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Diabetes, characterized by persistently high blood glucose levels, has been identified as a 

hazardous health condition, potentially leading to severe complications such as heart 

attacks, strokes, and heart failure. This study introduces a fog-based remote health 

monitoring system designed to mitigate the devastating impacts of diabetes and 

hypoglycemia. This system persistently monitors health parameters including glucose 

levels, carbohydrate intake, physical activities, heart rate, and blood pressure. It 

additionally supports advanced services such as feature extraction, distributed local storage, 

and enhanced security. The traditional cloud-based architecture, while effective, often 

results in significant latency due to the processing of vast amounts of data. By bringing 

computing servers closer to users, Fog computing addresses this issue, reducing latency, 

and increasing security, resource accessibility, and on-demand scaling. In this context, the 

proposed system aims to minimize latency and network usage while addressing critical 

issues such as security, access control, and privacy. It employs lossy data compression at 

the gateway level to decrease network bandwidth and enhance efficiency. Furthermore, the 

system introduces a novel Load Balancing mechanism to distribute the load among fog 

nodes evenly. It utilizes lightweight cryptographic algorithms, efficient key exchange 

protocols, and digital signatures to ensure confidentiality, authentication, and user privacy. 

The performance of the proposed framework was evaluated in terms of average processing 

time, energy consumption management, computational resource distribution, latency, and 

network usage. When compared with other systems, the proposed framework demonstrated 

superior results, thus validating its effectiveness. 
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1. INTRODUCTION

The Internet of Things (IoT) paradigm has been 

increasingly adopted in recent years, finding applications in 

diverse fields such as healthcare, smart agriculture, industrial 

automation, and the conception of smart cities. Traditional IoT 

applications directly oversee the operations of these systems, 

which include data collection, event detection, analysis, and 

actuation [1]. However, cloud data centers, which are 

predominantly used in these applications, are often situated 

several hops away from the IoT-enabled applications, posing 

certain challenges. Edge and Fog models have been introduced 

to address this issue by bringing computational capabilities 

closer to the applications [2]. As a result, the responsiveness 

of applications and the time taken for service delivery are 

substantially improved. Additionally, these models aid in 

mitigating network congestion by preventing the transfer of 

large data quantities to cloud data centers. In this context, the 

present study sets out to further explore the potential of Edge 

and Fog models in enhancing the efficiency and effectiveness 

of IoT applications across various domains. 

IoT is a platform to connect many things to the internet, and 

these things should be integrated with both electronics 

software and sensors, which generates and exchange data 

across things. IoT allows humans to contribute, interact and 

collaborate with the things around us. IoT utilizes the 

resources efficiently which are available, resources may be in 

terms of inputs, monetization, etc. The time-sensitive data 

must be processed and analyzed very quickly and hence it 

should have happened very near to the devices. Time in-

sensitive data will be analyzed in the cloud [3]. It reduces 

human efforts and time and this is why the Internet of Things 

has become more popular and also its ever-growing 

technology. IoT has certain features: connect the things to the 

platform, collect and analyze data for business, and integrate 

all the models for an improved experience. IoT Architecture 

consists of five layers namely: Perception, transport, 

processing, application, and business layer [4].  

Each layer is intended to perform its assigned task, the 

perception layer obtains data about the atmosphere and sends 

it to the transport layer, in turn forwards data to the different 

layers using a network such as BLE, Zigbee, 6LowPan, Wi-Fi, 

etc. Processing layer stores, processes and analyzes the sensor 

data and also employs cloud, fog, and big data analytics 
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modules to accomplish the task. Next, we have application 

layers that are responsible for delivering the application-

specific services to the end-users. Finally, the business layer 

which accomplishes the complete IoT organization such as 

applications, business models, user’s privacy, etc. 

Cloud computing is already well-known due to its extensive 

adoption in its target market. During the early phases of its 

adoption, though, it encountered various challenges like 

security, privacy, attacks, latency, and bandwidth. As a result, 

the cloud computing paradigm's primary challenges are 

privacy and security. 

The IoT technology incorporates a fog computing paradigm 

towards processing power and computing close to the things 

that are connected. Cloud computing is the method of storing, 

managing, and processing data on a remote computer 

contained on the Internet rather a native server or a local 

system. Fog computing also called edge computing supports 

computation, storage, and networking capabilities be 

communal between cloud computing data centers and end 

devices. 

Both fog and cloud deliver identical resources comprising 

computation, memory, storage, and infrastructure, yet they 

complement one another [5, 6]. As a result, the fog has evolved 

into a middleware capable of responding quickly and avoiding 

redundant data to be sent to the network and other healthcare 

IoTs, and ensuring that healthcare services have the necessary 

privacy protections. Their geographical position is a 

significant distinction. In contrast to the cloud, it offers more 

general functions and also fog is close to the IoT nodes. These 

devices will produce big quantities of raw data (for example, 

from sensors), and rather than sending all of this data to cloud-

based servers to be managed, the idea behindhand fog 

computing is to do most of the processing work as possible by 

the computing units located near the data-generating devices, 

which results in processed data will be forwarded to the cloud 

rather than raw data being forwarded and due to this cause 

bandwidth requirement being greatly reduced. Another 

advantage is that the processed data may be required by the 

same devices that created it, which reduces the latency 

between input and response time by processing locally rather 

than remotely. 

FoG architecture implemented in IoT gateway consists of 

security, storage, pre-processing, and monitoring layer 

deployed between physical and transport layer. The 

underlying nodes send raw and unstructured data to the fog. 

The monitoring layer then takes care of the data that has been 

received. Following that, the data is directed to the 

preprocessing layer, which structures the unstructured data 

using various data filtering and transformation techniques. At 

the middleware level, data storage necessitates privacy and 

security protections. Such duties are handled by the local 

storage layer. At this layer, lightweight security procedures 

and data integrity measures must be implemented. The 

temporary storage layer then stores the data for a set length of 

time. 

As a result, data is not stored for an extended amount of time. 

If the data is sensitive, it is eventually securely transported to 

the cloud. Cloud computing can store data for prolonged 

periods and conduct computation-intensive activities. Fog 

device security and privacy is a critical concern that should be 

considered in Fog devices. We offer a simple, yet general, 

paradigm for deploying QoS-aware IoT applications on Fog 

infrastructures in the healthcare domain. 

The QoS metrics we consider in our systems are latency, 

bandwidth, loss, and jitter. The QoS profiles Q are made up of 

the set of pairs (li,bi,ji,loi) where li,bi,ji,loi signify the average 

latency, bandwidth, jitter, and loss of a communication 

channel, respectively. The bandwidth of a link is represented 

by a pair (bupward, bdownward), which distinguishes the 

download and upload bandwidth, and π will be used to 

represent latency or bandwidth metrics that are unknown or 

unspecified. 

Congestion on the network and route changes are the reason 

for jitter. Acceptable jitter is the smallest delay in the 

transmission that we are ready to allow. Milliseconds are used 

to measure jitter (ms). A delay of 30 milliseconds or longer 

might cause call distortion and disruption. Opted to prioritize 

packets over other types of traffic using the quality of service 

(QoS) setting on our router. If the jitter is caused by traffic 

congestion, prioritizing packets may be beneficial. Using a 

jitter buffer is one of the most effective techniques to reduce 

internet jitter. On a VoIP system, a jitter buffer is a useful 

component. They work by delaying and storing voice packets 

as they arrive. Before delivering traffic to the receiver, they 

buffer it for 30 to 200 milliseconds. 

This procedure ensures that data packets arrive in the 

correct order and with little delay. They can also reorder data 

packets according to when they were transmitted in some cases, 

depending on the buffer. When sending data over the internet, 

there is always the possibility that packets of data will be lost 

or damaged. To guarantee easier and faster transfers, the 

packets are frequently encrypted and decreased in size. Your 

communication will be delayed and sometimes garbled if these 

packets are missing during transit. Prioritizing traffic to 

guarantee that the maximum critical data is sent over the 

network first would improve data flow and reduce congestion. 

 

 

2. LITERATURE SURVEY 

 

FogBus framework practices a group of IoT devices, Fog 

nodes, and Cloud infrastructure. For task distributions, it 

solely uses the master-slave method. FogBus is a bare-metal 

application that does not allow containerization. Nguyen et al 

a fog-based market-based framework that provides diverse 

resources to applications based on budget limitations to 

overcome the resource allocation problem, uses a centralized 

approach.  

In Foggy computing environments [7], the Foggy 

framework allows for dynamic resource supply and 

application placement. System isolation and overhead 

management are aided by the Foggy framework's container-

based virtualization. SmartFog is a framework that makes big 

data processing in Fog settings easier. It extracts and analyses 

data from wearable IoT devices using machine learning 

algorithms [8]. SmartFog is a gateway that preserves a 

continuous link with cloud datacenters. 

FogPlan is a framework for dynamically deploying and 

releasing Fog infrastructure applications depending on latency 

limitations and resource accessibility [9]. It emphasizes on 

Quality of Service needs and uses a couple of greedy 

algorithms towards the reduction of total cost of application 

execution. The current fog computing literature is divided into 

three categories: (1) QoS, is supposed to quantify the results 

of various units within the fog architecture, such as mobile 

operators; (2) the QoE, which is thought to be used to depict 

the end-user experience on top of the QoS; (3) A variety of 

apps from the mobile, cloud, and IoT based contexts were 
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investigated for security, privacy, and access control problems 

[10]. 

This work doesn’t allow for sharing of resources between 

numerous RPis via containers, and also has security issues [11]. 

The proposed SFog-RPi addresses these issues by providing 

APIs that could help consumers with computation 

infrastructure and external devices in a safe, simple manner. 

EHR was created and implemented employing digital 

signatures and file encryption in our work. Not only are digital 

signatures and file encryption used to tackle the problems of 

security related concerns but they're correspondingly working 

to avoid file change and illegal access [12]. 

Mahmud and Toosi [13] developed a framework for an IoT-

enabled healthcare system, highlighting smart gateway 

architecture for data storage and processing on the local level. 

In this paradigm, the cloud turns into the backend database 

system for data processing and analysis. An orchestrator 

coordinates the deployment of applications on the 

computational nodes in Ad-Hoc Edge. Ad-Hoc Edge 

additionally maintains a logical registry to keep track of the 

system's available edge devices [14]. 

Riya et al. [15] offer an IoT system for e-health monitoring 

that includes a smart gateway. The gateway offers 

interoperability with Bluetooth Low Energy (BLE), Wi-Fi, 

and IPv6 (6LoWPAN) over LowPower Wireless Personal 

Area Networks.  Countless innovative capabilities, like data 

storage, data compression, and security, are available through 

the gateway. These studies [16] explore security issues for IoT 

systems that monitor health. Lightweight cryptography 

algorithms safeguard the link between sensor nodes and smart 

gateways. The sensor node's energy consumption, on the other 

hand, is not taken into account. The authors [17] suggest an 

IoT system for continuous glucose monitoring that uses the fog 

computing technique. For data processing and analysis, the 

system employs a mobile-based gateway. 

 

 

3. PROPOSED METHODOLOGY 

 

In our proposed work we have implemented Raspberry Pi 

as the fog node since it has a processor, memory, storage, and 

display devices and also it is less costly. It also has an input 

and output port that can be easily connected to sensors and 

actuators very easily. Raspberry Pis is typically equipped with 

moderately fast processors that facilitate peripheral interface 

and networking. However, the Raspberry Pi is limited in its 

ability to support multi-tenancy and resource sharing. Hence, 

we need to perform virtualization of RPis but it does not allow 

us to do hypervisor-based virtualization, in this case, 

containerization of RPis will be the best possible solution. 

The privacy and security issues surrounding the capture and 

transfer of healthcare data first. Then, to address security 

problems similar to those raised above, a secure data gathering 

technique for IoT-based healthcare systems. 

 

3.1 Fog architecture 

 

Fog architecture consists of fog nodes, IoT devices, and 

Cloud nodes and it can be denoted as a tuple (F,I,C), where F 

is a group of fog nodes, and each node will be represented as 

f(i=1,2,3…n)=(€, π, µ), where € denotes the location of fog 

node, π refer to software and hardware specification of the fog 

node, µ refers to the IoT devices directly connects with this 

fog node. I is a collection of Things, each of which is 

represented by the tuple I(i=1,2,3…n)= (t, €) t identifies its 

type and € is the location of the device. C is a collection of 

existing Cloud data centers, all of which is identified by the 

tuple f(i=1,2,3…n)=(€, π), where € defines its location and π 

software and hardware specification of the cloud data centers 

µ in I are directly connected to the fog node, hence it has 

negligible latency and sufficient bandwidth. Cloud nodes 

connect with sensors and actuators using some API’s which 

supports QoS metrics. 

A Fog computing infrastructure application can be assumed 

as a collection of autonomously deployable components that 

must work composed while meeting particular QoS 

requirements. An application is represented as a triple [£, β, µ], 

£ where is a group of software components, β denotes existing 

interactions among components in, µ and is a group of Internet 

of Things requests. Fog architecture is represented as (F, I, C). 

Figure 1 illustrates the Fog-Cloud infrastructure, in which 

three fog nodes and two data centers have been deployed. It 

also depicts the average latency and bandwidth of each link. 

 

 
 

Figure 1. FoG-cloud communication systems 
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3.2 Collaboration between FoG nodes using choreography 

 

One fog node wouldn’t be sufficient for some sophisticated 

queries. However, due to latency or other difficulties, 

forwarding multiple requests to the cloud may not be a 

practical answer. In this circumstance, fog resource centers 

that are co-located with the primary fog can be merged with 

the primary fog to enable the inter-fog scenario. It will be 

difficult to combine numerous fogs in cost-effective 

collaborative-fog scenarios that meet service level agreements 

(SLAs) and are resource-efficient. Using choreography 

concept inter-fog communication could be established, it 

allows the fog to exchange the information.  

 
3.3 Higher level organization of SFog-RPis framework 

 

Integrated IoT-Fog-Cloud environment using a high-level 

detail of SFog-RPIs is shown in Figure 2. The SFog-RPIs 

framework is made up of many different components, the 

items that follow: IoT devices, Fog Gateways, Fog Agent, Fog 

Computing Nodes, Fog Database, and Cloud Datacenters.  

 

 
 

Figure 2. Inter-fog collaboration using choreography 

 

Sensors and devices will use different protocols depending 

on the kind of facility, data transfer rate as well as technology 

used, and as an outcome, certain of them might not be capable 

to pad right into another software interface. Interoperability 

becomes a huge challenge when there are so several devices 

and sensors made by so many different developers working 

together. Protocol conversion, channeling, and other similar 

events will be required in the fog in this instance. In these 

situations, fog must be delivered using conventional 

techniques to enable seamless integration and interoperability. 

This software component supports the collecting of 

generated data for every sensor node linked to the host RPi 

through API. It can begin sending data to the microservice as 

quickly as the container is launched, or it can pause till the 

microservice acts together. The associated sensors have two 

modes of operation: pull and push. Microservices receive 

sensor data from Sensor Manager only in the pull mode, in the 

push mode, Sensor Manager provides collected data to the 

Services autonomously. 

 

3.4 FoG computing node and agent node 

 

Fog Gateway Nodes filter data and convert it into 

standardized style. They are forwarded to another computer 

instances in the integrated environment by FGNs. It gives 

customers the ability to set login credentials, get service 

responses, control IoT devices, and request resources using 

application user interfaces. In addition to the standard 

functions of collecting and transferring data, Fogas-assisted 

smart gateways offer a variety of sophisticated services aimed 

at improving the quality of healthcare. Distributed local 

storage, data compression, and other Fog services. 

If the Fog Computing Node is unable to meet the 

application's requirements on its own, it acts as an agent node, 

contacting other Fog Computing Node and Cloud data centers 

on behalf of the Fog Gateway Nodes to obtain the resources 

needed to run the back-end application. It distributes 

computing workloads over several Fog Computing Nodes and 

monitors, synchronizes, and coordinates their actions in this 

situation. Concerning capacity and resource architecture, Fog 

Computing Nodes are diverse. To undertake various SFog-RPI 

functions, it consists of processing cores, memory, and storage. 

It provides suitable security characteristics to such broker 

nodes, allowing them to assure the stability of communication 

and data exchange between Fog Nodes and Cloud. 

The database nodes keep track of diverse applications' meta-

data, such as the application model, runtime needs, and 

dependencies [18, 19]. Furthermore, during application 

execution, these nodes can save some intermediate data, 

allowing data processing to resume from any anomaly-driven 

stop point. 

 
3.5 Cloud nodes 

 

 
 

Figure 3. Higher level organization of SFog-RPis framework 

 

Cloud servers offer many advantages, including centralized 

scalability, data protection, global storage, and processing. 

Heavy computational activities that cannot be handled by Fog 

could be handled efficiently by Cloud servers. The Figure 3 

depicts how the Raspberry Pi integrated with various sensor 

nodes and external devices and how this does the job of the 

Fog node. Raspberry Pi can perform collecting data from 

sensor nodes, integrating collected data from various sensor 

nodes, process and analyze the data into meaningful 

information. We have implemented Raspberry Pi as the fog 

node since it has a processor, memory, storage, and display 

devices and it is less costly. Since for a real-time health 

monitoring system, during an emergency, the patients must be 

treated immediately, hence processing and analyzing the data 

very close to the sensing node is necessary. In this situation, if 

the Fog node does not perform this task, then processing must 

be done at cloud data centers, and responding to the patients in 

the critical situation takes lots of time which leads to life-

critical. Therefore, Raspberry pi implemented in our proposed 

system acts as the Fog node, which provides immediate 

response to the patients in an emergency. 

SFog-RPi Controller contains conventional algorithms and 

strategies for managing an RPi's computational resources. It 

also communicates with the information registry to obtain 

other RPis' references for resource and data sharing. 
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Information Manager sends commands to RPis Operative to 

govern the execution of microservices formed on the results of 

connected algorithms and policies. 

RPis Operator component is in charge of container creation 

and termination. RPis Operator uses APIs to inject essential 

arguments into containers, such as location of the microservice 

and the unique identifier of the RPi hosting the RPi Service. It 

also prevents the Sensor devices from forwarding data for 

newly dismissed containers and keeps informed the 

Information Registry's executor. 

The context information extracted from the host RPis 

includes resource configuration, network bandwidth, 

remaining battery lifetime, storage, and current memory, 

location, and CPU utilization. Information Monitor provides 

such information to SFog-RPi Controller and participates in 

resource management decisions based on Information 

Manager's requirements. 

Periodic Signal Generator: It produces the heartbeat data 

signals periodically to Information Registry of SFog-RPi 

Controller to alert the occurrence of the host RPi Periodic 

Signal Generator additionally notifies the corresponding 

SFog-RPi Controller of the status of microservice execution to 

track run-time performance. It aids in the detection of RPis that 

have suddenly failed. Figure 4 represents the Raspberry Pi 

integrated with various sensors. 

 

 
 

Figure 4. Raspberry Pi integrated with various sensors 

 

 
 

Figure 5. Setup for SFoG-Rpi 

 

The data is sent to a master node via the sensor node, in turn 

it is distributed by the master node to the number of worker 

nodes on which the processing is actually to be carried out. 

Figure 5 shows the Setup for SFoG-Rpi. Parallelly, a traffic 

monitor observes the data rate of IoT devices based on which 

amount of data to be processed will be computed and assigned 

to the respective computing node. CN does the encryption 

process using a private key and transfers it to the FoG node for 

processing.  

The strong traffic load reveals that dataflow latency is the 

primary cause of overall response time. There are two types of 

latency in data flow on IoT devices: first one is communication 

latency triggered by traffic load, and another is computing 

latency induced by computing load. We require a load 

balancing technique to stabilize together the computing and 

traffic loads of BSs or fog nodes in a direction to lessen the 

system's total latency and network use [20]. 

CN-Computing Node, SN-Sensing Node, MN-Master node, 

TN-Traffic Node. Let Fi=(f1,f2,f3…fn) be the set of FoG 

nodes, t(x) be the transmission power of sensor node, c(x) is 

the channel gain of sensor nodes, an (x) be the arrival rate, s(x) 

be the traffic size, ci(x) be the capacity of the sensor node, cj(x) 

is the FoG node computing capacity, y(x) data flow 

computation size, Clr is the computational latency ratio, CM 

is the communication latency,TL is the traffic load at the FoG 

node, CL is the computational load at the FoG node, tr(x) is 

the traffic load density of sensor node, ld(x) is the computing 

load density of sensor node. 

In Traffic Load and Load Computation, let us assume that, 

a set of sensor nodes are implanted on the body of the patient 

and it has the transmission power of t(x) with a gain of c(x), 

the noise is represented as α2. The signal-to-noise ratio is 

calculated by: 

 

STNR(x)=
𝑡(𝑥)𝑋𝑐(𝑥)

𝛼2
 (1) 

 

where, gain c(x)=10log10[
∅2

(4𝜋𝐷)2
], ∅ is the wavelength and D 

is the distance between the sensor nodes. 

tr(x) is the traffic load density of the sensor node which will 

be calculated by: 

 

tr(x)= 
𝑎(𝑥) 𝑥 𝑠(𝑥) 

𝑐𝑖(𝑥)
 (2) 

 

TL is the traffic load at the FoG node will be calculated by: 

 

TL=∑ tr(x) (3) 

 

CM is the communication latency will be calculated by: 

 

CM=
𝑇𝐿

1−𝑇𝐿
 (4) 

 

FoG node Computing latency is directly relative to the 

latency of the data flow, let ld(x) is the computing load density 

of sensor node can be calculated by: 

 

ld(x)=
𝑎(𝑥) 𝑥 𝑦(𝑥) 𝑥 𝑏𝑗 (𝑥)

𝑐𝑗(𝑥)
 (5) 

 

where, bj(x) is the binary indicator of the FoG node.  

CL-computing load at the FoG node can be calculated by: 

 

CL= ∑ ld(x) (6) 

 

Clr is the computing latency ratio is calculated by: 

 

Clr=(1- CL)/ CL (7) 
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Patients' confidential information, such as disease type, age, 

surgery is undergone, history, and so on, is stored in healthcare 

data. Unauthorized users must not have access to any of this 

information. With the proliferation of technology in different 

domains related to healthcare, guaranteeing data integrity, 

privacy, and security leftovers is a concern [21]. Security in 

storage and transmission are two distinct issues. The level of 

data access authorization is context-dependent. For instance, 

the data can be vital to a nurse in one situation, but the 

authorization must be confined to the doctor in another. 

In the event of an emergency, paramedics may be given 

provisional access to the patient's private data, although, under 

other circumstances, same admission may be restricted to 

doctors exclusively. Fog must be conscious of these limits and 

to ensure the data it obtains/interconnects with other devices 

and systems is secure and private. 

Fog, a middleware, can show a significant part in bringing 

multiple parties together to provide robust healthcare services. 

For example, a pharmacy may preserve a patient's medication 

record to see if the new medicine the patient is purchasing is 

compatible with the other medications she or he is already 

taking for the same or different health concerns. In 

Lightweight Secured Fog-based framework, nowadays all the 

PHR data will be stored on the cloud server remotely, which 

causes security-related issues like privacy, security, and access 

control. Fog computing techniques relieve the computational 

and communication stress on remote cloud servers and act as 

a middleware amongst cloud servers and IoT devices. Fog 

computing mainly focuses on the quality-of-service (QoS) 

metrics [22]. Most of the healthcare monitoring systems do not 

support security-related concerns, hence in this work, we are 

focusing on security issues also. To sort out these issues, the 

most direct solution is to use encryption and decryption 

techniques. 

Because the sensor nodes are small and have limited 

resources, they are unable to implement the sophisticated 

algorithms to handle security issues. Even while sophisticated 

algorithms may be effectively performed on sensor nodes, it 

may not be used since the system's latency requirements may 

be violated and their battery may be drained. Raw data is 

frequently supplied in many IoT systems to extend the battery 

life of sensor nodes. Because data can be listened to by 

unauthorized persons, this strategy is risky [23, 24]. Sensor 

nodes must run a lightweight security method as well as the 

battery life of the sensor node cannot be greatly lowered, the 

algorithm must provide some levels of security.  

AES uses symmetric key encryption, which use same secret 

key to encrypt and decrypt the data [25, 26]. For encrypted 

data, individual or group of sensor nodes owns its private key, 

whereas a gateway holds all of the private keys of entire sensor 

nodes. Sensor nodes deliver encrypted data using a private key, 

and the encrypted data received at a smart gateway is 

decrypted using the right private key. The AES-256 algorithm 

is implemented in our proposed system since it's not easy to 

tamper with anonymous users. 

In digital signature, a public-private key pair is created for 

each individual who uses this system [27, 28]. The signature 

key acts as the private key used for digitally signing, while the 

verification key acts as the public key. Data is fed into the hash 

function by Signer, which generates a hash value of the data 

correspondingly. The hash value and signature key are fed into 

the signature algorithm, which generates a digital signature for 

the supplied hash. After appending the signature to the data, 

both are submitted to the verifier. The verification key and 

digital signature are fed into the verifier for the verification 

process, then the verification algorithm returns a value as an 

output. 

The Verifier uses the same hash function on the supplied 

data to generate a hash value. The result of the verification 

process and this hash value are compared based on the 

comparison result, the verifier assesses whether the digital 

signature is genuine or not. Figure 6 discusses the Digital 

signature and encryption/decryption.  

Algorithm 1: Security measures in Fog node 

Step 1. Before the encryption and signing procedure must 

generate the private and public keys 

Step 2. Generate the public-private key pair (ki,kj) 

Step 3. Feed data (Di) to the hash function and generates the 

hash value (Hi) 

Step 4. Pass (Hi, kj) to the signature algorithm and generates 

the digital signature (DS) 

Step 5. Append the data and signature (Di, DS) using private 

key (pi) and generates the ciphertext (Ed) 

Step 6. ciphertext (Ed) will be sent to the verifier 

Step 7. Verifier decrypts the ciphertext (Ed) using private key 

(pi) 

Step 8. After decryption the verifier generates the hash value 

(Hj) on the supplied data using the hash function  

Step 9. Compares the output of the verification algorithm with 

(Hj) and if both are the same it is accepted or rejected. 

 

Algorithm 2: Key Generation phase in RSA Digital 

Signature 
Initialization Phase 

Pick 2 random prime numbers m and n 

 

 
 

Figure 6. Digital signature and encryption/decryption 
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Calculate z=mxn and α= (m-1)(n-1) (8) 

 

Select some random integer x  

 

Compute d using Euclidean distance algorithm 

where d lies between 1<d< α such that xd=1mod (α). 
(9) 

 

Finally calculate the public key (ki) and the private key (kj)  

 

Calculate y’=Z(y), which ranges from [0 to n-1] (10) 

 

Calculate s= (y’)2mod (n) (11) 

 

Computed digital signature of A in Verification Phase 

Get the A’s public key ki and  

 

Compute s’=sx mod (z) (12) 

 

If s=s’ then the signature is correct and authentic and it is 

accepted. 

 

Encryption 

For every node π in L, pick up a polynomial degree pπ and 

assign the degree to wπ =rπ -1  

For all other nodes π € L do 

 

Assign p π (0) =parent(X)(index(π)) (13) 

 

Select a random wX to describe a polynomial p_ π 

End for 

Let W to be group of leaf nodes in L with the verification 

key Ki  

 

CT= (T, Di= Hj,Dy) (14) 

 

Generate signature DS 

 

The ciphertext is Ed= (CT, DS) (15) 

 

Decryption 

Do signature verification DS using the private key kj 

For every node π do 

If π is a leaf node and j € R then 

 

Decrypt (CT, kj, π) (16) 

 

End if 

End for 

 

Data compression is used to reduce network bandwidth 

usage and increase efficiency [29, 30]. Either Lossless or lossy 

algorithms can be used for data compression; however, when 

compared to lossy techniques, the lossless approach appears to 

be a better fit for our e-health application. We chose to use 

lossless data compression and LZO (Lempel–Ziv–Oberhumer) 

because they are the fastest lossless data compression 

algorithms compared to other lossless data compression 

algorithms. The first method compresses data collected from 

nodes at the fog gateway and sends it directly to the remote 

server [31, 32].  

Compression on data acquired from sensor nodes and save 

it as files; if a packet is nowhere to be found during 

transmission, the server can demand the file from the gateway. 

Because the packet is temporarily kept in the gateway, it is 

simple to resend it. When the server admits the positive 

transmission, the packet is destroyed [33, 34].  

Table 1 describes the data size, compressed data size, 

Compression time, and Decompression Time for the varying 

nodes from 1 to 40. 

 

Table 1. LZO algorithm compression results 

 
Number of Nodes Data Size (Bytes) Compressed Data Size (Bytes) Compression Time (ms) Decompression Time (ms) 

1 800 26 16 19 

2 1600 32 18 23 

4 3200 48 20 27 

8 6400 60 22 33 

40 32000 180 30 40 

 

 

4. EXPERIMENTS AND RESULTS 

 

Edge and fog computing paradigms work together to elevate 

the restrictions of Cloud-centric execution like low latency and 

low bandwidth in the IoT applications by moving computation 

resources nearer to the data sources [35]. Raspberry Pi is 

extensively utilized as computation nodes in both models. It 

has used the Raspbian Operating system for the Raspberry Pis, 

and we have implemented SFog-RPis Controller and SFog-

RPis services using Python. SFog-RPi framework 

containerization is done by Docker Platform. 

Tables 2 and 3 explain the simulation parameter used in our 

experiments and time taken by the edge device to transfer the 

data to fog nodes located in different locations as well as from 

fog to cloud server. It is noted that the time taken to move data 

from fog to cloud takes more time. It has used five sensors to 

collect the blood glucose level, carbohydrates content, 

physical activity, heart rate and blood pressure values, based 

on these values the quantity of insulin intake can be suggested 

to the patients. Table 4 shows the Power consumption by the 

monitoring device. 
 

Table 2. Simulation parameters 
 

Parameters Values 

Sensors 
Near-Infrared Spectroscopy, MPS-

2000, Maxim’s MAX30100, INA219 

Network Protocol TCP, MQTT 

Controller Arduino 

Tools Visual framework 

 
Table 3. Time to process the service 

 
Component Type Component Time (ms) 

 

Delay 

Sensor-Fog1 5 

Sensor-Fog2 11 

Fog-cloud 2200 
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Table 4. Power consumption by the monitoring device 

 

Mode Voltage Level (v) 
Average Power 

Consumed (mW) 

Idle/lazy 4 1 

Active mode 

(AES-256) 
4 20 

Active mode 

(without AES-

256) 

4 18 

 

Figure 7 illustrates the average processing time on different 

cloud data centers located in different locations. It shows that 

datacenter 1 located near to the IoT devices took very less 

processing time compared to the datacenter 3 as it is located 

very far away from the IoT devices. 

 

 
 

Figure 7. Average input processing time on different cloud 

datacenters 

 

The processing time varies on different Fog platforms 

available currently, which also compares the performance of 

our proposed system with the current system. It depicts that 

the average time taken by SFog-RPi is comparatively very less 

from all other Fog platforms. The run time of the key 

generation process based on the attribute's defined range. The 

execution time is linearly relational to the number of attributes, 

with the number of attributes increasing the execution time. 

Also look into the patient's performance during the encrypting 

portion of the PHR. Observing the safety primitives inside the 

proposed protocol, we analyze the performance of the 

decryption phased for an overall of 25 attributes. The time 

taken for decryption is less than 100 ms, which is adequate for 

healthcare-based applications. Figure 8 provides Key 

Generation Phase Performance, Encryption Phase 

Performance, and Decryption Phase Performance values.  

 

 
 

Figure 8. (a) Key generation phase performance, (b) 

Encryption phase performance, (c) Decryption phase 

performance 

 
 

Figure 9. Relationship between the cost and energy spent per 

bit 

 

Figure 9 illustrates the relationship between the cost and 

energy spent per bit. It is observed from the figure the cost of 

energy utilized per bit decreases when the block size is 

increased. 

 

 
 

Figure 10. Power consumption of sensor nodes with and 

without AES-256 and working hours of sensor nodes with 

AES-256 on1000mah battery and 10000mah battery 

 

Figure 10 illustrates the comparison between the power 

consumption without AES-256 and with AES-256, with AES-

256 consuming little more power compared to without AES-

256, there are no more variations but security is achieved. And 

also working hours of 1000 and 10000 mAh battery is 

compared, it is proved that 1000 mAh achieved greater 

performance. In our proposed system, the sensor data are 

collected and sent to the FoG node for processing and analysis. 

Let x be the time delay in sending data from the sensor node 

to the mobile device, and y be the time delay in transmitting 

data from the mobile device to the FoG node, z be the time 

delay in sending data from FoG to smartphone. So, the latency 

to complete one task is calculated by: 

 

Latency L=x+y+z (17) 

 

Because all actions must be completed by the cloud, latency 

increases in cloud-only implementations. This is due to 

increased load and, as a result, latency. Because it allows fog 

nodes to process all incoming tasks and includes fewer 

difficult calculations for fog node selection, our proposed 

technique greatly lessens latency when related to cloud-only 

implementation. 

The sum of task execution time and network propagation 

delay is used to model service delivery latency. It is well 

recognized that the Fog infrastructure's computing capability 

is not enhanced, but it is located nearer to the data source. As 
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a result, the network propagation delay for Fog infrastructure 

stands significantly reduced. The network utilization in 

different SFog-RPi settings is shown in Figure 11. The Fog 

only setting performs better than the Integrated Fog-Cloud and 

Cloud only cases because it only uses local networking 

resources. 

 

 
 

Figure 11. (a) Latency of various platforms (b) Network 

Usage of various platform 

 

 

5. CONCLUSION 

 

The communication technologies used at all tiers of the 

design are abstracted from our model, which focuses solely on 

their QoS. Foresee medium-term operative maintenance, and 

long-term business intelligence duties of an application 

spreading throughout the Cloud-Fog-IoT system or collapsing 

into a single layer depending on the circumstances and the 

condition of the network. To excuse interoperability and 

confederation at every layer, our model incorporates inter-

Cloud and inter-Fog communication. The SFog-RPi 

framework, which we propose, can connect various IoT-

enabled equipment to both Cloud and Fog infrastructures. For 

IoT application deployment, management and monitoring, the 

framework is lightweight and could be used together with the 

edge and remote resources. SFog-RPi is written in cross-

platform programming languages, which aids in overcoming 

infrastructure heterogeneity during application execution. A 

new Load Balancing System is also presented to poise the load 

among fog nodes. Next, we proposed to use the lightweight 

cryptographic algorithm, efficient key exchange protocol, and 

digital signature to achieve confidentiality, authentication, and 

user privacy. The results of the proposed framework and added 

state-of-the-art frameworks are compared, it is shown that the 

proposed system beats the other system in terms of improving 

response time, management of energy consumption system, 

and computation resources through distributed unloading and 

reduces latency and network usage. 
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