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Tongue-based Human-Computer Interaction (HCI) systems have surfaced as alternative 

input devices offering significant benefits to individuals with severe disabilities. However, 

these systems often employ invasive methods such as dental retainers, tongue piercings, 

and multiple mouth electrodes. These methods, due to hygiene issues and obtrusiveness, 

are deemed impractical for daily use. This paper presents a novel non-invasive tongue-

based HCI system that utilizes deep learning for microgesture detection. The proposed 

system overcomes the limitations of previous methods by non-invasively detecting 

gestures. This is accomplished by measuring tongue vibrations via an accelerometer 

positioned on the Genioglossus muscle, thereby eliminating the need for in-mouth 

installations. The system's performance was evaluated by comparing the classification 

results of deep learning with four widely-used supervised machine learning algorithms, 

namely K-Nearest Neighbors (KNN), Support Vector Machines (SVM), Decision Trees, 

and Random Forests. Raw data were preprocessed in both time and frequency domains to 

extract relevant patterns before classification. In addition, a deep learning Convolutional 

Neural Network (CNN) model was trained on the raw data, leveraging its proficiency in 

processing time series data and capturing intricate patterns automatically using 

convolutional and pooling layers. The CNN model demonstrated a 97% success rate in 

tongue gesture detection, indicating its high accuracy. The proposed system is also low-

profile, lightweight, and cost-effective, making it suitable for daily use in various contexts. 

This study thus introduces a non-invasive, efficient, and practical approach to tongue-based 

HCI systems. 
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1. INTRODUCTION

Interaction (HCI) is an interdisciplinary field of study that 

investigates the dynamics of human interaction with 

computers. It incorporates various disciplines, including but 

not limited to, human factors, ergonomics, and psychology. 

HCI research probes diverse aspects that influence the user 

experience, such as technology perception, decision-making 

processes, and interactive visualizations. 

As sensor technology continues to evolve and finds 

integration in an increasing number of applications, the need 

for user-friendly interactions becomes paramount. HCI 

systems have been developed to facilitate intuitive and 

straightforward interactions between human users and 

computers or other intelligent devices. By offering a user-

centric interface, these systems strive to deliver an interaction 

experience that is both natural and accessible to the user. 

The considerable advancements in sensor technology, 

coupled with its integration into wearable devices, have given 

rise to a novel interaction paradigm referred to as 'micro-

interaction'. Micro-interactions can be defined as non-verbal 

communication methods employed in interactions with 

computers, smartwatches, and similar devices. 

The improvement of micro-interactions with wearable 

devices has profound implications for user experience. 

Microgestures can serve as an alternative input method 

particularly beneficial for individuals with limited or no limb 

mobility, including those with quadriplegia. Moreover, for 

typical users, enhanced micro-interactions with wearable 

devices could result in a more seamless and intuitive 

experience. 

Interest in HCI systems has surged, given their potential to 

significantly enhance user experience across various domains. 

Applications of HCI span a wide array of fields, such as 

medicine, education, cybersecurity, the military, and gaming, 

among others. The potential impact and utility of HCI systems 

underscore the importance of continuous research and 

development in this area. One of the human-computer 

interaction applications in the medical field is augmented and 

alternative communication or AAC. An AAC system aims to 

support individuals with speech or language impediments by 

providing various assistive tools, such as gestures and pictures, 

to facilitate effective communication. However, technical 

problems and poor interfaces caused to limit the adoption of 

such a system. To overcome these limitations, we can apply 

SCI system Approaches to Improve AAC systems [1, 2]. 

Another medical application that uses the HCI system is a 

human-in-the-loop system. The system is where humans 

oversee and control the operation, while the system provides 

feedback and assists humans in carrying out tasks. As the 

system can be utilized to help individuals with physical 

disabilities, as well as such systems can be utilized health 

monitoring and disease diagnosis [3-14]. 

Another application for HCI systems in developing assistive 

technologies for people with disabilities is the tongue computer 

interface or TCI. Such a system helps people with complete 
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tetraplegia or quadriplegia to control electronic devices using 

tongue gestures. The main idea behind TCI is that cranial 

nerves innervate the tongue. Thus, it does not get affect by 

spinal or cord injuries. As a result, it can serve as an alternative 

means of Control [15-18]. 

In the education field HCI system is implemented by 

designing and developing interactive learning experiences. 

Therefore, HCI system applications in education can vary 

from interactive whiteboards that facilitate controlling 

collaborative learning to virtual reality systems that simulate 

real-world experiences for immersive learning. 

As online learning platforms become more popular, 

improving the student experience during courses is important. 

Therefore, implementing HCI systems principles when 

designing an e-learning website can improve the student 

experience by optimizing user interaction and creating a 

tailored system that's created for users' need and preferences, 

moreover, by applying HCI principles lead to increased 

motivation and engagement of students, resulting in an 

improvement, learning experience [19-28]. 

The security research community acknowledged that human 

behavior is one of the main factors of security failure, where it 

is common to refer to humans as the weakest link in the 

security chain. Therefore, designers should consider user 

behavior to create and improve security systems. Therefore, 

researchers apply the knowledge and techniques of the HCI 

system to mitigate and resolve the issue and cyber security 

field. We utilize HCI systems main points when designing and 

developing security applications. This includes user 

authentication systems, intrusion detection systems, security 

awareness, training, and tools. 

In the military application, we can utilize the principles to 

design and develop interactive systems that can help prove the 

effectiveness and efficiency of the military operation. An 

example of a military SCI system is comment on Control 

systems that enables real-time to distinguish making virtual 

training and unmanned aerial systems that provide remote 

surveillance [29-33]. 

Moreover, finally, we can utilize HCI principles to design 

and develop games, enhancing the gaming experience or 

design and engaging game mechanisms. There is a wide range 

of SCI system applications in gaming, including gesture paste, 

Control that enables the player to interact using hand gestures, 

and virtual r reality systems that immerse the player in the 

game environment. Moreover, by using intelligent gaming, 

billions, we can understand player motivation and create a 

tailored gaming experience that can be done by analyzing 

different aspects of user behavior, such as different gameplay 

modes or how humans interact with non-player characters [34-

41].  

The increasing influence of HCI systems has given rise to a 

novel domain known as tongue-based HCI systems, which 

serve as an alternative input method for individuals with 

limited or no limb mobility. The development of these systems 

presents significant challenges. The selection of appropriate 

sensors and sensor locations is necessary to detect tongue 

gestures accurately. 

In this section, we viewed a brief introduction, and the next 

sections are organized as follows: Literature review, 

Methodology, Result and Discussion, and finally, 

Conclusions. 

 

 

 

2. LITERATURE REVIEW 

 

Previous research investigates several forms of human-

computer interaction via wearable Technology due to its 

importance in improving people's life from regular use to 

helping people with quadriplegia or missing limb. HCI 

systems can be classified based on the body parts used; this 

study will focus on tongue and teeth gestures. 

Hashimoto et al. [42] used an array of photo-reflective 

sensors mounted in a mouthpiece to measure the changes in 

distance between the tongue surface and the back of the upper 

teeth when the tongue moves. 

Niu et al. [18] explore the tongue as an input device due to 

its high dexterity and resilience for people with upper limb 

impairment. The proposed system used a camera to identify 

tongue gestures. 

Li et al. [43] utilized capacitive touch sensors placed on the 

palate to recognize tongue gestures during speech. 

Jiang et al. [16] introduced a system that utilizes a multi-

contact detection algorithm to identify optical distance sensors 

placed on the roof of the mouth, enabling the detection of 

tongue gestures. 

The study by Anaraki et al. [2] explores the potential of 

using video cameras to identify the faces of children with 

severe disabilities and communication challenges. The 

objective is to help overcome the limitations faced by these 

children in accessing assistive technology devices. 

Yamashita et al. [44] introduced a novel method for using 

photo-reflective sensors to detect changes in skin deformation 

to control input for devices. The sensors are attached to the 

surface of the cheeks to capture and measure these changes.  

Jingu et al. [45] Design a tongue-operated input and output 

device that uses Capacitive touch and electrotactile stimulation 

to enable eyes- and hands-free interactions. 

In their study, Sun et al. [46] propose an alternative means 

of input for various scenarios and accessibility purposes. This 

system involves a wearable 3D-printed earpiece with an IMU 

sensor and a contact microphone behind both ears. These 

devices work together to capture jaw movements and sound 

data, respectively. The team utilized a KNN algorithm with 

dynamic time warping to classify different gestures. 

Vojtech et al. [47] Investigate in the study two input 

methods using a video mouse and accelerometer and sEMG as 

an input device, where the accelerometer is located in a 

headband worn by the user to detect head acceleration. At the 

same time, the sEMG sensor is placed on the user's face to 

detect facial muscle movements. Moreover, the study shows a 

trade-off between speed and accuracy: ACC/sEMG system 

provided higher target selection accuracy than Camera Mouse, 

while the latter provided faster target selection. 

Groll et al. [48] explore an alternative computer access 

device using accelerometry from head tilt to control cursor 

movement. The sensor is placed next to the eye for a blink and 

above the eyebrow for a brow raise to control cursor clicks.  

Previous studies have explored tongue-based HCI systems; 

however, existing tongue-based HCI systems often rely on 

invasive methods, including dental retainers, tongue piercing, 

and multiple mouth electrodes. Concerns arise regarding the 

sensing technique, as it can be obtrusive, invasive, and 

intrusive, causing the system to be non-hygienic and 

impractical for everyday use. Hence, this work aims to present 

a low-profile non-invasive tongue-based HCI system without 

compromising the Accuracy of tongue detection. by 

employing a deep learning algorithm.
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3. METHODOLOGY 
 

Our system was designed with a primary goal: to be user-

friendly without requiring any dental retainers or other 

invasive methods that may be intrusive or obtrusive. Therefore, 

we aimed to design a lightweight and small system suitable for 

everyday use or as an assistive input technology for people 

with limited or no limb movement without compromising 

accuracy. Therefore, one of the critical aspects of designing 

the system is: Selecting a suitable sensor, choosing the sensor 

position which helps us achieve our vision for the system, and 

selecting the gestures. 

Regarding the available sensing technologies, such as 

textile pressure, X-band Doppler, and EEG /EMG sensors, 

these sensors can be bulky or obtrusive, which aligns 

differently from our vision for the system. Therefore, we 

selected an accelerometer since the sensor is small, lightweight, 

and can be concealed easily. Therefore, it serves our vision for 

a non-obtrusive non-invasive, and non-intrusive system 

without compromising accuracy. 

Moreover, when designing the system, we must choose a 

suitable location for the sensor. Our system vision indicates 

that the forehead, tongue tip, and mouth are not valid positions 

for the sensor to detect tongue gestures. As a result, we have 

selected the lower jaw on the Genoglasses muscle (on the skin) 

as the location for the accelerometer. This location has been 

shown to accurately detect tongue gestures without being 

invasive or obtrusive. 

To complete the system design, we had to choose the 

appropriate gestures. Hence, we carried out a series of 

experiments for the selection process. We picked out five 

tongue movements that can be done without opening the 

mouth, allowing the system to be used in public areas. 

After shaping our design, we conduct machine learning, 

coupled with time domain and frequency domain data pre-

processing and deep learning classification model to classify 

tongue gestures and compare the result of the two methods. 

 

3.1 Gesture selection 

 

Gestures are a method of nonverbal communication that is 

powerful for expressing intentions and meanings without 

using spoken language. In human-computer interaction, 

gestures can be used as an input method for controlling smart 

devices. Since tongue gestures are not a standard input method 

for users, we need to consider various factors, such as the 

anatomical features of the tongue, the ease of execution for 

users with varying abilities, and the system's accuracy in 

recognizing the gestures. Moreover, researchers also consider 

users' preferences for specific gestures, which can influence 

the system's overall usability and user experience. For 

example, in a study by Chen, Victor, et al., taxonomies were 

used to describe the formation and use of micro-mouth 

gestures. Twenty mouth gestures were identified as suitable 

for everyday software application activities [49]. Therefore, in 

this study, we examined multiple tongue gestures as an 

alternative input method for our system. One of the essential 

points when choosing tongue gestures is simplicity, ease of 

memorizing and selecting gestures that do not interfere with 

common tongue movement. 

Further, we selected five gestures as our final selected 

gestures aligned with our goals for the system. The chosen 

gestures consist of an idle gesture and two variations of 

vertical tongue movements performed at different speeds. 

These movements occur when the mouth is closed and the 

tongue touches the upper and lower jaws. Additionally, two 

gestures involve the tongue moving swiftly or slowly from left 

to right, contacting the interior gums. By carefully selecting 

these gestures, we created an effective and user-friendly 

tongue-based HCI system that can provide individuals with 

disabilities, injuries, or other limitations with a new input 

method for interacting with smart devices. 

 

3.2 Designing systems and conducting experiments 

 

In this section, we discuss the system design and experiment 

process. 

One of the main features we aimed to achieve in this study 

is to design a small, lightweight system that can be used in 

public without the social awkwardness of a bulky device. 

Therefore, in our design, we selected the 3×5 mm2 ADXL 345 

accelerometer as a sensing unit since it checks all the criteria 

we need in our design. The sensing unit is attached to the lower 

jaw on the Genoglasses muscle (on the skin), making the 

system non-obtrusive and non-invasive to use in public. The 

sensing unit is attached to a 29×58 mm2 ESP32 

microcontroller that processes the data from the sensing unit. 

After that, the collected data were stored on the computer. 

We collected data through experiments on one test subject 

in a lab environment to minimize the noise. The sensing unit 

was attached to the participant's lower jaw on the Genoglasses 

muscle, using a gentle, double side tape, which provided a 

secure and none of crucify and non-invasive connection. We 

designed the sensing unit to collect at the sampling rate of 100 

data better second. The experiment lasted for 100 seconds, 

resulting in a sizable dataset of 500,000 records where each 

gesture consisted of 100,000 records. ⅹ 

 
3.3 Data classification  

 

In our study, the design system relies on tongue gesture 

classification to distinguish multiple gestures as an alternative 

input method. Therefore, we utilized machine learning, deep 

learning models, and feature extraction methods to achieve the 

highest accuracy. 

We use different supervised machine learning algorithms to 

achieve our goal, including Support Vector Machine, K-

Nearest Neighbor, Decision tree, Random Forest, and 

Convolution neural network. Given their demonstrated 

efficacy in prior research, these machine learning and deep 

learning models have exhibited notable classification accuracy 

when applied to the task of classifying tongue-based HCI 

systems. 

Deep learning models significantly impact HCI systems by 

learning convolution neural networks or CNN HCI systems 

can extract meaningful patterns and insights from complex 

data, enabling more advanced and intuitive interactions 

between humans and computers [50]. 

In the initial step, the dataset preprocessed using time and 

frequency domain methods to extract intricate relationships at 

a higher level of abstraction. Following the data preprocessing 

stage, the dataset is partitioned into a 70% training subset and 

a 30% testing subset. This division ensures an appropriate 

allocation of data for model training and evaluation. 

During the training phase, the machine learning algorithm 

receives the training records and corresponding class labels, 

enabling the model to discern the underlying patterns and 

relationships that differentiate each class. Through this process, 
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the model acquires the ability to classify new records in the 

test dataset, even those belonging to the Unknown class, 

facilitating robust and comprehensive classification.  

One of the supervised machine learning algorithms used in 

the study is K-Nearest Neighbor, a model usually used for 

classification and regression problems. This model relies on 

measuring the distance between the new input record from the 

test dataset and all the points in the training dataset. Further, 

to identify the nearest K neighbor, we use the Euclidean 

distance metric to calculate the nearest neighbor. The k value 

in this model represents the number of neighbors considered 

in the classification process, as shown in Algorithm 1. 

 

Algorithm 1. KNN Algorithm 

 
Input: Training samples as matrix   

Output: classified Dataset where each point within the labelled 

class 

1. Input: 

   - Training dataset with features X_train and corresponding 

labels y_train 

   - Test dataset with features X_test 

   - The value of K (number of neighbors to consider) 

2. For each test instance X_test_i in X_test: 

   - For each training instance X_train_j in X_train: 

     - Calculate the distance between X_test_i and X_train_j using 

Euclidean distance 

     - Assign the calculated distance to the training instance 

X_train_j 

3. Sort the training instances based on their distances in 

ascending order 

4. Select the K nearest neighbors from the sorted training 

instances for each test instance X_test_i 

5. Count the occurrences of each class label among the K nearest 

neighbors 

6. Assign the class label with the highest count as the predicted 

label for each test instance X_test_i 

7. Output the predicted labels for the test instances 

 

Another popular machine-learning technique is Support 

Vector Machine (SVM), a supervised machine-learning 

algorithm often used to solve classification and regression 

problems. This model aims to find the ideal hyperplane to 

divide different classes. Moreover, this model aims to 

maximize the margin between classes, which is determined by 

measuring the distance between the nearest Datapoint in each 

class and the hyperplane. Furthermore, the hyperplane chooses 

to categorize brand-new data points according to their 

properties correctly. The SVM model utilizes the kernel 

function to map the data points into the high dimensional 

feature space, allowing the hyperplane to distinguish between 

different classes, as shown in Algorithm 2. 

 

Algorithm 2. SVM algorithm 

 
Input: 

   - Training dataset with features X_train and corresponding labels 

y_train 

   - Regularization parameter C 

   - Kernel parameter gamma 

2. Compute the kernel matrix K based on the training data: 

   - For each pair of training instances (X_train_i, X_train_j): 

   - Calculate the Gaussian (RBF) kernel value K(X_train_i, 

X_train_j) = exp(-gamma × ||X_train_i - X_train_j||^2) 

3. Define the SVM optimization problem: 

   - Initialize the weight vector w and bias b 

   - Define the hinge loss function L(w, b) as per the SVM 

formulation 

   - Define the regularization term R(w) as per the SVM formulation 

   - Define the objective function J(w, b) = L(w, b) + C × R(w) 

4. Solve the optimization problem to find the optimal weight vector 

w and bias b: 

   - Use an optimization algorithm (e.g., quadratic programming) to 

minimize J(w, b) 

   - Update w and b iteratively until convergence 

5. Obtain the decision boundary and classify new instances: 

   - For each test instance X_test: 

     - Compute the decision function f(X_test) = sum(alpha_i × 

y_train_i × K(X_train_i, X_test)) + b 

     - Assign the class label based on the sign of f(X_test) 

       - If f(X_test) >= 0, assign the positive class label 

       - If f(X_test) < 0, assign the negative class label 

6. Output the predicted labels for the test instances  

 

The Decision Tree model is a common type of supervised 

machine learning algorithm. It uses a tree-like structure to 

classify new data points by making decisions based on the 

potential outcomes. Decision nodes are used to make decisions, 

and they have multiple branches that lead to output in the form 

of leaf nodes, as shown in Algorithm 3. 

 

Algorithm 3. Decision tree algorithm 
 

1. Input: 

   - Training dataset with features X_train and corresponding labels 

y_train 

   - Maximum depth of the decision tree, max_depth 

2. Define a function to build a decision tree: 

   - If the stopping criteria are met: 

     - Create a leaf node and assign it the most frequent class label in 

the current subset of training instances 

     - Otherwise: 

     - Find the best attribute to split the data based on a criterion (e.g., 

information gain, Gini index) 

     - Create a new decision node for the chosen attribute 

     - Split the training instances into subsets based on the attribute 

values 

     - Recursively call the function to build a decision tree for each 

subset 

     - Assign the decision nodes as children of the current node 

3. Build the decision tree using the training dataset and the 

maximum depth constraint: 

   - Call the function defined in step 2 to build the decision tree 

4. Define a function to classify new instances using the decision 

tree: 

   - For each test instance X_test: 

     - Start at the root node of the decision tree 

     - Traverse down the tree by evaluating the attribute conditions 

until reaching a leaf node 

     - Assign the class label of the leaf node as the predicted label for 

the test instance 

5. Classify new instances using the decision tree built in step 3: 

   - Call the function defined in step 4 to classify new instances 

6. Output the predicted labels for the test instances 

 

 

This study uses another popular supervised machine 

learning algorithm called a Random Forest. Random forest is 

an effective machine learning algorithm that tackles 

classification and regression problems. This model utilizes 

multiple decision trees, improving generalizability and 

prediction accuracy. The main principle of random forest is to 

construct several decision trees where each is trained on the 

selection of training Dataset, then aggregate their production. 

Therefore, this method gets beyond some of the drawbacks of 

the individual decision trees, including bias or overfitting, and 

generates more solid and trustworthy outcomes, as shown in 
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Algorithm 4. 

 

Algorithm 4. Random forest algorithm 

 
1. Input: 

   - Training dataset with features X_train and corresponding labels 

y_train 

   - Maximum depth of the decision tree, max_depth 

2. Define a function to build a decision tree: 

   - If the stopping criteria are met: 

     - Create a leaf node and assign it the most frequent class label in 

the current subset of training instances 

     - Otherwise: 

     - Find the best attribute to split the data based on a criterion (e.g., 

information gain, Gini index) 

     - Create a new decision node for the chosen attribute 

     - Split the training instances into subsets based on the attribute 

values 

     - Recursively call the function to build a decision tree for each 

subset 

     - Assign the decision nodes as children of the current node 

3. Build the decision tree using the training dataset and the 

maximum depth constraint: 

   - Call the function defined in step 2 to build the decision tree 

4. Define a function to classify new instances using the decision 

tree: 

   - For each test instance X_test: 

     - Start at the root node of the decision tree 

     - Traverse down the tree by evaluating the attribute conditions 

until reaching a leaf node 

     - Assign the class label of the leaf node as the predicted label for 

the test instance 

5. Classify new instances using the decision tree built in step 3: 

   - Call the function defined in step 4 to classify new instances 

6. Output the predicted labels for the test instances 

 

 

Each machine learning model employed in this study 

exhibits distinct strengths and weaknesses. For instance, K-

Nearest Neighbors (KNN) demonstrates effective handling of 

multi-class classification problems, yet its performance may 

be impacted by the curse of dimensionality when confronted 

with high-dimensional data. Support Vector Machines (SVM), 

on the other hand, possess the capacity to handle both linear 

and non-linear relationships between features and target 

variables through the use of diverse kernel functions. 

Nonetheless, the selection of an appropriate kernel function 

and the tuning of associated hyperparameters present 

challenges. Decision trees are adept at capturing non-linear 

relationships, but their sensitivity to minor variations in the 

training data can result in divergent tree structures. In contrast, 

Random Forests mitigate overfitting concerns by leveraging 

ensemble learning, yet their application to imbalanced datasets 

may introduce bias. In the results and discussion section, it 

becomes evident that the Random Forest model demonstrates 

a significant classification accuracy across various 

preprocessing methods. 

Lastly, we utilized the convolution neural network (CNN), 

a deep learning model with impressive results in computer 

vision applications and partial image recognition. Moreover, 

researchers also utilized it in the time series classification of 

problems. In this model, the input time series data is 

transformed into two dimensions image-like structure where 

time is shown on one axis, while the values in the time series 

are representative on the other axis. Then the CNN model uses 

a sliding kernel across the time series data, set to apply filters 

and extract pertinent features. Further, the model uses a pulling 

layer to reduce the dimensionality of the relevant features, as 

shown in Algorithm 5. 

 

Algorithm 5. CNN algorithm 

 
Input: 

   - Training dataset with features X_train and corresponding labels 

y_train 

 2. Set hyperparameters: 

   - verbose = 0 

   - epochs = 10 

   - batch_size = 32 

3. Get the shape of the input data: 

   - n_timesteps = shape(trainX)[1] 

   - n_features = shape(trainX)[2] 

   - n_outputs = shape(trainy)[1] 

4. Create the CNN model: 

   - Create an empty model object 

   - Add a 1D convolutional layer with 64 filters, kernel size 3, and 

ReLU activation function, and specify input shape as (n_timesteps, 

n_features) 

   - Add another 1D convolutional layer with 64 filters, kernel size 

3, and ReLU activation function 

   - Add a dropout layer with dropout rate 0.5 

   - Add a max pooling layer with pool size 2 

   - Add a flatten layer to flatten the output 

   - Add a dense layer with 100 units and ReLU activation function 

   - Add a dense output layer with n_outputs units and softmax 

activation function 

5. Compile the model: 

   - Compile the model using the Adam optimizer, categorical cross-

entropy loss function, and accuracy as the metric 

6. Fit the model to the training data: 

   - Fit the model to the training data (trainX, trainy) for the specified 

number of epochs and batch size 

   - Set verbose mode to 0 (no output during training) 

7. Evaluate the model on the test data: 

   - Evaluate the model on the test data (testX, testy) using the 

specified batch size 

   - Get the accuracy of the model 

8. Return the accuracy as the result of the function. 

 

 

4. RESULT AND DISCUSSION 
 

In this section, we present the result of our study in three-

parts time domain processing and classification frequency 

domain, preprocessing and classification, and last convolution 

neural network (CNN) classification model. 

The first part describes the result of preprocessing the data 

in the time domain and then using four different machine-

learning algorithms to classify tongue gestures. In the second 

part, we show the preprocessing in the frequency domain, then 

classify it using four different machine-learning algorithms in 

the third part of our study. We report the results from the raw 

dataset as input to the CNN model.  

Overall, we comprehensively analyze the performance of 

various machine learning and deep learning algorithms to 

classify tongue gestures accurately. The study demonstrates 

the importance of adequate data processing for feeding it to the 

machine. Learning algorithm further study shows the 

efficiency of using machine learning and deep learning 

algorithms to classify tongue gestures.
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4.1 Frequency domain preprocessing and classification 

 

One of the most important aspects of our study is to design 

an alternative tongue base input device suitable for everyday 

use without compromising accuracy. Therefore, one of the 

important steps in classifying tongue gestures using machine 

learning algorithms is adequate data processing. Initially, we 

ran experiment 5 for each gesture. In the experiment, we 

collected accelerometer data for 1,000 seconds, where is the 

sensor rate at an assembling rate of 100 per second, which 

resulted in a dataset of 100,000 per gesture in total; the dataset 

size for five gestures is 500,000. Then, we transformed the 

data set from Time domain to frequency domain, using Fourier 

transform, which decomposes time domain data into 

constituent frequency components this transformation allows 

us to extract more relevant feature from the dataset, but it 

resulted in complex values which are not suitable to be used in 

machine learning algorithms. Therefore, we used the absolute 

function to convert our dataset back to only real values. After 

feature extraction, we fed the dataset to four different machine 

learning which include: K-Nearest Neighbors (KNN), Support 

Vector Machine (SVM), Decision Tree, and Random Forest 

Classifier, as shown in Figure 1. Then we estimated the 

performance of each algorithm by using widely accepted 

evaluation metrics of Precision, Recall, F1 score, and accuracy, 

as shown in Tables 1-4.  

 

Table 1. Accuracy matrices for the KNN classification 

algorithm and frequency domain pre-processing 

 
Class Precision Recall F1 Score 

Idle 1.00 1.00 1.00 

Horizontal fast 0.39 0.50 0.44 

Horizontal slow 0.37 0.40 0.39 

Vatical fast 0.43 0.39 0.41 

Vatical slow 0.45 0.32 0.38 

Accuracy   0.52 

Weighted Avg. 0.53 0.52 0.52 

 

Table 2. Accuracy matrices for the SVM classification 

algorithm and frequency domain pre-processing 

 
Class Precision Recall F1 Score 

Idle 0.92 1.00 0.96 

Horizontal fast 0.50 0.52 0.51 

Horizontal slow 0.48 0.45 0.47 

Vatical fast 0.52 0.47 0.49 

Vatical slow 0.47 0.47 0.47 

Accuracy   0.58 

Weighted Avg. 0.57 0.58 0.58 

 

Table 3. Accuracy matrices for the decision Tree 

classification algorithm and frequency domain pre-

processing 

 
Class Precision Recall F1 Score 

Idle 1.00 1.00 1.00 

Horizontal fast 0.79 0.79 0.79 

Horizontal slow 0.78 0.78 0.78 

Vatical fast 0.79 0.78 0.79 

Vatical slow 0.78 0.78 0.78 

Accuracy   0.83 

Weighted Avg. 0.83 0.83 0.83 

 

Table 4. Accuracy matrices for the random forest 

classification algorithm and frequency domain pre-

processing 

 
Class Precision Recall F1 Score 

Idle 1.00 1.00 1.00 

Horizontal fast 0.79 0.81 0.80 

Horizontal slow 0.79 0.78 0.79 

Vatical fast 0.80 0.80 0.80 

Vatical slow 0.79 0.79 0.79 

Accuracy   0.84 

Weighted Avg. 0.84 0.84 0.84 

 

 
(a) K-Nearest neighbor confusion matrix 

 

 
(b) Support Victor machine (SVM) confusion matrix 

 

 
(c) Decision tree confusion matrix 
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(d) Random forest confusion matrix 

 

Figure 1. Confusion matrix of training, validation and test 

 

4.2 Time domain preprocessing and classification  

 

In this study, we employed a time domain preprocessing. 

Furthermore, we segmented the data into chunks of 5-second 

intervals. Each chunk consists of 500 readings from each 

coordinate, namely X, Y, and Z, resulting in 1,500 features per 

record, with an additional feature for the class label. Our 

dataset originally contained 100,000 records for each class. By 

implementing this preprocessing technique, we reduced the 

number of records from 500,000 to 1,000 while generating 

1,501 features, which include X0 to X499, Y0 to Y499, Z0 to 

Z499, and the class column. 

Although we were able to make our machine-learning 

algorithms more efficient by reducing the amount of data 

inputted, we had to make a trade-off between classification 

accuracy and classification runtime. 
 

Table 5. Accuracy matrices for the KNN classification 

algorithm and time domain pre-processing 
 

Class Precision Recall F1 Score 

Idle 1.00 0.88 0.94 

Horizontal fast 0.57 0.79 0.66 

Horizontal slow 0.67 0.79 0.73 

Vatical fast 0.68 0.41 0.51 

Vatical slow 0.62 0.64 0.63 

Accuracy   0.69 

Weighted Avg. 0.71 0.69 0.69 

 

Table 6. Accuracy matrices for the SVM classification 

algorithm and time domain pre-processing 
 

Class Precision Recall F1 Score 

Idle 1.00 1.00 1.00 

Horizontal fast 0.66 0.66 0.66 

Horizontal slow 0.59 0.77 0.67 

Vatical fast 0.67 0.52 0.59 

Vatical slow 0.56 0.53 0.54 

Accuracy   0.69 

Weighted Avg. 0.70 0.69 0.69 

 

After conducting feature extraction on the raw time domain 

data, we used four distinct machine learning algorithms, 

including K-Nearest Neighbors (KNN), Support Vector 

Machine (SVM), Decision Tree, and Random Forest 

Algorithms, to classify tongue gestures, as shown in Figure 2. 

Furthermore, to assess the performance of these algorithms, 

we compared their predictive accuracy using established 

evaluation metrics such as Precision, Recall, F1 score, and 

accuracy. Such metrics enable a comprehensive and reliable 

evaluation of the algorithms' effectiveness in accurately 

classifying the data, as shown in Tables 5-8. 
 

 
(a) K-Nearest neighbor confusion matrix 

 

 
(b) Support victor machine (SVM) confusion matrix 

 

 
(c) Decision tree confusion matrix 

 

 
(d) Random forest confusion matrix 

 

Figure 2. Confusion matrix of training, validation and test 
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Table 7. Accuracy matrices for the Decision Tree 

classification algorithm and time domain pre-processing 

 
Class Precision Recall F1 Score 

Idle 0.84 0.90 0.87 

Horizontal fast 0.60 0.68 0.64 

Horizontal slow 0.58 0.54 0.56 

Vatical fast 0.55 0.57 0.56 

Vatical slow 0.47 0.39 0.42 

Accuracy   0.62 

Weighted Avg. 0.61 0.62 0.61 

 

4.3 Deep learning CNN classifier 

 

Recent studies have demonstrated that utilizing 

Convolutional Neural Networks (CNNs) for time series 

classification offers several advantages over alternative 

methods. These models exhibit remarkable resilience to noise 

and have the capacity to extract deep, informative features that 

are independent of time. In 1-D Convolution for Time Series 

analysis, a time series of length n and width k is considered. 

The length refers to the number of time steps, and the width 

represents the number of variables in a multivariate time series. 

The convolution kernels utilized always possess the same 

width as the time series, with the option to vary in length. This 

allows the kernel to move unidirectionally from the start of a 

time series to its end, performing convolution without 

movement to the left or right, as is the case with 2-D 

convolution applied to images. The architecture of our model 

is based on a convolutional neural network (CNN) with 

multiple layers where the CNN layers are responsible for 

extracting high-level features from the input data.  

 

Table 8. Accuracy matrices for the random forest 

classification algorithm and time domain pre-processing  

 
Class Precision Recall F1 Score 

Idle 1.00 0.90 0.95 

Horizontal fast 0.71 0.71 0.71 

Horizontal slow 0.67 0.77 0.71 

Vatical fast 0.68 0.65 0.67 

Vatical slow 0.61 0.61 0.61 

Accuracy   0.73 

Weighted Avg. 0.74 0.73 0.73 

 

The model starts with two convolutional layers, each 

utilizing 64 filters with a kernel size of 3 and applying the 

ReLU activation function. These layers are responsible for 

extracting spatial features from the input time series. To 

prevent overfitting, a dropout layer with a rate of 0.5 follows 

the second convolutional layer, randomly dropping 50% of the 

connections. 

Next, a max pooling layer with a pool size of 2 is added, 

reducing the spatial dimensions and retaining the most 

relevant information. The output from the pooling layer is then 

flattened into a one-dimensional vector using the Flatten layer, 

preparing it for the subsequent fully connected layers. The 

model continues with a dense layer of 100 units and employs 

the ReLU activation function. This layer learns to identify 

more complex patterns by combining the features extracted by 

the previous convolutional layers. 

Finally, the model concludes with a dense layer 

representing the output layer, where the number of units in this 

layer represents the number of classes. The SoftMax activation 

function is applied to provide a probability distribution over 

the classes. As shown in Figure 3, the model consists of several 

CNN layers that progressively learn and represent more 

complex patterns. The input goes through multiple layers that 

apply filters to capture various aspects of the data. These layers 

play a crucial role in capturing spatial dependencies and 

ensuring accurate predictions by the model. Table 9 provides 

more information on the hyperparameter settings that were 

made during model training. 

In our investigation, we leveraged CNN to classify time 

series data by inputting the raw dataset, which consisted of 

500,000 records, for model training and testing. We evaluated 

the model's Accuracy ten times, calculating the average 

accuracy and standard deviation of the ten accuracy values 

obtained. 

We compared different techniques for classifying time 

series data. We found that the CNN model is a high 

classification accuracy of 97% due to its ability to extract 

informative features independent of time, as shown in Figure 

4. However, machine learning models with frequency domain 

preprocessing can achieve satisfactory accuracy by converting 

time series data to the frequency domain. Furthermore, Time-

domain preprocessing produces the fastest classification 

runtime for identifying tongue gestures. 

 

 
 

Figure 3. Convolutional neural network (CNN) layers 

architecture 
 

Table 9. CNN model hyperparameters 
 

Hyperparameters Value 

Learning rate 0.001 

Batch size 32 

The hidden layer activation function ReLU 

Optimizer Adam optimizer 

epochs 10 

Dropout 0.5 
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Table 10. Accuracy matrices for the random forest classification algorithm and time domain pre-processing  

 

Author Year Input Method 
Sensor 

Location 

Classification 

Method 
Intrusive Invasive Obtrusive Accuracy 

[42] 2018 
An array of photo-

reflective sensors 

mounted in a 

mouthpiece 
SVM YES NO YES 77.50% 

[18] 2019 

Camera-based 

tongue computer 

interface 

camera 

mounted on 

the computer 

pattern 

recognition 

method 

NO NO NO 83% 

[43] 2019 
Capacitive touch 

sensors 

the roof of 

the mouth 
SVM YES NO YES 91.01% 

[16] 2021 
Optical distance 

sensors 

the roof of 

the mouth 

multi-contact 

detection 

algorithm 

YES NO YES 86.99% 

[2] 2020 Video cameras Head CNN NO NO NO 99% 

[44] 2017 
Photo-reflective 

sensors 

Head 

(cheaks) 
SVM NO NO YES 80.45% 

[45] 2023 

Capacitive touch 

and electrotactile 

stimulation 

Head (on 

the lips) 

centroid-based 

estimator 
YES NO YES 93% 

[46] 2021 
Accelerometer and 

microphone 

Head (next 

to the ear) 

KNN WITH 

DTW 
NO NO NO 90.90% 

[47] 2020 
Accelerometer and 

sEMG 
head not define YES NO YES 70.30% 

[48] 2020 

Accelerometer and 

Surface 

Electromyography 

(sEMG) 

Head 

(forehead) 
not define YES NO YES 95% 

 

Ultimately, a comparison between the proposed system and 

existing work can be made across several categories, such as 

sensor type, sensor location, methodology used, system 

application, classification method, and the degree of 

intrusiveness, invasiveness, and obtrusiveness, as shown in 

Table 10. 

 

 
 

Figure 4. Confusion matrix of training, validation and test 

 

 

5. CONCLUSIONS 

 

This study explores the future of hands-free human-

computer interaction utilizing tongue gestures as an alternative 

method of interacting with smart devices. We primarily focus 

on the improvements achieved by utilizing a Convolution 

neural network to classify tongue gestures. Our system is 

designed to be non-intrusive, non-obtrusive, and non-invasive, 

ensuring user comfort and ease of use in everyday scenarios. 

We detected five distinct tongue gestures using an 

accelerometer sensor attached to the lower jaw's Genioglossus 

muscle. To enhance the accuracy of gesture classification, we 

implemented three preprocessing methods, namely time 

domain and frequency domain preprocessing. 

Additionally, we applied four different machine-learning 

algorithms. Our initial results with time domain preprocessing 

achieved a 73% accuracy rate, while frequency domain 

preprocessing improved the accuracy to 84%. However, the 

most significant advancement was observed when utilizing the 

CNN model on the raw data, resulting in an impressive 

accuracy of 97% in accurately classifying tongue gestures. The 

outcomes of our study have led to the development of an 

exceptionally effective HCI system. This system not only 

serves as an alternative input device for individuals with 

limited or no limb mobility but also presents a practical 

solution for daily use by anyone. 

It is worth noticing that the data used for this study was 

obtained in a controlled lab environment. In future work, it 

would be valuable to address potential challenges related to 

real-world scenarios, such as noise when users are in motion. 
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