
Non-Invasive Tongue-Based HCI System Using Deep Learning for Microgesture Detection

Dhuha F. Jasim* , Waleed F. Shareef

Department of Control and Systems Engineering, University of Technology-Iraq, Baghdad 10069, Iraq

Corresponding Author Email: cse.21.13@grad.uotechnology.edu.iq

https://doi.org/10.18280/ria.370420 ABSTRACT

Received: 31 May 2023

Revised: 11 July 2023

Accepted: 17 July 2023

Available online: 31 August 2023

Tongue-based Human-Computer Interaction (HCI) systems have surfaced as alternative

input devices offering significant benefits to individuals with severe disabilities. However,

these systems often employ invasive methods such as dental retainers, tongue piercings,

and multiple mouth electrodes. These methods, due to hygiene issues and obtrusiveness,

are deemed impractical for daily use. This paper presents a novel non-invasive tongue-

based HCI system that utilizes deep learning for microgesture detection. The proposed

system overcomes the limitations of previous methods by non-invasively detecting

gestures. This is accomplished by measuring tongue vibrations via an accelerometer

positioned on the Genioglossus muscle, thereby eliminating the need for in-mouth

installations. The system's performance was evaluated by comparing the classification

results of deep learning with four widely-used supervised machine learning algorithms,

namely K-Nearest Neighbors (KNN), Support Vector Machines (SVM), Decision Trees,

and Random Forests. Raw data were preprocessed in both time and frequency domains to

extract relevant patterns before classification. In addition, a deep learning Convolutional

Neural Network (CNN) model was trained on the raw data, leveraging its proficiency in

processing time series data and capturing intricate patterns automatically using

convolutional and pooling layers. The CNN model demonstrated a 97% success rate in

tongue gesture detection, indicating its high accuracy. The proposed system is also low-

profile, lightweight, and cost-effective, making it suitable for daily use in various contexts.

This study thus introduces a non-invasive, efficient, and practical approach to tongue-based

HCI systems.

Keywords:

human-computer interaction, microgestures,

tongue gestures, wearable computing,

hands-free computer interaction, deep

learning

1. INTRODUCTION

Interaction (HCI) is an interdisciplinary field of study that

investigates the dynamics of human interaction with

computers. It incorporates various disciplines, including but

not limited to, human factors, ergonomics, and psychology.

HCI research probes diverse aspects that influence the user

experience, such as technology perception, decision-making

processes, and interactive visualizations.

As sensor technology continues to evolve and finds

integration in an increasing number of applications, the need

for user-friendly interactions becomes paramount. HCI

systems have been developed to facilitate intuitive and

straightforward interactions between human users and

computers or other intelligent devices. By offering a user-

centric interface, these systems strive to deliver an interaction

experience that is both natural and accessible to the user.

The considerable advancements in sensor technology,

coupled with its integration into wearable devices, have given

rise to a novel interaction paradigm referred to as 'micro-

interaction'. Micro-interactions can be defined as non-verbal

communication methods employed in interactions with

computers, smartwatches, and similar devices.

The improvement of micro-interactions with wearable

devices has profound implications for user experience.

Microgestures can serve as an alternative input method

particularly beneficial for individuals with limited or no limb

mobility, including those with quadriplegia. Moreover, for

typical users, enhanced micro-interactions with wearable

devices could result in a more seamless and intuitive

experience.

Interest in HCI systems has surged, given their potential to

significantly enhance user experience across various domains.

Applications of HCI span a wide array of fields, such as

medicine, education, cybersecurity, the military, and gaming,

among others. The potential impact and utility of HCI systems

underscore the importance of continuous research and

development in this area. One of the human-computer

interaction applications in the medical field is augmented and

alternative communication or AAC. An AAC system aims to

support individuals with speech or language impediments by

providing various assistive tools, such as gestures and pictures,

to facilitate effective communication. However, technical

problems and poor interfaces caused to limit the adoption of

such a system. To overcome these limitations, we can apply

SCI system Approaches to Improve AAC systems [1, 2].

Another medical application that uses the HCI system is a

human-in-the-loop system. The system is where humans

oversee and control the operation, while the system provides

feedback and assists humans in carrying out tasks. As the

system can be utilized to help individuals with physical

disabilities, as well as such systems can be utilized health

monitoring and disease diagnosis [3-14].

Another application for HCI systems in developing assistive

technologies for people with disabilities is the tongue computer

interface or TCI. Such a system helps people with complete

Revue d'Intelligence Artificielle
Vol. 37, No. 4, August, 2023, pp. 985-995

Journal homepage: http://iieta.org/journals/ria

985

https://orcid.org/0000-0001-5651-0593
https://orcid.org/0000-0002-7774-8231
https://crossmark.crossref.org/dialog/?doi=10.18280/ria.370420&domain=pdf

tetraplegia or quadriplegia to control electronic devices using

tongue gestures. The main idea behind TCI is that cranial

nerves innervate the tongue. Thus, it does not get affect by

spinal or cord injuries. As a result, it can serve as an alternative

means of Control [15-18].

In the education field HCI system is implemented by

designing and developing interactive learning experiences.

Therefore, HCI system applications in education can vary

from interactive whiteboards that facilitate controlling

collaborative learning to virtual reality systems that simulate

real-world experiences for immersive learning.

As online learning platforms become more popular,

improving the student experience during courses is important.

Therefore, implementing HCI systems principles when

designing an e-learning website can improve the student

experience by optimizing user interaction and creating a

tailored system that's created for users' need and preferences,

moreover, by applying HCI principles lead to increased

motivation and engagement of students, resulting in an

improvement, learning experience [19-28].

The security research community acknowledged that human

behavior is one of the main factors of security failure, where it

is common to refer to humans as the weakest link in the

security chain. Therefore, designers should consider user

behavior to create and improve security systems. Therefore,

researchers apply the knowledge and techniques of the HCI

system to mitigate and resolve the issue and cyber security

field. We utilize HCI systems main points when designing and

developing security applications. This includes user

authentication systems, intrusion detection systems, security

awareness, training, and tools.

In the military application, we can utilize the principles to

design and develop interactive systems that can help prove the

effectiveness and efficiency of the military operation. An

example of a military SCI system is comment on Control

systems that enables real-time to distinguish making virtual

training and unmanned aerial systems that provide remote

surveillance [29-33].

Moreover, finally, we can utilize HCI principles to design

and develop games, enhancing the gaming experience or

design and engaging game mechanisms. There is a wide range

of SCI system applications in gaming, including gesture paste,

Control that enables the player to interact using hand gestures,

and virtual r reality systems that immerse the player in the

game environment. Moreover, by using intelligent gaming,

billions, we can understand player motivation and create a

tailored gaming experience that can be done by analyzing

different aspects of user behavior, such as different gameplay

modes or how humans interact with non-player characters [34-

41].

The increasing influence of HCI systems has given rise to a

novel domain known as tongue-based HCI systems, which

serve as an alternative input method for individuals with

limited or no limb mobility. The development of these systems

presents significant challenges. The selection of appropriate

sensors and sensor locations is necessary to detect tongue

gestures accurately.

In this section, we viewed a brief introduction, and the next

sections are organized as follows: Literature review,

Methodology, Result and Discussion, and finally,

Conclusions.

2. LITERATURE REVIEW

Previous research investigates several forms of human-

computer interaction via wearable Technology due to its

importance in improving people's life from regular use to

helping people with quadriplegia or missing limb. HCI

systems can be classified based on the body parts used; this

study will focus on tongue and teeth gestures.

Hashimoto et al. [42] used an array of photo-reflective

sensors mounted in a mouthpiece to measure the changes in

distance between the tongue surface and the back of the upper

teeth when the tongue moves.

Niu et al. [18] explore the tongue as an input device due to

its high dexterity and resilience for people with upper limb

impairment. The proposed system used a camera to identify

tongue gestures.

Li et al. [43] utilized capacitive touch sensors placed on the

palate to recognize tongue gestures during speech.

Jiang et al. [16] introduced a system that utilizes a multi-

contact detection algorithm to identify optical distance sensors

placed on the roof of the mouth, enabling the detection of

tongue gestures.

The study by Anaraki et al. [2] explores the potential of

using video cameras to identify the faces of children with

severe disabilities and communication challenges. The

objective is to help overcome the limitations faced by these

children in accessing assistive technology devices.

Yamashita et al. [44] introduced a novel method for using

photo-reflective sensors to detect changes in skin deformation

to control input for devices. The sensors are attached to the

surface of the cheeks to capture and measure these changes.

Jingu et al. [45] Design a tongue-operated input and output

device that uses Capacitive touch and electrotactile stimulation

to enable eyes- and hands-free interactions.

In their study, Sun et al. [46] propose an alternative means

of input for various scenarios and accessibility purposes. This

system involves a wearable 3D-printed earpiece with an IMU

sensor and a contact microphone behind both ears. These

devices work together to capture jaw movements and sound

data, respectively. The team utilized a KNN algorithm with

dynamic time warping to classify different gestures.

Vojtech et al. [47] Investigate in the study two input

methods using a video mouse and accelerometer and sEMG as

an input device, where the accelerometer is located in a

headband worn by the user to detect head acceleration. At the

same time, the sEMG sensor is placed on the user's face to

detect facial muscle movements. Moreover, the study shows a

trade-off between speed and accuracy: ACC/sEMG system

provided higher target selection accuracy than Camera Mouse,

while the latter provided faster target selection.

Groll et al. [48] explore an alternative computer access

device using accelerometry from head tilt to control cursor

movement. The sensor is placed next to the eye for a blink and

above the eyebrow for a brow raise to control cursor clicks.

Previous studies have explored tongue-based HCI systems;

however, existing tongue-based HCI systems often rely on

invasive methods, including dental retainers, tongue piercing,

and multiple mouth electrodes. Concerns arise regarding the

sensing technique, as it can be obtrusive, invasive, and

intrusive, causing the system to be non-hygienic and

impractical for everyday use. Hence, this work aims to present

a low-profile non-invasive tongue-based HCI system without

compromising the Accuracy of tongue detection. by

employing a deep learning algorithm.

986

3. METHODOLOGY

Our system was designed with a primary goal: to be user-

friendly without requiring any dental retainers or other

invasive methods that may be intrusive or obtrusive. Therefore,

we aimed to design a lightweight and small system suitable for

everyday use or as an assistive input technology for people

with limited or no limb movement without compromising

accuracy. Therefore, one of the critical aspects of designing

the system is: Selecting a suitable sensor, choosing the sensor

position which helps us achieve our vision for the system, and

selecting the gestures.

Regarding the available sensing technologies, such as

textile pressure, X-band Doppler, and EEG /EMG sensors,

these sensors can be bulky or obtrusive, which aligns

differently from our vision for the system. Therefore, we

selected an accelerometer since the sensor is small, lightweight,

and can be concealed easily. Therefore, it serves our vision for

a non-obtrusive non-invasive, and non-intrusive system

without compromising accuracy.

Moreover, when designing the system, we must choose a

suitable location for the sensor. Our system vision indicates

that the forehead, tongue tip, and mouth are not valid positions

for the sensor to detect tongue gestures. As a result, we have

selected the lower jaw on the Genoglasses muscle (on the skin)

as the location for the accelerometer. This location has been

shown to accurately detect tongue gestures without being

invasive or obtrusive.

To complete the system design, we had to choose the

appropriate gestures. Hence, we carried out a series of

experiments for the selection process. We picked out five

tongue movements that can be done without opening the

mouth, allowing the system to be used in public areas.

After shaping our design, we conduct machine learning,

coupled with time domain and frequency domain data pre-

processing and deep learning classification model to classify

tongue gestures and compare the result of the two methods.

3.1 Gesture selection

Gestures are a method of nonverbal communication that is

powerful for expressing intentions and meanings without

using spoken language. In human-computer interaction,

gestures can be used as an input method for controlling smart

devices. Since tongue gestures are not a standard input method

for users, we need to consider various factors, such as the

anatomical features of the tongue, the ease of execution for

users with varying abilities, and the system's accuracy in

recognizing the gestures. Moreover, researchers also consider

users' preferences for specific gestures, which can influence

the system's overall usability and user experience. For

example, in a study by Chen, Victor, et al., taxonomies were

used to describe the formation and use of micro-mouth

gestures. Twenty mouth gestures were identified as suitable

for everyday software application activities [49]. Therefore, in

this study, we examined multiple tongue gestures as an

alternative input method for our system. One of the essential

points when choosing tongue gestures is simplicity, ease of

memorizing and selecting gestures that do not interfere with

common tongue movement.

Further, we selected five gestures as our final selected

gestures aligned with our goals for the system. The chosen

gestures consist of an idle gesture and two variations of

vertical tongue movements performed at different speeds.

These movements occur when the mouth is closed and the

tongue touches the upper and lower jaws. Additionally, two

gestures involve the tongue moving swiftly or slowly from left

to right, contacting the interior gums. By carefully selecting

these gestures, we created an effective and user-friendly

tongue-based HCI system that can provide individuals with

disabilities, injuries, or other limitations with a new input

method for interacting with smart devices.

3.2 Designing systems and conducting experiments

In this section, we discuss the system design and experiment

process.

One of the main features we aimed to achieve in this study

is to design a small, lightweight system that can be used in

public without the social awkwardness of a bulky device.

Therefore, in our design, we selected the 3×5 mm2 ADXL 345

accelerometer as a sensing unit since it checks all the criteria

we need in our design. The sensing unit is attached to the lower

jaw on the Genoglasses muscle (on the skin), making the

system non-obtrusive and non-invasive to use in public. The

sensing unit is attached to a 29×58 mm2 ESP32

microcontroller that processes the data from the sensing unit.

After that, the collected data were stored on the computer.

We collected data through experiments on one test subject

in a lab environment to minimize the noise. The sensing unit

was attached to the participant's lower jaw on the Genoglasses

muscle, using a gentle, double side tape, which provided a

secure and none of crucify and non-invasive connection. We

designed the sensing unit to collect at the sampling rate of 100

data better second. The experiment lasted for 100 seconds,

resulting in a sizable dataset of 500,000 records where each

gesture consisted of 100,000 records. ⅹ

3.3 Data classification

In our study, the design system relies on tongue gesture

classification to distinguish multiple gestures as an alternative

input method. Therefore, we utilized machine learning, deep

learning models, and feature extraction methods to achieve the

highest accuracy.

We use different supervised machine learning algorithms to

achieve our goal, including Support Vector Machine, K-

Nearest Neighbor, Decision tree, Random Forest, and

Convolution neural network. Given their demonstrated

efficacy in prior research, these machine learning and deep

learning models have exhibited notable classification accuracy

when applied to the task of classifying tongue-based HCI

systems.

Deep learning models significantly impact HCI systems by

learning convolution neural networks or CNN HCI systems

can extract meaningful patterns and insights from complex

data, enabling more advanced and intuitive interactions

between humans and computers [50].

In the initial step, the dataset preprocessed using time and

frequency domain methods to extract intricate relationships at

a higher level of abstraction. Following the data preprocessing

stage, the dataset is partitioned into a 70% training subset and

a 30% testing subset. This division ensures an appropriate

allocation of data for model training and evaluation.

During the training phase, the machine learning algorithm

receives the training records and corresponding class labels,

enabling the model to discern the underlying patterns and

relationships that differentiate each class. Through this process,

987

the model acquires the ability to classify new records in the

test dataset, even those belonging to the Unknown class,

facilitating robust and comprehensive classification.

One of the supervised machine learning algorithms used in

the study is K-Nearest Neighbor, a model usually used for

classification and regression problems. This model relies on

measuring the distance between the new input record from the

test dataset and all the points in the training dataset. Further,

to identify the nearest K neighbor, we use the Euclidean

distance metric to calculate the nearest neighbor. The k value

in this model represents the number of neighbors considered

in the classification process, as shown in Algorithm 1.

Algorithm 1. KNN Algorithm

Input: Training samples as matrix

Output: classified Dataset where each point within the labelled

class

1. Input:

 - Training dataset with features X_train and corresponding

labels y_train

 - Test dataset with features X_test

 - The value of K (number of neighbors to consider)

2. For each test instance X_test_i in X_test:

 - For each training instance X_train_j in X_train:

 - Calculate the distance between X_test_i and X_train_j using

Euclidean distance

 - Assign the calculated distance to the training instance

X_train_j

3. Sort the training instances based on their distances in

ascending order

4. Select the K nearest neighbors from the sorted training

instances for each test instance X_test_i

5. Count the occurrences of each class label among the K nearest

neighbors

6. Assign the class label with the highest count as the predicted

label for each test instance X_test_i

7. Output the predicted labels for the test instances

Another popular machine-learning technique is Support

Vector Machine (SVM), a supervised machine-learning

algorithm often used to solve classification and regression

problems. This model aims to find the ideal hyperplane to

divide different classes. Moreover, this model aims to

maximize the margin between classes, which is determined by

measuring the distance between the nearest Datapoint in each

class and the hyperplane. Furthermore, the hyperplane chooses

to categorize brand-new data points according to their

properties correctly. The SVM model utilizes the kernel

function to map the data points into the high dimensional

feature space, allowing the hyperplane to distinguish between

different classes, as shown in Algorithm 2.

Algorithm 2. SVM algorithm

Input:

 - Training dataset with features X_train and corresponding labels

y_train

 - Regularization parameter C

 - Kernel parameter gamma

2. Compute the kernel matrix K based on the training data:

 - For each pair of training instances (X_train_i, X_train_j):

 - Calculate the Gaussian (RBF) kernel value K(X_train_i,

X_train_j) = exp(-gamma × ||X_train_i - X_train_j||^2)

3. Define the SVM optimization problem:

 - Initialize the weight vector w and bias b

 - Define the hinge loss function L(w, b) as per the SVM

formulation

 - Define the regularization term R(w) as per the SVM formulation

 - Define the objective function J(w, b) = L(w, b) + C × R(w)

4. Solve the optimization problem to find the optimal weight vector

w and bias b:

 - Use an optimization algorithm (e.g., quadratic programming) to

minimize J(w, b)

 - Update w and b iteratively until convergence

5. Obtain the decision boundary and classify new instances:

 - For each test instance X_test:

 - Compute the decision function f(X_test) = sum(alpha_i ×

y_train_i × K(X_train_i, X_test)) + b

 - Assign the class label based on the sign of f(X_test)

 - If f(X_test) >= 0, assign the positive class label

 - If f(X_test) < 0, assign the negative class label

6. Output the predicted labels for the test instances

The Decision Tree model is a common type of supervised

machine learning algorithm. It uses a tree-like structure to

classify new data points by making decisions based on the

potential outcomes. Decision nodes are used to make decisions,

and they have multiple branches that lead to output in the form

of leaf nodes, as shown in Algorithm 3.

Algorithm 3. Decision tree algorithm

1. Input:

 - Training dataset with features X_train and corresponding labels

y_train

 - Maximum depth of the decision tree, max_depth

2. Define a function to build a decision tree:

 - If the stopping criteria are met:

 - Create a leaf node and assign it the most frequent class label in

the current subset of training instances

 - Otherwise:

 - Find the best attribute to split the data based on a criterion (e.g.,

information gain, Gini index)

 - Create a new decision node for the chosen attribute

 - Split the training instances into subsets based on the attribute

values

 - Recursively call the function to build a decision tree for each

subset

 - Assign the decision nodes as children of the current node

3. Build the decision tree using the training dataset and the

maximum depth constraint:

 - Call the function defined in step 2 to build the decision tree

4. Define a function to classify new instances using the decision

tree:

 - For each test instance X_test:

 - Start at the root node of the decision tree

 - Traverse down the tree by evaluating the attribute conditions

until reaching a leaf node

 - Assign the class label of the leaf node as the predicted label for

the test instance

5. Classify new instances using the decision tree built in step 3:

 - Call the function defined in step 4 to classify new instances

6. Output the predicted labels for the test instances

This study uses another popular supervised machine

learning algorithm called a Random Forest. Random forest is

an effective machine learning algorithm that tackles

classification and regression problems. This model utilizes

multiple decision trees, improving generalizability and

prediction accuracy. The main principle of random forest is to

construct several decision trees where each is trained on the

selection of training Dataset, then aggregate their production.

Therefore, this method gets beyond some of the drawbacks of

the individual decision trees, including bias or overfitting, and

generates more solid and trustworthy outcomes, as shown in

988

Algorithm 4.

Algorithm 4. Random forest algorithm

1. Input:

 - Training dataset with features X_train and corresponding labels

y_train

 - Maximum depth of the decision tree, max_depth

2. Define a function to build a decision tree:

 - If the stopping criteria are met:

 - Create a leaf node and assign it the most frequent class label in

the current subset of training instances

 - Otherwise:

 - Find the best attribute to split the data based on a criterion (e.g.,

information gain, Gini index)

 - Create a new decision node for the chosen attribute

 - Split the training instances into subsets based on the attribute

values

 - Recursively call the function to build a decision tree for each

subset

 - Assign the decision nodes as children of the current node

3. Build the decision tree using the training dataset and the

maximum depth constraint:

 - Call the function defined in step 2 to build the decision tree

4. Define a function to classify new instances using the decision

tree:

 - For each test instance X_test:

 - Start at the root node of the decision tree

 - Traverse down the tree by evaluating the attribute conditions

until reaching a leaf node

 - Assign the class label of the leaf node as the predicted label for

the test instance

5. Classify new instances using the decision tree built in step 3:

 - Call the function defined in step 4 to classify new instances

6. Output the predicted labels for the test instances

Each machine learning model employed in this study

exhibits distinct strengths and weaknesses. For instance, K-

Nearest Neighbors (KNN) demonstrates effective handling of

multi-class classification problems, yet its performance may

be impacted by the curse of dimensionality when confronted

with high-dimensional data. Support Vector Machines (SVM),

on the other hand, possess the capacity to handle both linear

and non-linear relationships between features and target

variables through the use of diverse kernel functions.

Nonetheless, the selection of an appropriate kernel function

and the tuning of associated hyperparameters present

challenges. Decision trees are adept at capturing non-linear

relationships, but their sensitivity to minor variations in the

training data can result in divergent tree structures. In contrast,

Random Forests mitigate overfitting concerns by leveraging

ensemble learning, yet their application to imbalanced datasets

may introduce bias. In the results and discussion section, it

becomes evident that the Random Forest model demonstrates

a significant classification accuracy across various

preprocessing methods.

Lastly, we utilized the convolution neural network (CNN),

a deep learning model with impressive results in computer

vision applications and partial image recognition. Moreover,

researchers also utilized it in the time series classification of

problems. In this model, the input time series data is

transformed into two dimensions image-like structure where

time is shown on one axis, while the values in the time series

are representative on the other axis. Then the CNN model uses

a sliding kernel across the time series data, set to apply filters

and extract pertinent features. Further, the model uses a pulling

layer to reduce the dimensionality of the relevant features, as

shown in Algorithm 5.

Algorithm 5. CNN algorithm

Input:

 - Training dataset with features X_train and corresponding labels

y_train

 2. Set hyperparameters:

 - verbose = 0

 - epochs = 10

 - batch_size = 32

3. Get the shape of the input data:

 - n_timesteps = shape(trainX)[1]

 - n_features = shape(trainX)[2]

 - n_outputs = shape(trainy)[1]

4. Create the CNN model:

 - Create an empty model object

 - Add a 1D convolutional layer with 64 filters, kernel size 3, and

ReLU activation function, and specify input shape as (n_timesteps,

n_features)

 - Add another 1D convolutional layer with 64 filters, kernel size

3, and ReLU activation function

 - Add a dropout layer with dropout rate 0.5

 - Add a max pooling layer with pool size 2

 - Add a flatten layer to flatten the output

 - Add a dense layer with 100 units and ReLU activation function

 - Add a dense output layer with n_outputs units and softmax

activation function

5. Compile the model:

 - Compile the model using the Adam optimizer, categorical cross-

entropy loss function, and accuracy as the metric

6. Fit the model to the training data:

 - Fit the model to the training data (trainX, trainy) for the specified

number of epochs and batch size

 - Set verbose mode to 0 (no output during training)

7. Evaluate the model on the test data:

 - Evaluate the model on the test data (testX, testy) using the

specified batch size

 - Get the accuracy of the model

8. Return the accuracy as the result of the function.

4. RESULT AND DISCUSSION

In this section, we present the result of our study in three-

parts time domain processing and classification frequency

domain, preprocessing and classification, and last convolution

neural network (CNN) classification model.

The first part describes the result of preprocessing the data

in the time domain and then using four different machine-

learning algorithms to classify tongue gestures. In the second

part, we show the preprocessing in the frequency domain, then

classify it using four different machine-learning algorithms in

the third part of our study. We report the results from the raw

dataset as input to the CNN model.

Overall, we comprehensively analyze the performance of

various machine learning and deep learning algorithms to

classify tongue gestures accurately. The study demonstrates

the importance of adequate data processing for feeding it to the

machine. Learning algorithm further study shows the

efficiency of using machine learning and deep learning

algorithms to classify tongue gestures.

989

4.1 Frequency domain preprocessing and classification

One of the most important aspects of our study is to design

an alternative tongue base input device suitable for everyday

use without compromising accuracy. Therefore, one of the

important steps in classifying tongue gestures using machine

learning algorithms is adequate data processing. Initially, we

ran experiment 5 for each gesture. In the experiment, we

collected accelerometer data for 1,000 seconds, where is the

sensor rate at an assembling rate of 100 per second, which

resulted in a dataset of 100,000 per gesture in total; the dataset

size for five gestures is 500,000. Then, we transformed the

data set from Time domain to frequency domain, using Fourier

transform, which decomposes time domain data into

constituent frequency components this transformation allows

us to extract more relevant feature from the dataset, but it

resulted in complex values which are not suitable to be used in

machine learning algorithms. Therefore, we used the absolute

function to convert our dataset back to only real values. After

feature extraction, we fed the dataset to four different machine

learning which include: K-Nearest Neighbors (KNN), Support

Vector Machine (SVM), Decision Tree, and Random Forest

Classifier, as shown in Figure 1. Then we estimated the

performance of each algorithm by using widely accepted

evaluation metrics of Precision, Recall, F1 score, and accuracy,

as shown in Tables 1-4.

Table 1. Accuracy matrices for the KNN classification

algorithm and frequency domain pre-processing

Class Precision Recall F1 Score

Idle 1.00 1.00 1.00

Horizontal fast 0.39 0.50 0.44

Horizontal slow 0.37 0.40 0.39

Vatical fast 0.43 0.39 0.41

Vatical slow 0.45 0.32 0.38

Accuracy 0.52

Weighted Avg. 0.53 0.52 0.52

Table 2. Accuracy matrices for the SVM classification

algorithm and frequency domain pre-processing

Class Precision Recall F1 Score

Idle 0.92 1.00 0.96

Horizontal fast 0.50 0.52 0.51

Horizontal slow 0.48 0.45 0.47

Vatical fast 0.52 0.47 0.49

Vatical slow 0.47 0.47 0.47

Accuracy 0.58

Weighted Avg. 0.57 0.58 0.58

Table 3. Accuracy matrices for the decision Tree

classification algorithm and frequency domain pre-

processing

Class Precision Recall F1 Score

Idle 1.00 1.00 1.00

Horizontal fast 0.79 0.79 0.79

Horizontal slow 0.78 0.78 0.78

Vatical fast 0.79 0.78 0.79

Vatical slow 0.78 0.78 0.78

Accuracy 0.83

Weighted Avg. 0.83 0.83 0.83

Table 4. Accuracy matrices for the random forest

classification algorithm and frequency domain pre-

processing

Class Precision Recall F1 Score

Idle 1.00 1.00 1.00

Horizontal fast 0.79 0.81 0.80

Horizontal slow 0.79 0.78 0.79

Vatical fast 0.80 0.80 0.80

Vatical slow 0.79 0.79 0.79

Accuracy 0.84

Weighted Avg. 0.84 0.84 0.84

(a) K-Nearest neighbor confusion matrix

(b) Support Victor machine (SVM) confusion matrix

(c) Decision tree confusion matrix

990

(d) Random forest confusion matrix

Figure 1. Confusion matrix of training, validation and test

4.2 Time domain preprocessing and classification

In this study, we employed a time domain preprocessing.

Furthermore, we segmented the data into chunks of 5-second

intervals. Each chunk consists of 500 readings from each

coordinate, namely X, Y, and Z, resulting in 1,500 features per

record, with an additional feature for the class label. Our

dataset originally contained 100,000 records for each class. By

implementing this preprocessing technique, we reduced the

number of records from 500,000 to 1,000 while generating

1,501 features, which include X0 to X499, Y0 to Y499, Z0 to

Z499, and the class column.

Although we were able to make our machine-learning

algorithms more efficient by reducing the amount of data

inputted, we had to make a trade-off between classification

accuracy and classification runtime.

Table 5. Accuracy matrices for the KNN classification

algorithm and time domain pre-processing

Class Precision Recall F1 Score

Idle 1.00 0.88 0.94

Horizontal fast 0.57 0.79 0.66

Horizontal slow 0.67 0.79 0.73

Vatical fast 0.68 0.41 0.51

Vatical slow 0.62 0.64 0.63

Accuracy 0.69

Weighted Avg. 0.71 0.69 0.69

Table 6. Accuracy matrices for the SVM classification

algorithm and time domain pre-processing

Class Precision Recall F1 Score

Idle 1.00 1.00 1.00

Horizontal fast 0.66 0.66 0.66

Horizontal slow 0.59 0.77 0.67

Vatical fast 0.67 0.52 0.59

Vatical slow 0.56 0.53 0.54

Accuracy 0.69

Weighted Avg. 0.70 0.69 0.69

After conducting feature extraction on the raw time domain

data, we used four distinct machine learning algorithms,

including K-Nearest Neighbors (KNN), Support Vector

Machine (SVM), Decision Tree, and Random Forest

Algorithms, to classify tongue gestures, as shown in Figure 2.

Furthermore, to assess the performance of these algorithms,

we compared their predictive accuracy using established

evaluation metrics such as Precision, Recall, F1 score, and

accuracy. Such metrics enable a comprehensive and reliable

evaluation of the algorithms' effectiveness in accurately

classifying the data, as shown in Tables 5-8.

(a) K-Nearest neighbor confusion matrix

(b) Support victor machine (SVM) confusion matrix

(c) Decision tree confusion matrix

(d) Random forest confusion matrix

Figure 2. Confusion matrix of training, validation and test

991

Table 7. Accuracy matrices for the Decision Tree

classification algorithm and time domain pre-processing

Class Precision Recall F1 Score

Idle 0.84 0.90 0.87

Horizontal fast 0.60 0.68 0.64

Horizontal slow 0.58 0.54 0.56

Vatical fast 0.55 0.57 0.56

Vatical slow 0.47 0.39 0.42

Accuracy 0.62

Weighted Avg. 0.61 0.62 0.61

4.3 Deep learning CNN classifier

Recent studies have demonstrated that utilizing

Convolutional Neural Networks (CNNs) for time series

classification offers several advantages over alternative

methods. These models exhibit remarkable resilience to noise

and have the capacity to extract deep, informative features that

are independent of time. In 1-D Convolution for Time Series

analysis, a time series of length n and width k is considered.

The length refers to the number of time steps, and the width

represents the number of variables in a multivariate time series.

The convolution kernels utilized always possess the same

width as the time series, with the option to vary in length. This

allows the kernel to move unidirectionally from the start of a

time series to its end, performing convolution without

movement to the left or right, as is the case with 2-D

convolution applied to images. The architecture of our model

is based on a convolutional neural network (CNN) with

multiple layers where the CNN layers are responsible for

extracting high-level features from the input data.

Table 8. Accuracy matrices for the random forest

classification algorithm and time domain pre-processing

Class Precision Recall F1 Score

Idle 1.00 0.90 0.95

Horizontal fast 0.71 0.71 0.71

Horizontal slow 0.67 0.77 0.71

Vatical fast 0.68 0.65 0.67

Vatical slow 0.61 0.61 0.61

Accuracy 0.73

Weighted Avg. 0.74 0.73 0.73

The model starts with two convolutional layers, each

utilizing 64 filters with a kernel size of 3 and applying the

ReLU activation function. These layers are responsible for

extracting spatial features from the input time series. To

prevent overfitting, a dropout layer with a rate of 0.5 follows

the second convolutional layer, randomly dropping 50% of the

connections.

Next, a max pooling layer with a pool size of 2 is added,

reducing the spatial dimensions and retaining the most

relevant information. The output from the pooling layer is then

flattened into a one-dimensional vector using the Flatten layer,

preparing it for the subsequent fully connected layers. The

model continues with a dense layer of 100 units and employs

the ReLU activation function. This layer learns to identify

more complex patterns by combining the features extracted by

the previous convolutional layers.

Finally, the model concludes with a dense layer

representing the output layer, where the number of units in this

layer represents the number of classes. The SoftMax activation

function is applied to provide a probability distribution over

the classes. As shown in Figure 3, the model consists of several

CNN layers that progressively learn and represent more

complex patterns. The input goes through multiple layers that

apply filters to capture various aspects of the data. These layers

play a crucial role in capturing spatial dependencies and

ensuring accurate predictions by the model. Table 9 provides

more information on the hyperparameter settings that were

made during model training.

In our investigation, we leveraged CNN to classify time

series data by inputting the raw dataset, which consisted of

500,000 records, for model training and testing. We evaluated

the model's Accuracy ten times, calculating the average

accuracy and standard deviation of the ten accuracy values

obtained.

We compared different techniques for classifying time

series data. We found that the CNN model is a high

classification accuracy of 97% due to its ability to extract

informative features independent of time, as shown in Figure

4. However, machine learning models with frequency domain

preprocessing can achieve satisfactory accuracy by converting

time series data to the frequency domain. Furthermore, Time-

domain preprocessing produces the fastest classification

runtime for identifying tongue gestures.

Figure 3. Convolutional neural network (CNN) layers

architecture

Table 9. CNN model hyperparameters

Hyperparameters Value

Learning rate 0.001

Batch size 32

The hidden layer activation function ReLU

Optimizer Adam optimizer

epochs 10

Dropout 0.5

992

Table 10. Accuracy matrices for the random forest classification algorithm and time domain pre-processing

Author Year Input Method
Sensor

Location

Classification

Method
Intrusive Invasive Obtrusive Accuracy

[42] 2018
An array of photo-

reflective sensors

mounted in a

mouthpiece
SVM YES NO YES 77.50%

[18] 2019

Camera-based

tongue computer

interface

camera

mounted on

the computer

pattern

recognition

method

NO NO NO 83%

[43] 2019
Capacitive touch

sensors

the roof of

the mouth
SVM YES NO YES 91.01%

[16] 2021
Optical distance

sensors

the roof of

the mouth

multi-contact

detection

algorithm

YES NO YES 86.99%

[2] 2020 Video cameras Head CNN NO NO NO 99%

[44] 2017
Photo-reflective

sensors

Head

(cheaks)
SVM NO NO YES 80.45%

[45] 2023

Capacitive touch

and electrotactile

stimulation

Head (on

the lips)

centroid-based

estimator
YES NO YES 93%

[46] 2021
Accelerometer and

microphone

Head (next

to the ear)

KNN WITH

DTW
NO NO NO 90.90%

[47] 2020
Accelerometer and

sEMG
head not define YES NO YES 70.30%

[48] 2020

Accelerometer and

Surface

Electromyography

(sEMG)

Head

(forehead)
not define YES NO YES 95%

Ultimately, a comparison between the proposed system and

existing work can be made across several categories, such as

sensor type, sensor location, methodology used, system

application, classification method, and the degree of

intrusiveness, invasiveness, and obtrusiveness, as shown in

Table 10.

Figure 4. Confusion matrix of training, validation and test

5. CONCLUSIONS

This study explores the future of hands-free human-

computer interaction utilizing tongue gestures as an alternative

method of interacting with smart devices. We primarily focus

on the improvements achieved by utilizing a Convolution

neural network to classify tongue gestures. Our system is

designed to be non-intrusive, non-obtrusive, and non-invasive,

ensuring user comfort and ease of use in everyday scenarios.

We detected five distinct tongue gestures using an

accelerometer sensor attached to the lower jaw's Genioglossus

muscle. To enhance the accuracy of gesture classification, we

implemented three preprocessing methods, namely time

domain and frequency domain preprocessing.

Additionally, we applied four different machine-learning

algorithms. Our initial results with time domain preprocessing

achieved a 73% accuracy rate, while frequency domain

preprocessing improved the accuracy to 84%. However, the

most significant advancement was observed when utilizing the

CNN model on the raw data, resulting in an impressive

accuracy of 97% in accurately classifying tongue gestures. The

outcomes of our study have led to the development of an

exceptionally effective HCI system. This system not only

serves as an alternative input device for individuals with

limited or no limb mobility but also presents a practical

solution for daily use by anyone.

It is worth noticing that the data used for this study was

obtained in a controlled lab environment. In future work, it

would be valuable to address potential challenges related to

real-world scenarios, such as noise when users are in motion.

REFERENCES

[1] Ascari, R.E.S., Pereira, R., Silva, L. (2020). Computer

vision-based methodology to improve interaction for

people with motor and speech impairment. ACM

Transactions on Accessible Computing (TACCESS),

13(4): 1-33. https://doi.org/10.1145/3408300

[2] Anaraki, J.R., Orlandi, S., Chau, T. (2020). A deep

learning approach to tongue detection for pediatric

population. https://doi.org/10.48550/arXiv.2009.02397

[3] Richhariya, P., Chauhan, P., Kane, L., Pasricha, A.,

Dewangan, B.K. (2022). Recognition of hand motion

trajectory gestures for novel input interfaces. Revue

d'Intelligence Artificielle, 36(6): 919.

https://doi.org/10.18280/ria.360613

[4] Mahmoud, A.G., Hasan, A.M., Hassan, N.M. (2021).

Convolutional neural networks framework for human

hand gesture recognition. Bulletin of Electrical

993

Engineering and Informatics, 10(4): 2223-2230.

https://doi.org/10.11591/eei.v10i4.2926

[5] Chu, F.J., Xu, R., Zhang, Z., Vela, P.A., Ghovanloo, M.

(2018). The helping hand: An assistive manipulation

framework using augmented reality and tongue-drive

interfaces. In 2018 40th Annual International Conference

of the IEEE Engineering in Medicine and Biology

Society (EMBC), Honolulu, HI, USA, pp. 2158-2161.

https://doi.org/10.1109/EMBC.2018.8512668

[6] Kumar, R., Sharma, K., Assaf, M., Sharma, B., Naidu, S.

(2019). Development of an assistive tongue drive system

for disabled individuals. In PRICAI 2019: Trends in

Artificial Intelligence: 16th Pacific Rim International

Conference on Artificial Intelligence, Fiji, pp. 506-511.

https://doi.org/10.1007/978-3-030-29894-4_41

[7] Rada, H.M., Abdul Hassan, A.K., Al-Timemy, A.H.

(2023). Recognition of upper limb movements based on

hybrid EEG and EMG signals for human-robot

interaction. Iraqi Journal of Computers, Communications,

Control and Systems Engineering, (In press).

[8] Wali, S.S., Abdullah, M.N. (2021). Integrating wearable

devices for intelligent health monitoring system. Iraqi

Journal of Computers, Communications, Control and

Systems Engineering, 21(4): 1-14.

https://doi.org/10.33103/uot.ijccce.21.4.1

[9] Ali, M.J., Ali, A.H., Mahmood, A.I. (2020). The design

and simulation of FBG sensors for medical application.

Iraqi Journal of Computers, Communications, Control

and Systems Engineering, 20(4): 1-8.

https://doi.org/10.33103/uot.ijccce.20.4.1

[10] Nasser, A.R., Hasan, A.M., Humaidi, A.J., Alkhayyat, A.,

Alzubaidi, L., Fadhel, M.A., Santamaría, J., Duan, Y.

(2021). IoT and cloud computing in health-care: A new

wearable device and cloud-based deep learning

algorithm for monitoring of diabetes. Electronics, 10(21):

2719. https://doi.org/10.3390/electronics10212719

[11] Nasser, A.R., Mahmood, A.M. (2021). Cloud-based

Parkinson’s disease diagnosis using machine learning.

Mathematical Modelling of Engineering Problems, 8(6):

915-922. https://doi.org/10.18280/mmep.080610

[12] Croock, M.S. (2014). LTE based E-health monitoring

system. Iraqi Journal of Computers, Communications,

Control and Systems Engineering, 14(2): 37-45.

[13] Riyaz, L., Butt, M.A., Zaman, M. (2022). A novel

ensemble deep learning model for coronary heart disease

prediction. Revue d'Intelligence Artificielle, 36(6): 825-

832. https://doi.org/10.18280/ria.360602

[14] Kateb, Y., Meglouli, H., Khebli, A. (2023). Coronavirus

diagnosis based on chest X-ray images and pre-trained

DenseNet-121. Revue d'Intelligence Artificielle, 37(1):

23-28. https://doi.org/10.18280/ria.370104

[15] Kirtas, O., Mohammadi, M., Bentsen, B., Veltink, P.,

Struijk, L.N.A. (2021). Design and evaluation of a

noninvasive tongue-computer interface for individuals

with severe disabilities. In 2021 IEEE 21st International

Conference on Bioinformatics and Bioengineering

(BIBE), Kragujevac, Serbia, pp. 1-6.

https://doi.org/10.1109/BIBE52308.2021.9635238

[16] Jiang, B., Kim, J., Park, H. (2020). A new approach of

minimizing midas touch problem for a tracer-free

tongue-controlled assistive technology. IEEE Sensors

Journal, 21(1): 743-754.

https://doi.org/10.1109/JSEN.2020.3013858

[17] Mohammadi, M., Knoche, H., Bentsen, B., Gaihede, M.,

Struijk, L.N.A. (2020). A pilot study on a novel gesture-

based tongue interface for robot and computer control. In

2020 IEEE 20th International Conference on

Bioinformatics and Bioengineering (BIBE), Cincinnati,

OH, USA, pp. 906-913.

https://doi.org/10.1109/BIBE50027.2020.00154

[18] Niu, S., Liu, L., McCrickard, D.S. (2019). Tongue-able

interfaces: Prototyping and evaluating camera based

tongue gesture input system. Smart Health, 11: 16-28.

https://doi.org/10.1016/j.smhl.2018.03.001

[19] Ahmed, S.T., Al-Hamdani, R., Croock, M.S. (2020).

Enhancement of student performance prediction using

modified K-nearest neighbor. TELKOMNIKA

(Telecommunication Computing Electronics and

Control), 18(4): 1777-1783.

http://doi.org/10.12928/telkomnika.v18i4.13849

[20] Susilawati, K., Suarna, N., Amalia, D.R. (2022). Analisis

Usabilitas Pengguna E-learning Menggunakan HCI di

SMKAl-Musyawirin. INTERNAL (Information System

Journal), 5(1): 40-52.

https://doi.org/10.32627/internal.v5i1.514

[21] Sinche, S., Hidalgo, P., Fernandes, J., Raposo, D., Silva,

J., Rodrigues, A., Armando, N., Boavida, F. (2020).

Analysis of student academic performance using human-

in-the-loop cyber-physical systems. Telecom, 1(1): 18-

31. https://doi.org/10.3390/telecom1010003

[22] Jeske, D., Bagher, M., Pantidi, N. (2018). HCI expertise

needed! Personalisation and feedback optimisation in

online education. In Proceedings of the 31st International

BCS Human Computer Interaction Conference (HCI

2017), Sunderland, United Kingdom, pp. 1-4.

https://doi.org/10.14236/ewic/hci2017.15

[23] Wilde, A., Vasilchenko, A., Dix, A. (2018). HCI and the

educational technology revolution # HCIEd2018: A

workshop on video-making for teaching and learning

human-computer interaction. In Proceedings of the 2018

International Conference on Advanced Visual Interfaces,

Italy, pp. 1-3. https://doi.org/10.1145/3206505.3206600

[24] Atreya, A. (2021). Analysis of human computer

interaction (HCI) model in SMEs. International Journal

of Advanced Information` and Communication

Technology, 8(1): 47-53. https://doi.org/10.46532/ijaict-

202108003

[25] Hu, B., Hong, X.Q. (2022). Application of challenging

learning based on human-computer interaction under

machine vision in vocational undergraduate colleges.

Computational Intelligence and Neuroscience, 2022:

4667387. https://doi.org/10.1155/2022/4667387

[26] Santana-Mancilla, P.C., Rodriguez-Ortiz, M.A., Garcia-

Ruiz, M.A., Gaytan-Lugo, L.S., Fajardo-Flores, S.B.,

Contreras-Castillo, J. (2019). Teaching HCI skills in

higher education through game design: A study of

students’ perceptions. Informatics, 6(2): 22.

https://doi.org/10.3390/informatics6020022

[27] Bollin, A., Pasterk, S., Kesselbacher, M., Reci, E.,

Wieser, M., Lobnig, N. (2021). HCI in K12 computer

science education–using HCI as a topic and a didactic

tool. In CHItaly 2021: 14th Biannual Conference of the

Italian SIGCHI Chapter, pp. 1-8.

https://doi.org/10.1145/3464385.3464717

[28] Nguyen, D.S., Le, Q.M. (2020). Hacking user in human-

computer interaction design (HCI). In 2020 3rd

International Conference on Information and Computer

Technologies (ICICT), USA, pp. 230-234.

994

https://doi.org/10.1109/BIBE52308.2021.9635238
https://doi.org/10.1109/BIBE50027.2020.00154
https://doi.org/10.1155/2022/4667387

https://doi.org/10.1109/ICICT50521.2020.00042

[29] Kulshreshtha, N., Basak, S., Monika, M. (2021). HCI:

Use in cyber security. International Journal for Research

in Applied Science and Engineering Technology, 9(VII):

109-113. https://doi.org/10.22214/ijraset.2021.36246

[30] Grobler, M., Gaire, R., Nepal, S. (2021). User, usage and

usability: Redefining human centric cyber security.

Frontiers in Big Data, 4: 583723.

https://doi.org/10.3389/fdata.2021.583723

[31] Moallem, A. (2019). HCI for cybersecurity, privacy and

trust. First International Conference, HCI-CPT 2019,

Held as Part of the 21st HCI International Conference,

Denmark, Vol. 11594. https://doi.org/10.1007/978-3-

030-77392-2

[32] Akinsola, J.E.T., Akinseinde, S., Kalesanwo, O.,

Adeagbo, M., Oladapo, K., Awoseyi, A., Kasali, F.,

Heimgartner, R. (2021). Application of artificial

intelligence in user interfaces design for cyber security

threat modeling. IntechOpen.

https://doi.org/10.5772/intechopen.96534

[33] Razzak, M.A., Islam, M.N. (2020). Exploring and

evaluating the usability factors for military application:

A road map for HCI in military applications. Human

Factors and Mechanical Engineering for Defense and

Safety, 4: 1-18. https://doi.org/10.1007/s41314-019-

0032-6

[34] Zeng, Y.L. (2021). How human centered AI will

contribute towards intelligent gaming systems.

Proceedings of the AAAI Conference on Artificial

Intelligence, 35(18): 15742-15743.

https://doi.org/10.1609/aaai.v35i18.17868

[35] Fang, X.W. (2019). HCI in games. First International

Conference, HCI-Games 2019, Held as Part of the 21st

HCI International Conference, USA, Vol. 11595.

https://doi.org/10.1007/978-3-030-22602-2

[36] Rau, P.P., Ji, Y.G. (2018). Games and HCI. International

Journal of Human-Computer Interaction, 34(8): 681-681.

https://doi.org/10.1080/10447318.2018.1461766

[37] Dias, S.B., Diniz, J.A., Konstantinidis, E.I., Savvidis, T.,

Zilidou, V., Bamidis, P.D., Grammatikopoulou, A.,

Dimitropoulos, K., Grammalidis, N., Jaeger, H.,

Stadtschnitzer, M., Silva, H., Telo, G., Ioakeimidis, I.,

Ntakakis, G., Karayiannis, F., Huchet, E., Hoermann, V.,

Filis, K., Theodoropoulou, E., Lyberopoulos, G.L.,

Kyritsis, K.A., Papadopoulos, A., Depoulos, A., Trivedi,

D., Chaudhuri, R.K., Klingelhoefer, L., Reichmann, H.,

Bostantzopoulou, S., Katsarou, Z., Iakovakis, D.,

Hadjidimitriou, S., Charisis, V.S., Apostolidis, G.,

Hadjileontiadis, L.J. (2021). Assistive HCI-serious

games co-design insights: The case study of i-prognosis

personalized game suite for Parkinson’s disease.

Frontiers in Psychology, 11: 1-16.

https://doi.org/10.3389/fpsyg.2020.612835

[38] Guglietti, B., Hobbs, D.A., Wesson, B., Ellul, B.,

McNamara, A., Drum, S., Collins-Praino, L.E. (2022).

Development and co-design of NeuroOrb: A novel

“serious gaming” system targeting cognitive impairment

in Parkinson’s disease. Frontiers in Aging Neuroscience,

14: 266. https://doi.org/10.3389/fnagi.2022.728212

[39] Zeng, Y.L., Shah, A., Thai, J., Zyda, M. (2021). Applied

machine learning for games: A graduate school course.

In Proceedings of the AAAI Conference on Artificial

Intelligence, 35(17): 15695-15703.

https://doi.org/10.1609/aaai.v35i17.17849

[40] Ninaus, M., Moeller, K., McMullen, J., Kiili, K. (2017).

Acceptance of game-based learning and intrinsic

motivation as predictors for learning success and flow

experience. International Journal of Serious Games, 4(3):

15-30. http://dx.doi.org/10.17083/ijsg.v4i3.176

[41] van de Weijer, S.C., Kuijf, M.L., de Vries, N.M., Bloem,

B.R., Duits, A.A. (2019). Do-it-yourself gamified

cognitive training. JMIR Serious Games, 7(2): e12130.

https://doi.org/10.2196/12130

[42] Hashimoto, T., Low, S., Fujita, K., Usumi, R.,

Yanagihara, H., Takahashi, C., Sugimoto, M., Sugiura,

Y. (2018). Tongueinput: Input method by tongue

gestures using optical sensors embedded in mouthpiece.

In 2018 57th Annual Conference of the Society of

Instrument and Control Engineers of Japan (SICE), Nara,

Japan, pp. 1219-1224.

https://doi.org/10.23919/SICE.2018.8492690

[43] Li, R., Wu, J., Starner, T. (2019). Tongueboard: An oral

interface for subtle input. In Proceedings of the 10th

Augmented Human International Conference 2019, pp.

1-9. https://doi.org/10.1145/3311823.3311831

[44] Yamashita, K., Kikuchi, T., Masai, K., Sugimoto, M.,

Thomas, B.H., Sugiura, Y. (2017). CheekInput: Turning

your cheek into an input surface by embedded optical

sensors on a head-mounted display. In Proceedings of the

23rd ACM Symposium on Virtual Reality Software and

Technology, pp.1-8.

https://doi.org/10.1145/3139131.3139146

[45] Jingu, A., Tanaka, Y., Lopes, P. (2023). LipIO: Enabling

lips as both input and output surface. In Proceedings of

the 2023 CHI Conference on Human Factors in

Computing Systems, pp. 1-14.

https://doi.org/10.1145/3544548.3580775

[46] Sun, W., Li, F.M., Steeper, B., Xu, S., Tian, F., Zhang,

C. (2021). Teethtap: Recognizing discrete teeth gestures

using motion and acoustic sensing on an earpiece. In 26th

International Conference on Intelligent User Interfaces,

pp. 161-169. https://doi.org/10.1145/3397481.3450645

[47] Vojtech, J.M., Hablani, S., Cler, G.J., Stepp, C.E. (2020).

Integrated head-tilt and electromyographic cursor control.

IEEE Transactions on Neural Systems and Rehabilitation

Engineering, 28(6): 1442-1451.

https://doi.org/10.1109/TNSRE.2020.2987144

[48] Groll, M.D., Hablani, S., Vojtech, J.M., Stepp, C.E.

(2020). Cursor click modality in an accelerometer-based

computer access device. IEEE Transactions on Neural

Systems and Rehabilitation Engineering, 28(7): 1566-

1572. https://doi.org/10.1109/TNSRE.2020.2996820

[49] Chen, V., Xu, X.H., Li, R., Shi, Y.C., Patel, S., Wang,

Y.T. (2021). Understanding the design space of mouth

microgestures. In Designing Interactive Systems

Conference 2021, pp. 1068-1081.

https://doi.org/10.1145/3461778.3462004

[50] Lv, Z., Poiesi, F., Dong, Q., Lloret, J., Song, H. (2022).

Deep learning for intelligent human-computer

interaction. Applied Sciences, 12(22): 11457.

https://doi.org/10.3390/app122211457

995

https://doi.org/10.3389/fpsyg.2020.612835
https://doi.org/10.1145/3461778.3462004
https://doi.org/10.3390/app122211457

