453 

9 App9 82.7 MB 38.31 74.85 15.724 

10 App10 91.3 MB 34.71 103.85 19.493 

 

Table 2 presents the analysis results, consisting of 10 apps 

with a total size of 468.85 MB. The time taken to analyze this 

dataset using APKTool was 299.91 seconds, while 

Androguard required 621.22 seconds. In contrast, our 

proposed tool completed the analysis in just 135.668 seconds. 

Notably, the SDHFE tool demonstrated a substantial time 

reduction, approximately 2.2 times faster than APKTool and 

4.6 times faster than Androguard. This significant 

improvement enables researchers to efficiently analyze a large 

number of apps within a shorter timeframe. Figure 9 provides 

a visual representation of how long it took APKTool, 

Androguard, and the SDHFE tools to extract and decompile 

each APK package. 

 

 
 

Figure 9. Extraction and decompilation time comparison of 

APKTool, Androguard, and the SDHFE tool 

 

Another important point is the size of each tool, APKTool 

has a size of 18.4 MB, Androguard occupies 5.88 MB, while 

our proposed tool occupies only 0.84 MB. Figure 10 provides 

a visual representation of the tool sizes, including their 

corresponding dependencies, in megabytes. 

 

 
 

Figure 10. APKTool, Androguard, and SDHFE tool size 

comparison 

 

In terms of usability, the SDHFE tool doesn't require 

programming experience. A researcher simply needs to select 

the path of applications that wants to analyze and selects the 

type of features to extract. The APK tool offers robust analysis 

capabilities. However, it does necessitate programming 

expertise for feature extraction. It decompiles Android 

applications, converting their files into readable formats. 

Subsequently, a researcher needs to write specific 

programming statements to extract the desired features. In 

addition to the decompilation of the application, the 

Androguard tool offers APIs and functions for feature 

extraction; utilizing these APIs and functions to extract desired 

features and create the application's profile necessitates 

familiarity and experience with the tool. Given that the APK 

tool lacks APIs or functions to extract features after the 
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decompilation process, a comparison between the accuracy of 

the SDHFE tool and the Androguard tool was conducted for 

feature extraction. During analyzing the applications listed in 

Table 1, the author observed that the Androguard tool allows 

the extraction of repeated features from the manifest file. This 

requires additional analysis by the researcher to eliminate 

these redundant features. For example, as depicted in Figure 

11, the Androguard tool extracts a total of thirteen permissions 

from App1. However, it is noteworthy that three permissions 

are duplicated: 

'android.permission.ACCESS_NETWORK_STATE', 

'android.permission.ACCESS_WIFI_STATE', and 

'android.permission.INTERNET'. In contrast, the SDHFE tool 

efficiently retrieved ten permissions without duplication from 

the same app and recorded them alphabetically in a text file as 

shown in Figure 12. This comparison underscores the higher 

accuracy of the SDHFE tool over the Androguard tool. 

 

 
 

Figure 11. Permissions extraction by the Androguard tool 

 

 
 

Figure 12. Permissions extraction by the SDHFE tool 

 

Table 3. Duration of static feature extraction (in seconds) 

 
App No. App Name Permissions Intents API Calls Permissions + Intent Permissions + API Calls Intent + API Calls 

1 App1 0.61 0.574 6.632 0.647 6.932 6.805 

2 App2 0.777 0.752 10.674 0.821 15.322 14.989 

3 App3 1.212 1.231 11.799 1.257 14.068 13.682 

4 App4 1.198 1.198 11.249 1.199 12.884 12.132 

5 App5 3.766 3.793 15.302 3.798 17.481 17.273 

6 App6 5.063 5.121 17.641 5.170 20.967 20.087 

7 App7 6.302 6.236 19.066 6.316 22.522 22.653 

8 App8 8.535 8.356 20.656 8.719 28.369 28.088 

9 App9 4.314 3.591 19.465 4.394 22.194 21.590 

10 App10 8.205 8.295 21.303 8.301 29.865 29.545 

 

5.2 The run-time overhead of feature extraction 

 

The process of static analysis fundamentally differs from 

dynamic analysis. The applications listed in Table 1 are 

utilized for the analysis and extraction of static and dynamic 

features using the SDHFE tool in two different cases. 

 

5.2.1 Case one static feature 

The process of extracting static features involves two steps. 

Firstly, the application is decompiled, enabling access to its 

internal structure. Subsequently, a targeted search is conducted 

within a specific file(s) to extract the desired features. 

Permissions and intents are extracted from the manifest file, 

whereas the API features are extracted from the smali files. 

Table 3 presents the time required in seconds to extract 

features from the manifest and smali files for ten applications 

of varying sizes. The obtained data in Table 3 are plotted to 

get its related graph, as shown in Figure 13. 

During the analysis process, it is sometimes observed that 

smaller APK packages may require a longer duration 

compared to larger APK packages, despite the disparity in 

their file sizes. The reason behind this is that other factors 

affect the delay in the analysis process, such as structural 

intricacies and complexity of the underlying code, the 
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optimization techniques employed to compress certain files 

within the APK package, and the sources that the analysis tool 

focuses on. 

 

 
 

Figure 13. Time required for extraction features from 

manifest and smali files for ten Android applications 

 

5.2.2 Case two dynamic features 

The time required to extract system call features from an 

application depends on the duration of the application's 

execution by the user. In this study, all applications were 

executed in the Genymotion emulator for an equal period (60 

seconds) and subjected to 500 pseudo-random events. The 

author utilized the Monkey tool to generate pseudo-random 

events to simulate user interactions or actions that mimic real 

user behavior when interacting with an Android application 

running on Genymotion. These events are generated to test the 

application's functionality. Some examples of pseudo-random 

events generated by Monkey include touch events, keystrokes, 

random navigation between activities and menus, scrolling, 

sending SMS, and a number of system-level events such as 

changing the settings of the system.  Generally, dynamic 

features demand more time compared to static features due to 

the additional steps involved, such as the installation and 

uninstallation of applications within the emulator, alongside 

the actual execution time. 

 

5.3 Contribution of the feature set to detect malware 

 

This study focuses on single-feature categories and possible 

combinations of the two-feature categories while excluding 

the consideration of a multi-feature category. The higher 

computational requirements of the multi-feature category, 

which could potentially affect the model's performance when 

deployed and tested in real-time on smartphones. 
 

Table 4. Description of datasets 

 
Dataset  Source Feature Type No. of Samples  No. of Features  

DS1 Manifest file Permission 
500 Benign  

500 Malware  
146 

DS2 Manifest file Intent  
500 Benign  

500 Malware 
114 

DS3 Smali files API calls 
500 Benign  

500 Malware 
246 

DS4 Behavior execution  System calls 
500 Benign  

500 Malware 
80 

DS5 Manifest file Permissions and Intents 
500 Benign  

500 Malware 
260 

DS6 Manifest file + smali files Permissions and APIs 
500 Benign  

500 Malware 
392 

DS7 Manifest file + smali files APIs and Intents 
500 Benign  

500 Malware 
360 

DS8 Manifest file + Behavior execution Permissions and system class 
500 Benign  

500 Malware 
226 

DS9 smali files + Behavior execution APIs and system calls 
500 Benign  

500 Malware 
326 

DS10 Manifest file + Behavior execution Intent and system calls 
500 Benign  

500 Malware 
194 

 

Table 5. Results of 10 random forest models 

 

Dataset 
Random Forest 

Models 

Accuracy (%) 
Precision  

 (%) 

Recall 

 (%) 

F1 Score 

 (%) 

Average Test 

Scores (%) 

Train Test Test Test Test Test 

DS1 Model 1 98.26 98 96.87 99.2 98.02 98.02 

DS2 Model 2 90.66 91.6 95.61 87.2 91.21 91.41 

DS3 Model 3 99.46 95.6 93.84 97.6 95.68 95.68 

DS4 Model 4 100 96.8 98.34 95.19 96.74 96.77 

DS5 Model 5 98.26 99.2 100 98.4 99.19 99.2 

DS6 Model 6 100 98.8 99.19 98.4 98.79 98.8 

DS7 Model 7 95.06 90.8 96.36 84.8 90.21 90.54 

DS8 Model 8 100 94 100 88 93.61 93.9 

DS9 Model 9 100 91.6 96.42 86.4 91.13 91.39 

DS10 Model 10 100 97.2 97.58 96.8 97.18 97.19 
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As illustrated in Figure 2, our study comprises ten distinct 

datasets (DS), denoted as DS1, DS2, DS3, DS4, DS5, DS6, 

DS7, DS8, DS9, and DS10. The details of each dataset are 

shown in Table 4. For each dataset, a split of 75% was 

allocated for training purposes, while the remaining 25% was 

reserved for testing. To facilitate the selection of meaningful 

features, we employed the mutual information algorithm, 

which identified 75 significant features from each dataset. 

These selected features were subsequently utilized for training 

and testing the random forest algorithm separately. Various 

evaluation metrics were employed to discern the optimal 

model for the detection of Android malware. The results 

obtained by the random forest algorithm on all datasets are 

presented in Table 5. The average scores of each model in 

Table 5 are plotted to generate related graphs as shown in 

Figure 14. 

 

 
 

Figure 14. Average scores of 10 random forest models 

 

Illustrated in Figure 14, the model trained on DS5, which is 

a combination of permissions and intents, displayed 

remarkably elevated average scores. In contrast, the model 

trained on DS7, comprised of APIs and Intents, showcased the 

least favorable outcomes. Furthermore, Figure 15 illustrates 

the Receiver Operating Characteristic (ROC) curve, derived 

from an ensemble of ten random forest models, presenting a 

comprehensive visualization of the model's performance 

across different thresholds. 

 

 
 

Figure 15. ROC curve of 10 random forest models 

 

 

6. DISCUSSION 

 

The findings of this study can be categorized into two parts. 

The initial part primarily centers on examining the time and 

complexity necessary to extract each specific type of feature. 

The process of extracting features from the Manifest file 

generally entails parsing the XML structure and retrieving 

significant information. This procedure is typically 

lightweight and computationally efficient due to the Manifest 

file's small size and uncomplicated nature. While extracting 

features from source code requires converting the class.dex 

file into smali files. This process demands more time due to 

the following reasons: 

 

1. Smali files contain low-level bytecode representations of 

the app's source code. Decompiling and analyzing 

bytecode is inherently more complex and resource-

intensive than parsing structured XML data. 

2. Extracting features from multiple smali files requires 

additional processing time and computational resources.  

 

Figures 5 and 7 also confirm that the process of extracting 

features from the source code is more complicated than from 

the manifest file. The obtained results in Table 3 as well 

support the fact that the permission and intent features from 

the manifest file need less time than API calls from the source 

code. The computational effort required for analyzing system 

calls can vary based on factors such as app execution duration, 

the number of system calls made, and the complexity of the 

interactions. Profiling dynamic features (system calls) can 

potentially be more computationally intensive than compared 

to profiling static features due to the reasons mentioned in 

Section 4.3.3. 

The second part of the study focuses on machine learning 

models. Actually, the author evaluate each model by many 

metrics including accuracy, precision, recall, and F1 score. 

The accuracy provides an overall measure of correct 

predictions across all classes. The recall emphasizes the ability 

to capture positive instances; this metric is useful when 

missing positive cases has serious consequences, minimizing 

false negatives. Precision focuses on the accuracy of positive 

predictions, minimizing false positives. F1 scores strike a 

balance between precision and recall. In this study, the positive 

class represents malware samples, and the negative class 

represents benign samples. The accuracy of the overall model 

is very important. However, it needs to check the value of 

other metrics, especially recall, which focuses on the rate of 

detecting malware samples. During experiments, certain 

models demonstrated 100% accuracy during the training phase. 

Nevertheless, their performance in the testing phase was less 

reliable, particularly in detecting malware samples. For 

example, models 8 and 9 exhibited lower recall scores in the 

testing phase, which means these models produce a lower true 

positive rate. Model 7, which was trained using APIs and 

intents features, attained a notably lower average score. 

Similarly, models 2, 8 and 9, trained on intents and the 

combination of (permissions and system calls) and (API calls 

and system calls) respectively, also exhibited comparatively 

lower performance. This is an indicator of a weak relationship 

between features. Some models got acceptable average test 

scores, such as models 1, 6, and 10. However, based on the 

results presented in Table 5, it is evident that model 5, which 

combines permissions and intents, achieved notably higher 

average scores during the testing phase.  

Another metric called AUC-ROC curve was utilized to 

visually represent the performance of all models on a single 

curve. Figure 15 demonstrates that models 5 and 6 achieved 

higher AUC scores, which are 99%, indicating superior 

performance. However, considering the results in Table 3, the 

feature extraction process for model 5 requires less time 
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compared to model 6. Actually, permissions and intents are 

closely related. An app might require specific permissions to 

perform certain actions triggered by intents. For example, the 

Banking Trojan application is appeared as a legitimate 

banking application for users but is designed to steal sensitive 

user information, such as login credentials and financial data. 

This example will illustrate how the permissions with intents 

feature sets might be strongly related. The malicious app 

requests permission to access SMS 

(android.permissions.RECEIVE_SMS) and contacts 

(android.permissions.READ_CONTACTS). The app registers 

an intent filter to intercept incoming SMS messages containing 

keywords related to banking transactions or authentication 

codes. It uses intercepted SMS data to extract sensitive 

information and send it to a remote server.  

Overall, model 5, which combines permissions and intents, 

is the optimal feature set based on the majority of criteria 

employed in this study for real-time malware detection on 

smartphones. However, like any other machine learning model, 

this model can have weaknesses. The possible weakness of 

this model appears when both malware and benign apps utilize 

similar permissions and intents. This might increase the risk of 

false positives and false negatives, flagging benign apps as 

malware and flagging malware as benign. 

 

 

7. CONCLUSION 

 

In this study, we conducted a comprehensive analysis of 

1000 Android applications, comprising both malicious and 

benign samples, utilizing the SDHFE tool. This tool enabled 

the extraction of features from diverse sources, including 

manifest files, smali files, and runtime behavior within an 

isolated environment. Subsequently, we generated multiple 

datasets (DS1 to DS10) encompassing various feature 

categories, both individually and in combinations.By 

harnessing the power of the random forest algorithm, we 

developed numerous machine-learning models to discern the 

optimal feature set for detecting malicious apps on Android 

smartphones. Through meticulous evaluation using accuracy, 

precision, recall, and F1 score metrics, we consistently 

achieved impressive average scores surpassing the 90% score. 

Notably, the DS5 dataset exhibited the highest average scores, 

while DS7 demonstrated relatively lower scores. 

An important observation emerged from our study: the DS5 

dataset, enriched with manifest-based features, showcased 

reduced computational demands, rendering it particularly 

suitable for resource-constrained devices like smartphones. 

This discovery underscores the potential advantages of 

leveraging manifest-based features for efficient malware 

detection in such environments. 

Moving forward, this research paves the way for several 

avenues of exploration. To advance the field of Android 

malware detection, we recommend an in-depth investigation 

into the integration of hybrid feature sets, combining static and 

dynamic attributes. Furthermore, the exploration of ensemble 

learning techniques and the integration of more advanced 

malware behavior analysis mechanisms could contribute to 

even higher accuracy levels. Overall, this study not only sheds 

light on effective feature selection for malware detection but 

also opens doors for innovative enhancements to address 

emerging challenges in the ever-evolving landscape of mobile 

security. 
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