
SFoG-RPI: A Secured QoS Aware and Load Balancing Framework for FoG Computing in

Healthcare Paradigm

Geetha Gunasekar1 , Anand Krishnamurthy2 , Tamilvizhi Thanarajan3 , Surendran Rajendran4*

1 Department of Networking and Communications, School of Computing, SRM Institute of Science and Technology,

Kattankulathur 603203, India
2 Department of Computer Science and Engineering, Rajalakshmi Engineering College, Chennai 602105, India
3 Department of Computer Science and Engineering, Panimalar Engineering College, Chennai 600123, India
4 Department of Computer Science and Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and

Technical Sciences, Chennai 602105, India

Corresponding Author Email: surendran.phd.it@gmail.com

https://doi.org/10.18280/ria.370403 ABSTRACT

Received: 26 April 2023

Revised: 23 July 2023

Accepted: 1 August 2023

Available online: 31 August 2023

Diabetes, characterized by persistently high blood glucose levels, has been identified as a

hazardous health condition, potentially leading to severe complications such as heart

attacks, strokes, and heart failure. This study introduces a fog-based remote health

monitoring system designed to mitigate the devastating impacts of diabetes and

hypoglycemia. This system persistently monitors health parameters including glucose

levels, carbohydrate intake, physical activities, heart rate, and blood pressure. It

additionally supports advanced services such as feature extraction, distributed local storage,

and enhanced security. The traditional cloud-based architecture, while effective, often

results in significant latency due to the processing of vast amounts of data. By bringing

computing servers closer to users, Fog computing addresses this issue, reducing latency,

and increasing security, resource accessibility, and on-demand scaling. In this context, the

proposed system aims to minimize latency and network usage while addressing critical

issues such as security, access control, and privacy. It employs lossy data compression at

the gateway level to decrease network bandwidth and enhance efficiency. Furthermore, the

system introduces a novel Load Balancing mechanism to distribute the load among fog

nodes evenly. It utilizes lightweight cryptographic algorithms, efficient key exchange

protocols, and digital signatures to ensure confidentiality, authentication, and user privacy.

The performance of the proposed framework was evaluated in terms of average processing

time, energy consumption management, computational resource distribution, latency, and

network usage. When compared with other systems, the proposed framework demonstrated

superior results, thus validating its effectiveness.

Keywords:

IoT, fog, cloud, Raspberry Pi, security, data

compression and encryption

1. INTRODUCTION

The Internet of Things (IoT) paradigm has been

increasingly adopted in recent years, finding applications in

diverse fields such as healthcare, smart agriculture, industrial

automation, and the conception of smart cities. Traditional IoT

applications directly oversee the operations of these systems,

which include data collection, event detection, analysis, and

actuation [1]. However, cloud data centers, which are

predominantly used in these applications, are often situated

several hops away from the IoT-enabled applications, posing

certain challenges. Edge and Fog models have been introduced

to address this issue by bringing computational capabilities

closer to the applications [2]. As a result, the responsiveness

of applications and the time taken for service delivery are

substantially improved. Additionally, these models aid in

mitigating network congestion by preventing the transfer of

large data quantities to cloud data centers. In this context, the

present study sets out to further explore the potential of Edge

and Fog models in enhancing the efficiency and effectiveness

of IoT applications across various domains.

IoT is a platform to connect many things to the internet, and

these things should be integrated with both electronics

software and sensors, which generates and exchange data

across things. IoT allows humans to contribute, interact and

collaborate with the things around us. IoT utilizes the

resources efficiently which are available, resources may be in

terms of inputs, monetization, etc. The time-sensitive data

must be processed and analyzed very quickly and hence it

should have happened very near to the devices. Time in-

sensitive data will be analyzed in the cloud [3]. It reduces

human efforts and time and this is why the Internet of Things

has become more popular and also its ever-growing

technology. IoT has certain features: connect the things to the

platform, collect and analyze data for business, and integrate

all the models for an improved experience. IoT Architecture

consists of five layers namely: Perception, transport,

processing, application, and business layer [4].

Each layer is intended to perform its assigned task, the

perception layer obtains data about the atmosphere and sends

it to the transport layer, in turn forwards data to the different

layers using a network such as BLE, Zigbee, 6LowPan, Wi-Fi,

etc. Processing layer stores, processes and analyzes the sensor

data and also employs cloud, fog, and big data analytics

Revue d'Intelligence Artificielle
Vol. 37, No. 4, August, 2023, pp. 835-844

Journal homepage: http://iieta.org/journals/ria

835

https://orcid.org/0000-0002-1361-9123
https://orcid.org/0000-0002-2651-825X
https://orcid.org/0000-0002-5427-7000
https://orcid.org/0000-0002-6945-8461
https://crossmark.crossref.org/dialog/?doi=10.18280/ria.370403&domain=pdf

modules to accomplish the task. Next, we have application

layers that are responsible for delivering the application-

specific services to the end-users. Finally, the business layer

which accomplishes the complete IoT organization such as

applications, business models, user’s privacy, etc.

Cloud computing is already well-known due to its extensive

adoption in its target market. During the early phases of its

adoption, though, it encountered various challenges like

security, privacy, attacks, latency, and bandwidth. As a result,

the cloud computing paradigm's primary challenges are

privacy and security.

The IoT technology incorporates a fog computing paradigm

towards processing power and computing close to the things

that are connected. Cloud computing is the method of storing,

managing, and processing data on a remote computer

contained on the Internet rather a native server or a local

system. Fog computing also called edge computing supports

computation, storage, and networking capabilities be

communal between cloud computing data centers and end

devices.

Both fog and cloud deliver identical resources comprising

computation, memory, storage, and infrastructure, yet they

complement one another [5, 6]. As a result, the fog has evolved

into a middleware capable of responding quickly and avoiding

redundant data to be sent to the network and other healthcare

IoTs, and ensuring that healthcare services have the necessary

privacy protections. Their geographical position is a

significant distinction. In contrast to the cloud, it offers more

general functions and also fog is close to the IoT nodes. These

devices will produce big quantities of raw data (for example,

from sensors), and rather than sending all of this data to cloud-

based servers to be managed, the idea behindhand fog

computing is to do most of the processing work as possible by

the computing units located near the data-generating devices,

which results in processed data will be forwarded to the cloud

rather than raw data being forwarded and due to this cause

bandwidth requirement being greatly reduced. Another

advantage is that the processed data may be required by the

same devices that created it, which reduces the latency

between input and response time by processing locally rather

than remotely.

FoG architecture implemented in IoT gateway consists of

security, storage, pre-processing, and monitoring layer

deployed between physical and transport layer. The

underlying nodes send raw and unstructured data to the fog.

The monitoring layer then takes care of the data that has been

received. Following that, the data is directed to the

preprocessing layer, which structures the unstructured data

using various data filtering and transformation techniques. At

the middleware level, data storage necessitates privacy and

security protections. Such duties are handled by the local

storage layer. At this layer, lightweight security procedures

and data integrity measures must be implemented. The

temporary storage layer then stores the data for a set length of

time.

As a result, data is not stored for an extended amount of time.

If the data is sensitive, it is eventually securely transported to

the cloud. Cloud computing can store data for prolonged

periods and conduct computation-intensive activities. Fog

device security and privacy is a critical concern that should be

considered in Fog devices. We offer a simple, yet general,

paradigm for deploying QoS-aware IoT applications on Fog

infrastructures in the healthcare domain.

The QoS metrics we consider in our systems are latency,

bandwidth, loss, and jitter. The QoS profiles Q are made up of

the set of pairs (li,bi,ji,loi) where li,bi,ji,loi signify the average

latency, bandwidth, jitter, and loss of a communication

channel, respectively. The bandwidth of a link is represented

by a pair (bupward, bdownward), which distinguishes the

download and upload bandwidth, and π will be used to

represent latency or bandwidth metrics that are unknown or

unspecified.

Congestion on the network and route changes are the reason

for jitter. Acceptable jitter is the smallest delay in the

transmission that we are ready to allow. Milliseconds are used

to measure jitter (ms). A delay of 30 milliseconds or longer

might cause call distortion and disruption. Opted to prioritize

packets over other types of traffic using the quality of service

(QoS) setting on our router. If the jitter is caused by traffic

congestion, prioritizing packets may be beneficial. Using a

jitter buffer is one of the most effective techniques to reduce

internet jitter. On a VoIP system, a jitter buffer is a useful

component. They work by delaying and storing voice packets

as they arrive. Before delivering traffic to the receiver, they

buffer it for 30 to 200 milliseconds.

This procedure ensures that data packets arrive in the

correct order and with little delay. They can also reorder data

packets according to when they were transmitted in some cases,

depending on the buffer. When sending data over the internet,

there is always the possibility that packets of data will be lost

or damaged. To guarantee easier and faster transfers, the

packets are frequently encrypted and decreased in size. Your

communication will be delayed and sometimes garbled if these

packets are missing during transit. Prioritizing traffic to

guarantee that the maximum critical data is sent over the

network first would improve data flow and reduce congestion.

2. LITERATURE SURVEY

FogBus framework practices a group of IoT devices, Fog

nodes, and Cloud infrastructure. For task distributions, it

solely uses the master-slave method. FogBus is a bare-metal

application that does not allow containerization. Nguyen et al

a fog-based market-based framework that provides diverse

resources to applications based on budget limitations to

overcome the resource allocation problem, uses a centralized

approach.

In Foggy computing environments [7], the Foggy

framework allows for dynamic resource supply and

application placement. System isolation and overhead

management are aided by the Foggy framework's container-

based virtualization. SmartFog is a framework that makes big

data processing in Fog settings easier. It extracts and analyses

data from wearable IoT devices using machine learning

algorithms [8]. SmartFog is a gateway that preserves a

continuous link with cloud datacenters.

FogPlan is a framework for dynamically deploying and

releasing Fog infrastructure applications depending on latency

limitations and resource accessibility [9]. It emphasizes on

Quality of Service needs and uses a couple of greedy

algorithms towards the reduction of total cost of application

execution. The current fog computing literature is divided into

three categories: (1) QoS, is supposed to quantify the results

of various units within the fog architecture, such as mobile

operators; (2) the QoE, which is thought to be used to depict

the end-user experience on top of the QoS; (3) A variety of

apps from the mobile, cloud, and IoT based contexts were

836

investigated for security, privacy, and access control problems

[10].

This work doesn’t allow for sharing of resources between

numerous RPis via containers, and also has security issues [11].

The proposed SFog-RPi addresses these issues by providing

APIs that could help consumers with computation

infrastructure and external devices in a safe, simple manner.

EHR was created and implemented employing digital

signatures and file encryption in our work. Not only are digital

signatures and file encryption used to tackle the problems of

security related concerns but they're correspondingly working

to avoid file change and illegal access [12].

Mahmud and Toosi [13] developed a framework for an IoT-

enabled healthcare system, highlighting smart gateway

architecture for data storage and processing on the local level.

In this paradigm, the cloud turns into the backend database

system for data processing and analysis. An orchestrator

coordinates the deployment of applications on the

computational nodes in Ad-Hoc Edge. Ad-Hoc Edge

additionally maintains a logical registry to keep track of the

system's available edge devices [14].

Riya et al. [15] offer an IoT system for e-health monitoring

that includes a smart gateway. The gateway offers

interoperability with Bluetooth Low Energy (BLE), Wi-Fi,

and IPv6 (6LoWPAN) over LowPower Wireless Personal

Area Networks. Countless innovative capabilities, like data

storage, data compression, and security, are available through

the gateway. These studies [16] explore security issues for IoT

systems that monitor health. Lightweight cryptography

algorithms safeguard the link between sensor nodes and smart

gateways. The sensor node's energy consumption, on the other

hand, is not taken into account. The authors [17] suggest an

IoT system for continuous glucose monitoring that uses the fog

computing technique. For data processing and analysis, the

system employs a mobile-based gateway.

3. PROPOSED METHODOLOGY

In our proposed work we have implemented Raspberry Pi

as the fog node since it has a processor, memory, storage, and

display devices and also it is less costly. It also has an input

and output port that can be easily connected to sensors and

actuators very easily. Raspberry Pis is typically equipped with

moderately fast processors that facilitate peripheral interface

and networking. However, the Raspberry Pi is limited in its

ability to support multi-tenancy and resource sharing. Hence,

we need to perform virtualization of RPis but it does not allow

us to do hypervisor-based virtualization, in this case,

containerization of RPis will be the best possible solution.

The privacy and security issues surrounding the capture and

transfer of healthcare data first. Then, to address security

problems similar to those raised above, a secure data gathering

technique for IoT-based healthcare systems.

3.1 Fog architecture

Fog architecture consists of fog nodes, IoT devices, and

Cloud nodes and it can be denoted as a tuple (F,I,C), where F

is a group of fog nodes, and each node will be represented as

f(i=1,2,3…n)=(€, π, µ), where € denotes the location of fog

node, π refer to software and hardware specification of the fog

node, µ refers to the IoT devices directly connects with this

fog node. I is a collection of Things, each of which is

represented by the tuple I(i=1,2,3…n)= (t, €) t identifies its

type and € is the location of the device. C is a collection of

existing Cloud data centers, all of which is identified by the

tuple f(i=1,2,3…n)=(€, π), where € defines its location and π

software and hardware specification of the cloud data centers

µ in I are directly connected to the fog node, hence it has

negligible latency and sufficient bandwidth. Cloud nodes

connect with sensors and actuators using some API’s which

supports QoS metrics.

A Fog computing infrastructure application can be assumed

as a collection of autonomously deployable components that

must work composed while meeting particular QoS

requirements. An application is represented as a triple [£, β, µ],

£ where is a group of software components, β denotes existing

interactions among components in, µ and is a group of Internet

of Things requests. Fog architecture is represented as (F, I, C).

Figure 1 illustrates the Fog-Cloud infrastructure, in which

three fog nodes and two data centers have been deployed. It

also depicts the average latency and bandwidth of each link.

Figure 1. FoG-cloud communication systems

837

3.2 Collaboration between FoG nodes using choreography

One fog node wouldn’t be sufficient for some sophisticated

queries. However, due to latency or other difficulties,

forwarding multiple requests to the cloud may not be a

practical answer. In this circumstance, fog resource centers

that are co-located with the primary fog can be merged with

the primary fog to enable the inter-fog scenario. It will be

difficult to combine numerous fogs in cost-effective

collaborative-fog scenarios that meet service level agreements

(SLAs) and are resource-efficient. Using choreography

concept inter-fog communication could be established, it

allows the fog to exchange the information.

3.3 Higher level organization of SFog-RPis framework

Integrated IoT-Fog-Cloud environment using a high-level

detail of SFog-RPIs is shown in Figure 2. The SFog-RPIs

framework is made up of many different components, the

items that follow: IoT devices, Fog Gateways, Fog Agent, Fog

Computing Nodes, Fog Database, and Cloud Datacenters.

Figure 2. Inter-fog collaboration using choreography

Sensors and devices will use different protocols depending

on the kind of facility, data transfer rate as well as technology

used, and as an outcome, certain of them might not be capable

to pad right into another software interface. Interoperability

becomes a huge challenge when there are so several devices

and sensors made by so many different developers working

together. Protocol conversion, channeling, and other similar

events will be required in the fog in this instance. In these

situations, fog must be delivered using conventional

techniques to enable seamless integration and interoperability.

This software component supports the collecting of

generated data for every sensor node linked to the host RPi

through API. It can begin sending data to the microservice as

quickly as the container is launched, or it can pause till the

microservice acts together. The associated sensors have two

modes of operation: pull and push. Microservices receive

sensor data from Sensor Manager only in the pull mode, in the

push mode, Sensor Manager provides collected data to the

Services autonomously.

3.4 FoG computing node and agent node

Fog Gateway Nodes filter data and convert it into

standardized style. They are forwarded to another computer

instances in the integrated environment by FGNs. It gives

customers the ability to set login credentials, get service

responses, control IoT devices, and request resources using

application user interfaces. In addition to the standard

functions of collecting and transferring data, Fogas-assisted

smart gateways offer a variety of sophisticated services aimed

at improving the quality of healthcare. Distributed local

storage, data compression, and other Fog services.

If the Fog Computing Node is unable to meet the

application's requirements on its own, it acts as an agent node,

contacting other Fog Computing Node and Cloud data centers

on behalf of the Fog Gateway Nodes to obtain the resources

needed to run the back-end application. It distributes

computing workloads over several Fog Computing Nodes and

monitors, synchronizes, and coordinates their actions in this

situation. Concerning capacity and resource architecture, Fog

Computing Nodes are diverse. To undertake various SFog-RPI

functions, it consists of processing cores, memory, and storage.

It provides suitable security characteristics to such broker

nodes, allowing them to assure the stability of communication

and data exchange between Fog Nodes and Cloud.

The database nodes keep track of diverse applications' meta-

data, such as the application model, runtime needs, and

dependencies [18, 19]. Furthermore, during application

execution, these nodes can save some intermediate data,

allowing data processing to resume from any anomaly-driven

stop point.

3.5 Cloud nodes

Figure 3. Higher level organization of SFog-RPis framework

Cloud servers offer many advantages, including centralized

scalability, data protection, global storage, and processing.

Heavy computational activities that cannot be handled by Fog

could be handled efficiently by Cloud servers. The Figure 3

depicts how the Raspberry Pi integrated with various sensor

nodes and external devices and how this does the job of the

Fog node. Raspberry Pi can perform collecting data from

sensor nodes, integrating collected data from various sensor

nodes, process and analyze the data into meaningful

information. We have implemented Raspberry Pi as the fog

node since it has a processor, memory, storage, and display

devices and it is less costly. Since for a real-time health

monitoring system, during an emergency, the patients must be

treated immediately, hence processing and analyzing the data

very close to the sensing node is necessary. In this situation, if

the Fog node does not perform this task, then processing must

be done at cloud data centers, and responding to the patients in

the critical situation takes lots of time which leads to life-

critical. Therefore, Raspberry pi implemented in our proposed

system acts as the Fog node, which provides immediate

response to the patients in an emergency.

SFog-RPi Controller contains conventional algorithms and

strategies for managing an RPi's computational resources. It

also communicates with the information registry to obtain

other RPis' references for resource and data sharing.

838

Information Manager sends commands to RPis Operative to

govern the execution of microservices formed on the results of

connected algorithms and policies.

RPis Operator component is in charge of container creation

and termination. RPis Operator uses APIs to inject essential

arguments into containers, such as location of the microservice

and the unique identifier of the RPi hosting the RPi Service. It

also prevents the Sensor devices from forwarding data for

newly dismissed containers and keeps informed the

Information Registry's executor.

The context information extracted from the host RPis

includes resource configuration, network bandwidth,

remaining battery lifetime, storage, and current memory,

location, and CPU utilization. Information Monitor provides

such information to SFog-RPi Controller and participates in

resource management decisions based on Information

Manager's requirements.

Periodic Signal Generator: It produces the heartbeat data

signals periodically to Information Registry of SFog-RPi

Controller to alert the occurrence of the host RPi Periodic

Signal Generator additionally notifies the corresponding

SFog-RPi Controller of the status of microservice execution to

track run-time performance. It aids in the detection of RPis that

have suddenly failed. Figure 4 represents the Raspberry Pi

integrated with various sensors.

Figure 4. Raspberry Pi integrated with various sensors

Figure 5. Setup for SFoG-Rpi

The data is sent to a master node via the sensor node, in turn

it is distributed by the master node to the number of worker

nodes on which the processing is actually to be carried out.

Figure 5 shows the Setup for SFoG-Rpi. Parallelly, a traffic

monitor observes the data rate of IoT devices based on which

amount of data to be processed will be computed and assigned

to the respective computing node. CN does the encryption

process using a private key and transfers it to the FoG node for

processing.

The strong traffic load reveals that dataflow latency is the

primary cause of overall response time. There are two types of

latency in data flow on IoT devices: first one is communication

latency triggered by traffic load, and another is computing

latency induced by computing load. We require a load

balancing technique to stabilize together the computing and

traffic loads of BSs or fog nodes in a direction to lessen the

system's total latency and network use [20].

CN-Computing Node, SN-Sensing Node, MN-Master node,

TN-Traffic Node. Let Fi=(f1,f2,f3…fn) be the set of FoG

nodes, t(x) be the transmission power of sensor node, c(x) is

the channel gain of sensor nodes, an (x) be the arrival rate, s(x)

be the traffic size, ci(x) be the capacity of the sensor node, cj(x)

is the FoG node computing capacity, y(x) data flow

computation size, Clr is the computational latency ratio, CM

is the communication latency,TL is the traffic load at the FoG

node, CL is the computational load at the FoG node, tr(x) is

the traffic load density of sensor node, ld(x) is the computing

load density of sensor node.

In Traffic Load and Load Computation, let us assume that,

a set of sensor nodes are implanted on the body of the patient

and it has the transmission power of t(x) with a gain of c(x),

the noise is represented as α2. The signal-to-noise ratio is

calculated by:

STNR(x)=
𝑡(𝑥)𝑋𝑐(𝑥)

𝛼2
 (1)

where, gain c(x)=10log10[
∅2

(4𝜋𝐷)2
], ∅ is the wavelength and D

is the distance between the sensor nodes.

tr(x) is the traffic load density of the sensor node which will

be calculated by:

tr(x)=
𝑎(𝑥) 𝑥 𝑠(𝑥)

𝑐𝑖(𝑥)
 (2)

TL is the traffic load at the FoG node will be calculated by:

TL=∑ tr(x) (3)

CM is the communication latency will be calculated by:

CM=
𝑇𝐿

1−𝑇𝐿
 (4)

FoG node Computing latency is directly relative to the

latency of the data flow, let ld(x) is the computing load density

of sensor node can be calculated by:

ld(x)=
𝑎(𝑥) 𝑥 𝑦(𝑥) 𝑥 𝑏𝑗 (𝑥)

𝑐𝑗(𝑥)
 (5)

where, bj(x) is the binary indicator of the FoG node.

CL-computing load at the FoG node can be calculated by:

CL= ∑ ld(x) (6)

Clr is the computing latency ratio is calculated by:

Clr=(1- CL)/ CL (7)

839

Patients' confidential information, such as disease type, age,

surgery is undergone, history, and so on, is stored in healthcare

data. Unauthorized users must not have access to any of this

information. With the proliferation of technology in different

domains related to healthcare, guaranteeing data integrity,

privacy, and security leftovers is a concern [21]. Security in

storage and transmission are two distinct issues. The level of

data access authorization is context-dependent. For instance,

the data can be vital to a nurse in one situation, but the

authorization must be confined to the doctor in another.

In the event of an emergency, paramedics may be given

provisional access to the patient's private data, although, under

other circumstances, same admission may be restricted to

doctors exclusively. Fog must be conscious of these limits and

to ensure the data it obtains/interconnects with other devices

and systems is secure and private.

Fog, a middleware, can show a significant part in bringing

multiple parties together to provide robust healthcare services.

For example, a pharmacy may preserve a patient's medication

record to see if the new medicine the patient is purchasing is

compatible with the other medications she or he is already

taking for the same or different health concerns. In

Lightweight Secured Fog-based framework, nowadays all the

PHR data will be stored on the cloud server remotely, which

causes security-related issues like privacy, security, and access

control. Fog computing techniques relieve the computational

and communication stress on remote cloud servers and act as

a middleware amongst cloud servers and IoT devices. Fog

computing mainly focuses on the quality-of-service (QoS)

metrics [22]. Most of the healthcare monitoring systems do not

support security-related concerns, hence in this work, we are

focusing on security issues also. To sort out these issues, the

most direct solution is to use encryption and decryption

techniques.

Because the sensor nodes are small and have limited

resources, they are unable to implement the sophisticated

algorithms to handle security issues. Even while sophisticated

algorithms may be effectively performed on sensor nodes, it

may not be used since the system's latency requirements may

be violated and their battery may be drained. Raw data is

frequently supplied in many IoT systems to extend the battery

life of sensor nodes. Because data can be listened to by

unauthorized persons, this strategy is risky [23, 24]. Sensor

nodes must run a lightweight security method as well as the

battery life of the sensor node cannot be greatly lowered, the

algorithm must provide some levels of security.

AES uses symmetric key encryption, which use same secret

key to encrypt and decrypt the data [25, 26]. For encrypted

data, individual or group of sensor nodes owns its private key,

whereas a gateway holds all of the private keys of entire sensor

nodes. Sensor nodes deliver encrypted data using a private key,

and the encrypted data received at a smart gateway is

decrypted using the right private key. The AES-256 algorithm

is implemented in our proposed system since it's not easy to

tamper with anonymous users.

In digital signature, a public-private key pair is created for

each individual who uses this system [27, 28]. The signature

key acts as the private key used for digitally signing, while the

verification key acts as the public key. Data is fed into the hash

function by Signer, which generates a hash value of the data

correspondingly. The hash value and signature key are fed into

the signature algorithm, which generates a digital signature for

the supplied hash. After appending the signature to the data,

both are submitted to the verifier. The verification key and

digital signature are fed into the verifier for the verification

process, then the verification algorithm returns a value as an

output.

The Verifier uses the same hash function on the supplied

data to generate a hash value. The result of the verification

process and this hash value are compared based on the

comparison result, the verifier assesses whether the digital

signature is genuine or not. Figure 6 discusses the Digital

signature and encryption/decryption.

Algorithm 1: Security measures in Fog node

Step 1. Before the encryption and signing procedure must

generate the private and public keys

Step 2. Generate the public-private key pair (ki,kj)

Step 3. Feed data (Di) to the hash function and generates the

hash value (Hi)

Step 4. Pass (Hi, kj) to the signature algorithm and generates

the digital signature (DS)

Step 5. Append the data and signature (Di, DS) using private

key (pi) and generates the ciphertext (Ed)

Step 6. ciphertext (Ed) will be sent to the verifier

Step 7. Verifier decrypts the ciphertext (Ed) using private key

(pi)

Step 8. After decryption the verifier generates the hash value

(Hj) on the supplied data using the hash function

Step 9. Compares the output of the verification algorithm with

(Hj) and if both are the same it is accepted or rejected.

Algorithm 2: Key Generation phase in RSA Digital

Signature
Initialization Phase

Pick 2 random prime numbers m and n

Figure 6. Digital signature and encryption/decryption

840

Calculate z=mxn and α= (m-1)(n-1) (8)

Select some random integer x

Compute d using Euclidean distance algorithm

where d lies between 1<d< α such that xd=1mod (α).
(9)

Finally calculate the public key (ki) and the private key (kj)

Calculate y’=Z(y), which ranges from [0 to n-1] (10)

Calculate s= (y’)2mod (n) (11)

Computed digital signature of A in Verification Phase

Get the A’s public key ki and

Compute s’=sx mod (z) (12)

If s=s’ then the signature is correct and authentic and it is

accepted.

Encryption

For every node π in L, pick up a polynomial degree pπ and

assign the degree to wπ =rπ -1

For all other nodes π € L do

Assign p π (0) =parent(X)(index(π)) (13)

Select a random wX to describe a polynomial p_ π

End for

Let W to be group of leaf nodes in L with the verification

key Ki

CT= (T, Di= Hj,Dy) (14)

Generate signature DS

The ciphertext is Ed= (CT, DS) (15)

Decryption

Do signature verification DS using the private key kj

For every node π do

If π is a leaf node and j € R then

Decrypt (CT, kj, π) (16)

End if

End for

Data compression is used to reduce network bandwidth

usage and increase efficiency [29, 30]. Either Lossless or lossy

algorithms can be used for data compression; however, when

compared to lossy techniques, the lossless approach appears to

be a better fit for our e-health application. We chose to use

lossless data compression and LZO (Lempel–Ziv–Oberhumer)

because they are the fastest lossless data compression

algorithms compared to other lossless data compression

algorithms. The first method compresses data collected from

nodes at the fog gateway and sends it directly to the remote

server [31, 32].

Compression on data acquired from sensor nodes and save

it as files; if a packet is nowhere to be found during

transmission, the server can demand the file from the gateway.

Because the packet is temporarily kept in the gateway, it is

simple to resend it. When the server admits the positive

transmission, the packet is destroyed [33, 34].

Table 1 describes the data size, compressed data size,

Compression time, and Decompression Time for the varying

nodes from 1 to 40.

Table 1. LZO algorithm compression results

Number of Nodes Data Size (Bytes) Compressed Data Size (Bytes) Compression Time (ms) Decompression Time (ms)

1 800 26 16 19

2 1600 32 18 23

4 3200 48 20 27

8 6400 60 22 33

40 32000 180 30 40

4. EXPERIMENTS AND RESULTS

Edge and fog computing paradigms work together to elevate

the restrictions of Cloud-centric execution like low latency and

low bandwidth in the IoT applications by moving computation

resources nearer to the data sources [35]. Raspberry Pi is

extensively utilized as computation nodes in both models. It

has used the Raspbian Operating system for the Raspberry Pis,

and we have implemented SFog-RPis Controller and SFog-

RPis services using Python. SFog-RPi framework

containerization is done by Docker Platform.

Tables 2 and 3 explain the simulation parameter used in our

experiments and time taken by the edge device to transfer the

data to fog nodes located in different locations as well as from

fog to cloud server. It is noted that the time taken to move data

from fog to cloud takes more time. It has used five sensors to

collect the blood glucose level, carbohydrates content,

physical activity, heart rate and blood pressure values, based

on these values the quantity of insulin intake can be suggested

to the patients. Table 4 shows the Power consumption by the

monitoring device.

Table 2. Simulation parameters

Parameters Values

Sensors
Near-Infrared Spectroscopy, MPS-

2000, Maxim’s MAX30100, INA219

Network Protocol TCP, MQTT

Controller Arduino

Tools Visual framework

Table 3. Time to process the service

Component Type Component Time (ms)

Delay

Sensor-Fog1 5

Sensor-Fog2 11

Fog-cloud 2200

841

Table 4. Power consumption by the monitoring device

Mode Voltage Level (v)
Average Power

Consumed (mW)

Idle/lazy 4 1

Active mode

(AES-256)
4 20

Active mode

(without AES-

256)

4 18

Figure 7 illustrates the average processing time on different

cloud data centers located in different locations. It shows that

datacenter 1 located near to the IoT devices took very less

processing time compared to the datacenter 3 as it is located

very far away from the IoT devices.

Figure 7. Average input processing time on different cloud

datacenters

The processing time varies on different Fog platforms

available currently, which also compares the performance of

our proposed system with the current system. It depicts that

the average time taken by SFog-RPi is comparatively very less

from all other Fog platforms. The run time of the key

generation process based on the attribute's defined range. The

execution time is linearly relational to the number of attributes,

with the number of attributes increasing the execution time.

Also look into the patient's performance during the encrypting

portion of the PHR. Observing the safety primitives inside the

proposed protocol, we analyze the performance of the

decryption phased for an overall of 25 attributes. The time

taken for decryption is less than 100 ms, which is adequate for

healthcare-based applications. Figure 8 provides Key

Generation Phase Performance, Encryption Phase

Performance, and Decryption Phase Performance values.

Figure 8. (a) Key generation phase performance, (b)

Encryption phase performance, (c) Decryption phase

performance

Figure 9. Relationship between the cost and energy spent per

bit

Figure 9 illustrates the relationship between the cost and

energy spent per bit. It is observed from the figure the cost of

energy utilized per bit decreases when the block size is

increased.

Figure 10. Power consumption of sensor nodes with and

without AES-256 and working hours of sensor nodes with

AES-256 on1000mah battery and 10000mah battery

Figure 10 illustrates the comparison between the power

consumption without AES-256 and with AES-256, with AES-

256 consuming little more power compared to without AES-

256, there are no more variations but security is achieved. And

also working hours of 1000 and 10000 mAh battery is

compared, it is proved that 1000 mAh achieved greater

performance. In our proposed system, the sensor data are

collected and sent to the FoG node for processing and analysis.

Let x be the time delay in sending data from the sensor node

to the mobile device, and y be the time delay in transmitting

data from the mobile device to the FoG node, z be the time

delay in sending data from FoG to smartphone. So, the latency

to complete one task is calculated by:

Latency L=x+y+z (17)

Because all actions must be completed by the cloud, latency

increases in cloud-only implementations. This is due to

increased load and, as a result, latency. Because it allows fog

nodes to process all incoming tasks and includes fewer

difficult calculations for fog node selection, our proposed

technique greatly lessens latency when related to cloud-only

implementation.

The sum of task execution time and network propagation

delay is used to model service delivery latency. It is well

recognized that the Fog infrastructure's computing capability

is not enhanced, but it is located nearer to the data source. As

0

500

1000

1500

1 2 3 4 5 6 7 8 9

Average Processing Time in Cloud

Average Processing time Data center1

Data Center2 Data Center 3

842

a result, the network propagation delay for Fog infrastructure

stands significantly reduced. The network utilization in

different SFog-RPi settings is shown in Figure 11. The Fog

only setting performs better than the Integrated Fog-Cloud and

Cloud only cases because it only uses local networking

resources.

Figure 11. (a) Latency of various platforms (b) Network

Usage of various platform

5. CONCLUSION

The communication technologies used at all tiers of the

design are abstracted from our model, which focuses solely on

their QoS. Foresee medium-term operative maintenance, and

long-term business intelligence duties of an application

spreading throughout the Cloud-Fog-IoT system or collapsing

into a single layer depending on the circumstances and the

condition of the network. To excuse interoperability and

confederation at every layer, our model incorporates inter-

Cloud and inter-Fog communication. The SFog-RPi

framework, which we propose, can connect various IoT-

enabled equipment to both Cloud and Fog infrastructures. For

IoT application deployment, management and monitoring, the

framework is lightweight and could be used together with the

edge and remote resources. SFog-RPi is written in cross-

platform programming languages, which aids in overcoming

infrastructure heterogeneity during application execution. A

new Load Balancing System is also presented to poise the load

among fog nodes. Next, we proposed to use the lightweight

cryptographic algorithm, efficient key exchange protocol, and

digital signature to achieve confidentiality, authentication, and

user privacy. The results of the proposed framework and added

state-of-the-art frameworks are compared, it is shown that the

proposed system beats the other system in terms of improving

response time, management of energy consumption system,

and computation resources through distributed unloading and

reduces latency and network usage.

REFERENCES

[1] Azimi, I., Anzanpour, A., Rahmani, A.M., Pahikkala, T.,

Levorato, M., Liljeberg, P., Dutt, N. (2017). HiCH:

Hierarchical fog-assisted computing architecture for

healthcare IoT. ACM Transactions on Embedded

Computing Systems (TECS), 16(5s): 1-20.

https://doi.org/10.1145/3126501

[2] Chang, C., Srirama, S.N., Buyya, R. (2017). Indie fog:

An efficient fog-computing infrastructure for the Internet

of Things. Computer, 50(9): 92-98.

https://doi.org/10.1109/MC.2017.3571049

[3] Mahmud, R., Ramamohanarao, K., Buyya, R. (2019).

Edge affinity-based management of applications in fog

computing environments. In Proceedings of the 12th

IEEE/ACM International Conference on Utility and

Cloud Computing, pp. 61-70.

https://doi.org/10.1145/3344341.3368795

[4] Chiu, T.C., Pang, A.C., Chung, W.H., Zhang, J. (2018).

Latency-driven fog cooperation approach in fog radio

access networks. IEEE Transactions on Services

Computing, 12(5): 698-711.

https://doi.org/10.1109/TSC.2018.2858253

[5] Asghar, A., Abbas, A., Khattak, H.A., Khan, S.U. (2021).

Fog based architecture and load balancing methodology

for health monitoring systems. IEEE Access, 9: 96189-

96200. https://doi.org/10.1109/ACCESS.2021.3094033

[6] Surendran, R., Varthini, B.P. (2013). Inject an elastic

grid computing techniques to optimal resource

management technique operations. Journal of Computer

Science, 9(8): 1051-1060.

https://doi.org/10.3844/jcssp.2013.1051.1060

[7] Yigitoglu, E., Mohamed, M., Liu, L., Ludwig, H. (2017).

Foggy: A framework for continuous automated iot

application deployment in fog computing. In 2017 IEEE

international conference on AI & Mobile Services

(AIMS), Honolulu, HI, USA, pp. 38-45.

https://doi.org/10.1109/AIMS.2017.14

[8] Borthakur, D., Dubey, H., Constant, N., Mahler, L.,

Mankodiya, K. (2017). Smart fog: Fog computing

framework for unsupervised clustering analytics in

wearable internet of things. In 2017 IEEE Global

Conference on Signal and Information Processing

(GlobalSIP), Montreal, QC, Canada, pp. 472-476.

https://doi.org/10.1109/GlobalSIP.2017.8308687

[9] Ferrer, A.J., Marques, J.M., Jorba, J. (2019). Ad-hoc

edge cloud: A framework for dynamic creation of edge

computing infrastructures. In 2019 28th International

Conference on Computer Communication and Networks

(ICCCN), Valencia, Spain, pp. 1-7.

https://doi.org/10.1109/ICCCN.2019.8847142

[10] Yousefpour, A., Patil, A., Ishigaki, G., Kim, I., Wang, X.,

Cankaya, H.C., Zhang, Q., Xie, W., Jue, J.P. (2019).

FOGPLAN: A lightweight QoS-aware dynamic fog

service provisioning framework. IEEE Internet of Things

Journal, 6(3): 5080-5096.

https://doi.org/10.1109/JIOT.2019.2896311

[11] Nkenyereye, L., Islam, S.M., Hossain, M., Abdullah-Al-

Wadud, M., Alamri, A. (2020). Fog based secure

framework for personal health records systems. arXiv

preprint arXiv:2011.06211.

https://doi.org/10.48550/arXiv.2011.06211

[12] Surendran, R., Karthika, R., Jayalakshmi, B. (2021).

Implementation of dynamic scanner to protect the

documents from ransomware using machine learning

algorithms. In 2021 International Conference on

Computing, Electronics & Communications Engineering

(iCCECE), Southend, United Kingdom, pp. 65-70.

https://doi.org/10.1109/iCCECE52344.2021.9534855

[13] Mahmud, R., Toosi, A.N. (2021). Con-Pi: A distributed

container-based edge and fog computing framework for

raspberry pis. arXiv preprint arXiv:2101.03533.

[14] Rahmani, A.M., Gia, T.N., Negash, B., Anzanpour, A.,

Azimi, I., Jiang, M., Liljeberg, P. (2018). Exploiting

smart e-Health gateways at the edge of healthcare

843

Internet-of-Things: A fog computing approach. Future

Generation Computer Systems, 78: 641-658.

https://doi.org/10.1016/j.future.2017.02.014

[15] Riya, K.S., Surendran, R., Tavera Romero, C.A., Sendil,

M.S. (2023). Encryption with user authentication model

for internet of medical things environment. Intelligent

Automation & Soft Computing, 35(1): 507-520.

http://dx.doi.org/10.32604/iasc.2023.027779

[16] Nguyen, D.T., Le, L.B., Bhargava, V.K. (2019). A

market-based framework for multi-resource allocation in

fog computing. IEEE/ACM Transactions on Networking,

27(3): 1151-1164.

https://doi.org/10.1109/TNET.2019.2912077

[17] Gia, T.N., Ali, M., Dhaou, I.B., Rahmani, A.M.,

Westerlund, T., Liljeberg, P., Tenhunen, H. (2017). IoT-

based continuous glucose monitoring system: A

feasibility study. Procedia Computer Science, 109: 327-

334. https://doi.org/10.1016/j.procs.2017.05.359

[18] Kurniawan, A. (2019). Programming on Raspbian OS.

Raspbian OS Programming with the Raspberry Pi: IoT

Projects with Wolfram, Mathematica, and Scratch, 79-96.

https://doi.org/10.1007/978-1-4842-4212-4_3

[19] Iorga, M., Feldman, L., Barton, R., Martin, M.J., Goren,

N.S., Mahmoudi, C. (2018). Fog computing conceptual

model. Special Publication (NIST SP), National Institute

of Standards and Technology, Gaithersburg, MD.

https://doi.org/10.6028/NIST.SP.500-325

[20] Tuli, S., Mahmud, R., Tuli, S., Buyya, R. (2019). Fogbus:

A blockchain-based lightweight framework for edge and

fog computing. Journal of Systems and Software, 154:

22-36. https://doi.org/10.1016/j.jss.2019.04.050

[21] Chen, L., Li, X., Ji, H., Leung, V.C. (2019). Computation

offloading balance in small cell networks with mobile

edge computing. Wireless Networks, 25: 4133-4145.

https://doi.org/10.1007/s11276-018-1735-y

[22] Hahn, C., Kwon, H., Hur, J. (2018). Trustworthy

delegation toward securing mobile healthcare cyber-

physical systems. IEEE Internet of Things Journal, 6(4):

6301-6309. https://doi.org/10.1109/JIOT.2018.2878216

[23] Mahmud, R., Srirama, S.N., Ramamohanarao, K., Buyya,

R. (2019). Quality of Experience (QoE)-aware placement

of applications in Fog computing environments. Journal

of Parallel and Distributed Computing, 132: 190-203.

https://doi.org/10.1016/j.jpdc.2018.03.004

[24] Rahmani, A.M., Thanigaivelan, N.K., Gia, T.N.,

Granados, J., Negash, B., Liljeberg, P., Tenhunen, H.

(2015). Smart e-health gateway: Bringing intelligence to

internet-of-things based ubiquitous healthcare systems.

In 2015 12th annual IEEE consumer communications

and networking conference (CCNC), Las Vegas, NV,

USA, pp. 826-834.

https://doi.org/10.1109/CCNC.2015.7158084

[25] Gia, T.N., Tcarenko, I., Sarker, V.K., Rahmani, A.M.,

Westerlund, T., Liljeberg, P., Tenhunen, H. (2016). IoT-

based fall detection system with energy efficient sensor

nodes. In 2016 IEEE Nordic Circuits and Systems

Conference (NORCAS), Copenhagen, Denmark, pp. 1-6.

https://doi.org/10.1109/NORCHIP.2016.7792890

[26] Mahmud, R., Toosi, A.N. (2021). Con-Pi: A distributed

container-based edge and fog computing framework.

IEEE Internet of Things Journal, 9(6): 4125-4138.

https://doi.org/10.1109/JIOT.2021.3103053

[27] Aazam, M., Zeadally, S., Harras, K.A. (2020). Health fog

for smart healthcare. IEEE Consumer Electronics

Magazine, 9(2): 96-102.

https://doi.org/10.1109/MCE.2019.2953749

[28] Goudarzi, M., Wu, H., Palaniswami, M., Buyya, R.

(2020). An application placement technique for

concurrent IoT applications in edge and fog computing

environments. IEEE Transactions on Mobile Computing,

20(4): 1298-1311.

https://doi.org/10.1109/TMC.2020.2967041

[29] Nagappan, K., Rajendran, S., Alotaibi, Y. (2022). Trust

aware multi-objective metaheuristic optimization based

secure route planning technique for cluster based IIoT

environment. IEEE Access, 10: 112686-112694.

https://doi.org/10.1109/ACCESS.2022.3211971

[30] Sun, Y., Liu, J., Yu, K., Alazab, M., Lin, K. (2021).

PMRSS: privacy-preserving medical record searching

scheme for intelligent diagnosis in IoT healthcare. IEEE

Transactions on Industrial Informatics, 18(3): 1981-1990.

https://doi.org/10.1109/TII.2021.3070544

[31] Raja, G., Kottursamy, K., Theetharappan, A., Cengiz, K.,

Ganapathisubramaniyan, A., Kharel, R., Yu, K. (2020).

Dynamic polygon generation for flexible pattern

formation in large-scale UAV swarm networks. In 2020

IEEE Globecom Workshops (GC Wkshps), pp. 1-6.

https://doi.org/10.1109/GCWkshps50303.2020.9367501

[32] Li, H., Yu, K., Liu, B., Feng, C., Qin, Z., Srivastava, G.

(2021). An efficient ciphertext-policy weighted attribute-

based encryption for the internet of health things. IEEE

Journal of Biomedical and Health Informatics, 26(5):

1949-1960. https://doi.org/10.1109/JBHI.2021.3075995

[33] Tan, L., Yu, K., Shi, N., Yang, C., Wei, W., Lu, H. (2021).

Towards secure and privacy-preserving data sharing for

COVID-19 medical records: A blockchain-empowered

approach. IEEE Transactions on Network Science and

Engineering, 9(1): 271-281.

https://doi.org/10.1109/TNSE.2021.3101842

[34] Palani, V., Thanarajan, T., Krishnamurthy, A.,

Rajendran, S. (2023). Deep learning based compression

with classification model on CMOS image sensors.

Traitement du Signal, 40(3): 1163-1170.

https://doi.org/10.18280/ts.400332

[35] Alharbi, M., Rajagopal, S.K., Rajendran, S., Alshahrani,

M. (2023). Plant disease classification based on

ConvLSTM U-Net with fully connected convolutional

layers. Traitement du Signal, 40(1): 157-166.

https://doi.org/10.18280/ts.400114

844

