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Cardiovascular diseases pose a significant global health challenge, emphasizing the need 

for improved techniques in early detection and diagnosis. This study focuses on enhancing 

the classification of cardiovascular diseases by optimizing an LSTM-based model using the 

Ant-lion algorithm. In order to achieve this, we utilize the Local Binary Patterns (LBP) 

technique for feature extraction, which captures important patterns in electrocardiography 

(ECG) data. The Ant-lion algorithm is then employed to optimize the LSTM model and 

improve its performance. To evaluate the proposed methodology, we selected the widely 

used MIT-BIH Arrhythmia Dataset. This dataset contains a variety of heart disease cases, 

enabling comprehensive testing and validation. In addition to accuracy, we assess various 

quantitative metrics such as precision, recall, and F1-score to provide a more 

comprehensive evaluation of the model's performance. This research contributes to the field 

of ECG classification by highlighting the potential of combining deep learning models with 

meta-heuristic algorithms. The findings validate the effectiveness of our approach on the 

MIT-BIH Arrhythmia Dataset, reinforcing the importance of further exploring such 

optimization techniques in cardiovascular disease diagnosis and management. 
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1. INTRODUCTION

The heart, an integral organ, acts as the fulcrum that propels

the functionality of the human organism. Its role in ensuring 

the circulation of oxygen and nutrients via the bloodstream is 

paramount. Yet, it is not impervious to certain conditions that 

can impede its normal functionality. According to the World 

Health Organization, cardiovascular diseases have emerged as 

the primary cause of mortality worldwide, with an estimated 

17 million deaths recorded annually. These diseases are 

predominantly associated with the following factors: 

·Hypertrophy of the myocardium.

·The increase in blood pressure.

·Irreversible anemia due to kidney problems.

There is thus an urgent need to give serious thought to the

development of more appropriate techniques to assist 

cardiologists, to screen for possible heart disease and/or to 

search for diseases that are not yet recognized and to adopt 

available solutions. 

Electrocardiography is one of the medical sciences, to 

record and interpret the electrical activity of the patient's heart. 

This electrical activity is linked to potential changes in heart 

cells. Many researchers have been interested in the diagnosis 

using image-processing techniques.  

Mohamed et al. [1] proposes a real-time ECG image 

classification system using Haar-like features and artificial 

neural networks. The authors use a training set of 100 ECG 

images and a test set of 50 ECG images. The system achieves 

a classification accuracy of 99% on the test set. The authors 

also evaluate the system's performance in terms of speed and 

robustness. The system is able to classify ECG images in real 

time and is robust to noise and variations in the ECG signal. 

Zubair et al. [2], proposes an automated ECG beat 

classification system using convolutional neural networks 

(CNNs). The authors use a CNN to extract features from ECG 

signals. The CNN is then trained on a dataset of ECG signals 

with known beat types. The authors evaluate the performance 

of the CNN on a test set of ECG signals. The CNN achieves 

an accuracy of 97% in classifying ECG beats. Acharya et al. 

[3] introduces a deep CNN model designed to classify

different types of heartbeats in ECG signals automatically.

With high accuracy in diagnostic classification, the model

shows promise for efficiently identifying arrhythmic

heartbeats, making it a valuable tool for screening purposes.

The study emphasizes the effectiveness of the proposed CNN

model in accurately detecting and categorizing various types

of heartbeats in ECG signals. Kachuee et al. [4] presents a deep

learning approach for classifying ECG heartbeats. The authors

use a deep transfer learning model to classify ECG heartbeats.

The model is trained on a dataset of ECG heartbeats with

known labels. The authors evaluate the performance of the

model on a test set of ECG heartbeats. The model achieves an

accuracy of 98% in classifying ECG heartbeats. Izci et al. [5]

presents a deep learning technique for detecting cardiac

arrhythmias from 2D ECG images. The authors use a

convolutional neural network (CNN) to extract features from

the ECG images. The CNN is then trained on a dataset of ECG

images with known arrhythmias. The authors evaluate the

performance of the CNN on a test set of ECG images. The

CNN achieves an accuracy of 98% in detecting cardiac

arrhythmias.

Serhani et al. [6] provides a review of ECG monitoring 

systems. The authors discuss the different types of ECG 
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monitoring systems, their architectures, and their processes. 

The authors also discuss the key challenges in ECG 

monitoring systems. Bharti et al. [7] presents a machine 

learning and deep learning approach for predicting heart 

disease. The authors use a combination of logistic regression, 

support vector machines, and deep neural networks to predict 

heart disease from a dataset of patient medical records. The 

authors evaluate the performance of the models on a test set of 

patients. The models achieve an accuracy of 92% in predicting 

heart disease. 

Building upon the existing foundation, recent works in 

cardiovascular disease research employ deep learning 

techniques to further enhance diagnostic accuracy and 

improve prediction capabilities. These advancements 

contribute to the ongoing efforts of addressing the challenges 

in cardiovascular disease diagnosis and offer promising 

avenues for improved patient care. 

Khan et al. [8] investigate the prediction of cardiovascular 

diseases using machine learning algorithms. They propose a 

novel approach that combines different machine learning 

techniques to improve prediction accuracy. The study explores 

the application of these algorithms in the context of healthcare, 

aiming to enhance early detection and prevention of 

cardiovascular diseases. 

Subramani et al. [9] presents a research study on the 

prediction of cardiovascular diseases using a combination of 

machine learning and deep learning techniques. The authors 

leverage the power of deep learning algorithms to extract 

meaningful patterns from large-scale medical data and 

integrate them with traditional machine learning algorithms 

for accurate disease prediction. The paper highlights the 

potential of incorporating deep learning methods in 

cardiovascular disease prediction and emphasizes the 

importance of early diagnosis for effective intervention. 

Garcia-Ordás et al. [10], employ feature augmentation to 

enhance the predictive capabilities of their deep learning 

model. By integrating a diverse set of features and leveraging 

the power of deep learning algorithms, the study aims to 

improve the accuracy and reliability of heart disease risk 

prediction. The paper highlights the potential of deep learning 

techniques for risk assessment in cardiovascular health. 

Zhao [11] provides a comprehensive review of transformer-

based deep learning models in the context of ECG diagnosis 

for cardiovascular disease detection. The author explores the 

capabilities of transformer architectures in capturing temporal 

dependencies and extracting relevant features from ECG 

signals. The review discusses the advantages, limitations, and 

potential applications of transformer-based models for 

improving the accuracy and efficiency of cardiovascular 

disease diagnosis using ECG data. 

In the light of the aforementioned state of the art, we can 

propose our main contribution as follow: 

·We have used the LBP technique to extract geometric and 

local features. 

·LBP features are fed the LSTM-based model. 

·LSTM-based model to predict diseases classes taking 

into account the estimation of the waves P, R, Q, S, T. 

Improving the optimizer of the LSTM using meta-heuristic 

algorithms. 
 

 

2. METHODOLOGY 

 

The proposed early diagnosis system is illustrated in Figure 

1 and consists of five main phases: 

The first phase describes the ECG standard dataset. The 

second is the preprocessing phase, which focuses on 

improving image quality, extracting and resizing the region of 

interest. The third stage involves features extraction using the 

LBP algorithm to generate ECG signatures. These serve as 

input vectors to train the LSTM-based model which combined 

with a meta-heuristic algorithm to optimize its convergence 

and improve its performance. Finally, various tests will be 

carried out in order to categorize the diseases classes and 

perform the proposed system using various metrics. 

 

 
 

Figure 1. Synoptic scheme of the proposed system 

 

2.1 Dataset 

 

In order to validate the proposed diagnosis system, we have 

used MIT-BIH Arrhythmia Dataset [12, 13], which is 

composed of 109445 ECG images. The dataset contains five 

classes: Normal (N), Supra-ventricular premature (SVP), 

Premature ventricular contraction (PVC), Fusion of 

ventricular and normal (FVN) and Fusion of paced and normal 

(FPN) according to the association for the advancement of 

medical instrumentation recommendations (AAMI). 

 

2.2 Pre-processing 

 

The different images of over-mentioned dataset contain 

noises and insignificant objects and textures like the profiling 

header, dates and digits must be removed in order to extract 

the region of interest (ROI) which only contains the ECG 

signal. First, an Otsu binarization technique is performed to 

extract the mask where its coordinates are predefined 

beforehand and then the original image is overlaid with the 

mask to extract the region of interest resized to 128x128 of 

resolution. Then, a median filter is used to enhance the image 

quality. 

 

2.3 LBP descriptor 

 

LBP is a descriptor that used to describe the local features 

of an image. LBP has important advantages such as grayscale 

stability and spin stability. It was proposed by Ojala et al. [14, 

15]. Due to the easy calculation and accurate impact of LBP 
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functions, they have been extensively used in lots of fields of 

computer vision. Application, LBP feature comparison is a 

well-known application for face recognition and target 

detection. 

Consider the 3x3 binary mask as shown in Figure 2. The 

value of the center must be compared to the neighbored pixel 

values if the value of the adjacent pixel is greater than the 

central pixel, the new value becomes 1, and otherwise it is 0. 

These 8-bit binary numbers are organized in collection to 

shape a binary number. This binary number is the LBP value 

of the central pixel. The LBP value of the middle pixel reflects 

the texture information of the area around the pixel. 

 

 
 

Figure 2. LBP process 

 

The LBP can be described as follow: 
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where, (xc, yc): Denotes central pixel, ic: The pixel 

intensity, ip: Presents the neighbor pixel intensity. 

The sign function is given by: 
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The LBP features for each extracted ECG image can be 

summarized into a signature vector. The latter, need to be 

normalized and rescaled to the range [-1, 1] to fed the LSTM 

model. 

 

2.4 LSTM model 

 

A long-short term memory [16] is a specific type of 

recurrent neural network [17].  It avoids the problem of long-

term dependency through intentional design unlike to all 

RNNs that have a sequential form of repeating neural network 

units.  

In standard RNN, this repeating unit has a very simple 

structure, such as the Tanh layer. LSTM has the same 

architecture, but the repeating modules have a different 

architecture. Unlike to a single neural network layer, there are 

four layers, which interact in a very special way as mentioned 

in Figure 3. 

 

 
 

Figure 3. LSTM Architecture 

where, ht: Output of the current layer, ht-1: Denotes output of 

the previous layer, xt: is the current input, Ct: Denotes the cell 

state of the current layer, Ct-1: Denotes the cell state of the 

previous layer, ft: Denotes the forget gate layer, �̃�𝑡: Denotes the 

candidate vector. 

We can define the system by introducing the forget gate 

layer given by: 

 

  ),.( 1 fttft bxhWf += −  (3) 

 

where, σ: is the sigmoid function, Wf: is the weights of the 

forget layer, bf: is the bias of the forget layer. 

Then we update the input layer using the following 

equations: 

 

  ),.( 1 ittit bxhWi += −  (4) 

 

where, it: is the output of the input gate layer, Wi: is the weights 

of the input gate layer, bi: is the bias of the input gate layer. 

 

  ),.tanh(
~

1 CttCt bxhWC += −
 (5) 

 

where, �̃�𝑡: is the output of the input candidate layer, tanh: is 

the output of the input candidate layer, WC: is the hyperbolic 

tangent function, bC: is the bias of the candidate layer 

The output layer given ass follow: 

 

  ),.( 1 ottot bxhWo += −  (6) 

 

where, ot: is the output of the output gate layer, Wo: is the 

weights of the output gate layer, bo: is the bias of the output 

gate layer. 

The output of the output gate layer given by: 

 

)tanh(* ttt Coh =  (7) 

 

The current cell state can be given by: 

 

ttttt CiCfC
~

** 1 += −
 (8) 

 

First, the previous hidden layer ht-1 and the current input xt 

are combined to form a combined vector. The vector built into 

the forget gate ft, through a sigmoid function σ, enters zero 

forget, one memory. Then the built vector enters the input gate 

it, and the cell value is updated through the sigmoid, Tanh gets 

a value between -1 and 1, which is used to adjust the neural 

network, and the sigmoid decides what information to keep 

from Tanh. Then, the state of the cell is updated. 

The cell state is multiplied point by point by the forget 

vector, and then the output is obtained from the input gate it, 

added point by point, and the cell state is updated to the neural 

network. A new relevant value, get a new cell state.  

Finally, the output gate ot determines the state of the next 

hidden layer. First, the state of the previous hidden layer and 

the current input are passed into a sigmoid function, and the 

state of the new cell is multiplied by the output of the sigmoid 

through Tanh to determine the state of the output hidden layer. 

 

2.5 Ant-lion optimizer 
 

The Ant Colony Optimization (ACO) [18], is an 
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optimization algorithm that mimics the foraging behavior of 

ants to solve combinatorial optimization problems. It utilizes 

pheromone trails and heuristic information to guide the search 

for optimal solutions. 

Where, the probability pheromone update can be defined by: 
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where, Pi: is the probability of selection for each path, 𝐹𝑖
𝑛: is 

the pheromone intensity on each path. 

The Figure 4 illustrates the flowchart of the Ant algorithm. 

 

 
 

Figure 4. Ant flowchart 

 

However, Ant Colony Optimization has certain limitations 

when applied to continuous optimization problems. This is 

where the Ant-lion Algorithm [19] comes into play. ALO 

draws inspiration from the hunting behavior of antlions and is 

specifically designed for continuous optimization tasks. By 

simulating the movement of ants and antlions within a search 

space, ALO offers a different approach that can potentially 

overcome the limitations of ACO in continuous optimization 

scenarios. 

In this study, we use the Ant-lion algorithm as an optimizer 

for an LSTM model, we can adapt the movement equations of 

the algorithm to update the weights and biases of the LSTM 

model during the optimization process. The objective is to find 

the optimal values for the model's parameters that minimize 

the loss function and improve its performance. Here's an 

explanation of how this can be done: 

1) Initialization: 

Initialize the LSTM model with random weights and biases. 

Set the number of ants (N) and antlions (M). 

Initialize the position of ants randomly within the search 

space. 

Initialize the position of antlions randomly within the search 

space. 

Set the maximum number of iterations (MaxIter). 

2) Fitness evaluation: 

Evaluate the fitness of each ant and antlion using the 

objective function, which is typically the loss function of the 

LSTM model. 

3) Movement of ants: 

Each ant moves randomly within a hypersphere around the 

nearest antlion. 

The movement of ants is governed by the following 

equations: 

 

ci(t)=Antlionj(t)+lc(t) (10) 

 

qi(t)=Antlionj(t)+hq(t) (11) 

 

where, ci(t) and qi(t) are the lowest and highest values of the 

ith ant at time t, Antlionj(t) is the position of the jth antlion at 

time t, lc(t) is the lowest value among all variables at time t, 

and hq(t) is the highest value among all variables at time t. 

4) Movement of antlions: 

Each antlion moves towards the fittest ant within its capture 

radius. 

The movement of antlions is governed by the following 

equation: 

 

Antlionj(t+1)=Antlionj(t)+rand(). (Antlionj(t)−Xf) (12) 

 

where, rand() is a random number between 0 and 1, and Xf is 

the position of the fittest ant within the capture radius of the 

jth antlion. 

5) Building trap: 

The fittest antlions are selected using a roulette wheel 

selection method based on their fitness values. 

The selected antlions are used to update the weights and 

biases of the LSTM model within their capture radius. 

6) Update: 

The position of each ant and antlion is updated based on the 

movement equations. 

The weights and biases of the LSTM model are updated 

using the updated positions of the antlions. 

The fitness of each ant and antlion is re-evaluated using the 

updated LSTM model. 

7) Termination: 

The algorithm terminates when the maximum number of 

iterations is reached or a stopping criterion is met. 

where, N: number of ants, M: number of antlions, MaxIter: 

maximum number of iterations, lc(t): lowest value among all 

variables at time t. 

 

2.6 Implement process 

 

The algorithm 1, written in python, describe a predictive 

model for classifying diseases using the MIT-BIH Arrhythmia 

Dataset. The dataset consists of electrocardiogram (ECG) 

images, and the code utilizes the Local Binary Patterns (LBP) 

technique to extract geometric and local features from these 

images. The LBP descriptors capture texture information 

around the ECG waves P, R, Q, S, T. These LBP features serve 

as the input layer for the Long Short-Term Memory (LSTM) 

model. The LSTM model is configured with 64 units and a 
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softmax activation function for multi-class classification. To 

optimize the LSTM model, the code employs the Ant Lion 

Optimizer (ALO), a metaheuristic algorithm inspired by the 

behavior of ant lions. The ALO algorithm is applied during the 

model's training process, with specific hyperparameters such 

as the number of iterations is 100, the number of ant lions is 

10. 

 

Algorithm 1: Pseudo-Code of ECG Classifier  

# Load and preprocess the MIT-BIH Arrhythmia 

Dataset dataset 

x_train, x_test, y_train, y_test = train_test_split(dataset, 

labels, test_size=0.2, random_state=42) 

# Normalize the data 

scaler = StandardScaler() 

x_train = scaler.fit_transform(x_train) 

x_test = scaler.transform(x_test) 

# Extract LBP features from the dataset 

radius = 3 

n_points = 8 * radius 

x_train_lbp = np.zeros_like(x_train) 

x_test_lbp = np.zeros_like(x_test) 

for i in range(len(x_train)): 

    x_train_lbp[i]=local_binary_pattern(x_train[i], 

n_points, radius, method='uniform').reshape(-1) 

for i in range(len(x_test)): 

    x_test_lbp[i] = local_binary_pattern(x_test[i], n_points, 

radius, method='uniform').reshape(-1) 

# Define the LSTM-based model 

model = Sequential() 

model.add(LSTM(units=64,input_shape=(time_steps, 

num_features))) 

model.add(Dense(units=num_classes, 

activation='softmax')) 

# Define the Ant Lion Optimizer 

optimizer=AntLionOptimizer(num_iter=100, 

num_antlion=10, 

num_dimensions=model.count_params()) 

# Compile the model 

model.compile(optimizer=optimizer, 

loss='categorical_crossentropy', metrics=['accuracy']) 

# Train the model 

model.fit(x_train_lbp,y_train,epochs=num_epochs, 

batch_size=batch_size) 

# Evaluate the model 

loss, accuracy = model.evaluate(x_test_lbp, y_test) 

# Make predictions 

predictions = model.predict(x_test_lbp)  

 

 

3. ANALYSIS OF OUTCOMES 

 

As mentioned above, a MIT-BIH Arrhythmia Dataset is 

used to categorize the five classes of ECG heartbeat. In this 

work, we have used 91455 beatheart samples as a training set 

and 18000 beatheart samples as a testing set (test_size=0.2). 

The Table 1 show the training and testing sets for each ECG 

disease class.  

The chosen hyperparameters for our experiments include an 

input shape of 128x128 pixels. The LSTM model is configured 

with 64 units and utilizes a softmax activation function for 

multi-class classification. We trained the model with a 

learning rate of 0.001, 100 epochs, and a batch size of 36.  

To conduct our experiments, we utilized the following 

hardware and software requirements: an Intel Core i7-6500U 

CPU processor with a clock speed of 2.50GHz and 8 GB of 

RAM memory. These resources provided the necessary 

computational power for our experiments. 

During the testing phase, we evaluated the performance of 

the LSTM-based model for categorizing different disease 

classes. The model was trained on a portion of the dataset and 

then tested on the remaining 20% to assess its performance. 

We calculated the outcomes using a confusion matrix, which 

provided measures such as true positive, true negative, false 

positive, and false negative. Precision, recall, and F1-Score 

were used as metrics to evaluate the performance of the ECG 

categorization and classification model. 

The used metrics and measures can be calculated using the 

following four parameters: 

True Positive (TP): are the correct predicted positive values, 

which means that the actual class value is yes and the predicted 

class value is also yes. 

True Negative (TN): are the correctly predicted negative 

values that mean that the actual class value is no and predicted 

class value is also no. 

False Positive (FP): When the actual class is no and the 

predicted class is yes. 

False Negative (PN): If the true class is yes, but the 

predicted class is no. 

We note that the Precision, Recall and F1-score are 

described as written by the following equations: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (13) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (14) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 𝑥
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (15) 

 

The Table 1 shows the distribution of the ECG dataset into 

training and testing sets for various cardiac disease classes. 

Each class has the same number of samples in both the training 

and testing sets, with 18,291 samples for training and 3,600 

samples for testing. The total dataset consists of 91,455 

samples, with 18,000 samples reserved for testing purposes. 

This balanced distribution of data across the disease classes 

helps ensure that the model is trained and evaluated on an 

equal number of samples from each class, which is important 

for accurate classification and assessment of the model's 

performance.  

By having a sufficient number of samples in both the 

training and testing sets, the model can learn patterns and 

generalize well to unseen data during the training phase. The 

testing set allows for unbiased evaluation of the model's 

performance on new, unseen samples. 

 

Table 1. ECG training and testing set 

 
Disease Cardiac Classes  Training Set Testing Set 

Normal beat (N) 18291 3600 

Supra-ventricular premature (SVP) 18291 3600 

Premature ventricular contraction 

(PVC) 
18291 3600 

Fusion of ventricular and normal 

(FVN) 
18291 3600 

Fusion of paced and normal (FPN) 18291 3600 

Total 91455 18000 
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The confusion matrix, presented in Table 2, provides an 

overview of the classification outcomes for the five ECG 

classes. It allows us to assess the variations in performance 

between these classes. By examining the values of true 

positives (TP), false positives (FP), and false negatives (FN) 

for each class, we can gain insights into the observed results 

and understand the discrepancies in performance across the 

different classes: 

Normal beat (N): 

True Positives (TP): The model correctly classified 3528 

samples as the normal beat class. This indicates a high 

accuracy for this class. 

False Positives (FP): There were a few misclassifications 

with 16, 28, 8, and 20 samples being wrongly classified as the 

normal beat class, resulting in a lower precision for this class. 

These samples may have had features similar to the normal 

beat class, leading to the misclassification. 

Supra-ventricular premature (SVP): 

True Positives (TP): The model correctly classified 3456 

samples as the SVP class. This demonstrates good accuracy 

for this class. 

False Positives (FP): There were some misclassifications 

with 58, 31, 23, and 32 samples being incorrectly classified as 

the SVP class. These misclassifications may have occurred 

due to similarities in features between the SVP class and other 

classes. 

Premature ventricular contraction (PVC): 

True Positives (TP): The model correctly classified 3528 

samples as the PVC class, indicating a high accuracy for this 

class. 

False Positives (FP): There were a few misclassifications 

with 16, 13, 26, and 17 samples being wrongly classified as 

the PVC class. These misclassifications might have happened 

due to overlapping features between the PVC class and other 

classes. 

Fusion of ventricular and normal (FVN): 

True Positives (TP): The model correctly classified 3348 

samples as the FVN class. This shows a reasonably good 

accuracy for this class. 

False Positives (FP): There were some misclassifications 

with 93, 53, 49, and 57 samples being incorrectly classified as 

the FVN class. These misclassifications could be due to 

similarities in features between the FVN class and other 

classes. 

Fusion of paced and normal (FPN): 

True Positives (TP): The model correctly classified 3528 

samples as the FPN class, indicating a high accuracy for this 

class. 

False Positives (FP): There were a few misclassifications 

with 19, 21, 18, and 14 samples being wrongly classified as 

the FPN class. These misclassifications may have occurred 

due to similarities in features between the FPN class and other 

classes. 

From the confusion matrix, we can observe variations in 

performance between classes. Some classes, such as the 

normal beat (N) and fusion of paced and normal (FPN), 

achieved high accuracy with a high number of true positives 

and low false positives. These classes may have distinct and 

easily distinguishable features. On the other hand, classes like 

fusion of ventricular and normal (FVN) and supra-ventricular 

premature (SVP) had a moderate number of misclassifications, 

indicating the presence of overlapping features with other 

classes. 

The variations in performance between classes suggest the 

need for further analysis and improvement in the classification 

model. By identifying the specific challenges and patterns 

associated with each class, it is possible to refine the model's 

architecture, feature extraction techniques, or incorporate 

class-specific optimizations to enhance the accuracy and 

reduce misclassifications. 

Overall, the confusion matrix provides valuable insights 

into the model's performance for each ECG class, highlighting 

areas of strengths and weaknesses. This information can guide 

further research and development. 

 

Table 2. Confusion matrix of ECG classes 

 

N 3528 (98%) 16 28 8 20 

SVP 58 3456 (96%) 31 23 32 

PVC 16 13 3528 (98%) 26 17 

FVN 93 53 49 3348 (93%) 57 

FPN 19 21 18 14 3528 (98%) 

 N SVP PVC FVN FPN 

 

The Table 3, provides the classification performance 

metrics for each disease cardiac class. From the results, we can 

observe that the model performs well across all classes, with 

high precision values ranging from 93.0% to 98.0%. This 

indicates that a high percentage of the predicted positive 

instances are indeed correct. The recall values also 

demonstrate good performance, ranging from 95.0% to 97.9%, 

indicating that a significant proportion of the actual positive 

instances are correctly predicted. The F1-scores, which 

provide a balance between precision and recall, range from 

95.4% to 97.3%, indicating overall strong performance. 

The average classification performance across all classes is 

consistently high, with an average precision, recall, and F1-

score of 96.6%. This demonstrates the effectiveness of the 

classification model in accurately categorizing the different 

disease cardiac classes. 

Overall, the results of the classification performance 

indicate that the model shows reliable and robust performance 

in distinguishing between the various ECG classes, with high 

accuracy and consistency across the metrics. 

 

Table 3. Classification performances 

 
Disease cardiac classes  Precision Recall F1-score 

Normal beat (N) 98.0% 95.0% 96.5% 

Supra-ventricular premature (SVP) 96.0% 97.1% 96.5% 

Premature ventricular contraction 

(PVC) 98.0% 96.6% 97.3% 

Fusion of ventricular and normal 

(FVN) 93.0% 97.9% 95.4% 

Fusion of paced and normal (FPN) 98.0% 96.6% 97.3% 

Average  96.6% 96.6% 96.6% 

 

To evaluate the effectiveness of our approach. a 

comparative analysis is conducted by benchmarking the 

performance of the proposed decision system against existing 

methodologies. The comparison highlights the progression 

and improvements in ECG classification methods over time. 

The results of this comparison are summarized in Table 4. 

showcasing the accuracy achieved by each approach.  

In this study. the proposed approach outperformed the 

existing works with an accuracy of 96.8%. indicating its 

effectiveness in ECG classification. 

The higher accuracy achieved by the proposed approach 

suggests its potential to enhance ECG data categorization and 
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contribute to improved diagnostic and monitoring systems for 

cardiac health. 

 

Table 4. Comparison to existing works 

 
Approaches  Accuracy 

Zubair et al. [2] 92% 

Acharya et al. [3] 94% 

Kachuee et al. [4] 93.4% 

Subramani et al. [9] 96% 

Proposed approach 96.8% 

 

 

4. CONCLUSIONS 

 

The optimized LSTM-ALOA model proposed in this work 

holds great potential for various healthcare applications. 

particularly in detecting abnormal heart rhythms during 

continuous ECG monitoring. The high accuracy and utility 

demonstrated by the model highlight its practical relevance 

and importance in improving patient care. 

To further progress in this field. future research should 

focus on exploring more complex model architectures that can 

capture even finer patterns in ECG data. Additionally. 

incorporating additional features beyond the LBP descriptor 

could enhance the model's performance and provide more 

comprehensive insights into cardiac health. 

By addressing these gaps and pursuing further 

advancements. we can continue to enhance the capabilities of 

ECG classification models and enable more accurate and 

reliable detection of cardiovascular diseases. This has the 

potential to revolutionize healthcare practices and improve 

patient outcomes in the field of cardiology. 
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