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In light of the profound impact of the COVID-19 pandemic on the tourism sector, accurate 

forecasting of daily visitor arrivals has become paramount. Introduced herein is a novel 

PROPHET-Bayesian Gaussian Process-Forward Neural Network (PROPHET-BGP-FNN) 

model, an advanced deep learning (DL) approach, devised for this purpose. This model 

uniquely integrates the PROPHET model with a deep neural network, merging BGP and 

FNN, thereby enabling the detection of both linear and nonlinear data attributes. Linear 

characteristics are discerned by the PROPHET component. Contrary to traditional 

methodologies which predominantly employ monthly or quarterly datasets, this approach 

harnesses the precision of daily data, thereby offering a timely and refined forecast. Given 

the complexity of daily tourist demand data, which manifests a blend of linear and nonlinear 

patterns, the conventional frameworks often fall short in representation. Through an 

application on Hawaiian tourism data spanning 2017 to 2021, 80% of which was employed 

for training and the remainder for validation, it was observed that the PROPHET-BGP-FNN 

model surpassed benchmark models, including Long Short-Term Memory (LSTM)-

SARIMAX-PROPHET, with a remarkable forecast accuracy of 97%. This investigation 

underscores the viability of integrating high-frequency data with cutting-edge machine 

learning (ML) methodologies for a more precise forecast in tourism demand. Such insights 

hold significant implications for strategic decision-making, thereby enhancing the tourism 

sector's economic viability and competitive stance. 

Keywords: 

Bayesian Gaussian process, COVID-19, 

Forward Neural Network, forecasting, 

Hawaii, PROPHET, tourism arrivals 

1. INTRODUCTION

Tourism has been identified as a major contributor to the 

economic advancement of numerous nations. Substantial 

research has been dedicated to forecasting tourism demand [1]. 

In particular, tourism serves as a cornerstone for Hawaii's 

economy. State government statistics revealed that the 

Hawaiian Islands were visited by more than 6.4 million 

visitors in 2003, with expenditures surpassing 10 billion 

dollars [2]. The dominant markets from which these visitors 

hailed included the United States of America (West and East), 

Japan, and Canada. 

However, 2020 witnessed a drastic alteration in the global 

tourism landscape. The emergence of the COVID-19 epidemic 

profoundly affected Hawaii's tourism sector. Hawaii's initial 

case was reported in March 2020 [3]. Subsequently, the World 

Health Organization (WHO) categorized the outbreak of the 

novel coronavirus (2019-nCoV) as a global pandemic on 

March 6, 2020. Classified as a severe acute respiratory 

syndrome (SARS) variant, the coronavirus (COVID-19) was 

declared a pandemic by the WHO, underscoring its grave 

nature. The inaugural case was identified in December 2019 in 

Wuhan, China, as a novel viral pneumonia began affecting a 

cluster of patients. Following its identification, various 

precautionary measures were employed by governments 

globally to curb its proliferation. These measures 

encompassed containment strategies, prompt testing, 

mandatory mask usage, self-isolation, and the enforcement of 

social distancing. Notably, the countries most impacted 

encompassed the United States, India, Brazil, France, 

Germany, the United Kingdom, Russia, South Korea, Italy, 

Turkey, Spain, and Vietnam [4]. Global travel restrictions and 

lockdowns were imposed by January 2020 to thwart the spread 

of the SARS-CoV-2 virus, inducing a palpable shockwave 

through the global tourism and hospitality sectors. Such 

reverberations were profoundly felt in tourism-centric 

economies. In stark contrast to previous years, 2019's data 

showcased a plummet in Hawaiian tourist arrivals by 73.9%, 

resulting in a mere 2,708,258 visitors. Arrivals by air and 

cruise ship saw reductions by 73.9% (2,678,073 individuals) 

and 79.0% (30,185 guests) respectively. Consequently, the 

cumulative visitor days witnessed a 68.3% decline [2, 5]. 

The incorporation of Artificial Intelligence (AI) in 

predicting tourist arrivals is increasingly recognized as a 

revolutionary approach to a complex predicament. AI has been 

demonstrated to possess superior aptitude in deciphering 

intricate data patterns, discerning nonlinear relationships, and 

identifying dynamic shifts. The urgency to integrate AI into 

tourism forecasting is emphasized by its potential to amplify 

the precision and flexibility of predictions, notably in 

tumultuous periods exemplified by the COVID-19 outbreak. 

Nevertheless, such incorporations are not devoid of hurdles. 

Conventional forecasting techniques often wrestle with the 

intricacies presented by high-frequency data and multifaceted 
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patterns. The pandemic’s pronounced disruptions have 

illuminated these predicaments, necessitating a profound 

reevaluation and recalibration of prediction models. This 

retooling is imperative to encapsulate rapid alterations in 

tourist behaviors, governance protocols, and health 

stipulations. Leveraging AI emerges as a prospective pathway 

to traverse these multifaceted challenges. Harnessing the 

power of AI facilitates a nuanced extraction of insights from 

expansive and variegated data pools, ultimately culminating in 

a more refined and adaptive forecasting strategy, especially 

amidst global uncertainties akin to the COVID-19 scenario. 

DL has been extensively employed for predictive tasks, 

offering advancements over traditional AI models. Notably, 

most extant research has been oriented towards quarterly or 

monthly data, which, due to their low frequency, might 

provide limited insights. In contrast, daily data, given its 

higher frequency, is posited to furnish richer information. It 

has been confirmed by researchers that oscillations in tourist 

arrivals can be categorized into trends, irregularities, or 

seasonal components [6]. The complexity of forecasting daily 

tourist arrivals arises from the intricate interplay of linear 

trends and nonlinear patterns. 

Predominantly, scholarly efforts have focused on 

leveraging diverse quantitative techniques, such as time series, 

econometrics, and AI, to forecast the volume of international 

visitors [6]. Within the domain of AI, neural network models 

have been discerned as potent tools for the tourism industry. It 

is acknowledged that DL falls under the umbrella of ML, 

which subsequently is a subset of AI. A salient feature 

distinguishing DL models from traditional neural networks is 

the heightened complexity, particularly in the depth of hidden 

layers within the neural architecture. In light of the COVID-

19 pandemic's profound disruption of the tourism sector, there 

arises an imperative to estimate tourist flows using available 

pandemic-related data in tandem with inbound tourist statistics. 

A multitude of researchers and data scientists are engaged in 

the development of predictive models, aiming to elucidate the 

potential trajectory of the virus, which could serve to better 

forecast its proliferation [1]. 

Historically, the prowess of DL has been manifested in its 

adept handling of intricate data sets, exemplified in diverse 

studies such as face verification [7], Bitcoin price forecasting 

[8], and facial recognition [9]. This efficacy is largely 

attributed to DL's capability to autonomously discern and 

extract distinguishing features, obviating the necessity for 

extensive manual intervention or domain-specific knowledge. 

Yet, it is posited that solely relying on DL for forecasting 

tourist arrivals might be suboptimal, given the multifaceted 

nature of tourist arrival data. While Artificial Neural Networks 

(ANNs) are theoretically capable of modeling any nonlinear 

function with remarkable precision, they often encounter the 

pitfall of overfitting, leading to suboptimal performance. In 

this context, hybrid models emerge as promising solutions. 

Travel restrictions instituted in response to the COVID-19 

pandemic have undeniably reshaped global tourism trends. 

Given the perceived superiority of daily data over lower-

frequency data, daily tourist arrival statistics have been 

harnessed to craft daily forecasts. Consequently, a paramount 

research query is the development of a hybrid model that 

adeptly leverages time series data to refine the accuracy of 

tourist arrival predictions during the COVID-19 era. In 

addressing this, a linear technique amalgamated with 

nonlinear methodologies (PROPHET-BGP-FNN) is proposed. 

Challenges arise from mixed patterns in the data; while linear 

models often falter in modeling nonlinear patterns, their 

nonlinear counterparts are similarly encumbered when faced 

with linear patterns. This underscores the intricacy of 

effectively navigating data patterns that are interspersed with 

both linear and nonlinear elements. Notably, the trajectory of 

research in tourism prediction has seen the integration of time-

series algorithms with both conventional neural network 

strategies and advanced DL methodologies.  

In a comparative study conducted by Bouhaddour et al. [10], 

the SARIMA and PROPHET prediction models were evaluated 

for their capacity to forecast tourism in Singapore. These 

evaluations were based on historical tourist arrival data. While 

SARIMA is recognized for its proficiency in delineating both 

seasonal and non-seasonal patterns, the PROPHET model 

encompasses trend alterations and seasonality. Comparative 

metrics, such as mean absolute error (MSE) and root mean 

squared error (RMSE), were employed to gauge the 

forecasting performance. It was found that the PROPHET 

model exhibited superior forecasting capabilities compared to 

SARIMA. These findings hold significance, offering pertinent 

insights for refining tourism demand predictions, thereby 

aiding policymakers and industry stakeholders in their 

decision-making pursuits. 

A distinct research endeavor led by Alamsyah et al. [11] 

delved into the application of ANN models for prognosticating 

tourism demand in Indonesia. The overarching objective was 

to augment the precision of tourism demand forecasts by 

harnessing the innate ability of ANNs to discern intricate 

patterns and nonlinear associations. Historical tourism data 

from Indonesia was utilized for training and assessment of the 

ANN models. Performance metrics such as mean absolute 

percentage error (MAPE) and RMSE were adopted to 

ascertain forecast accuracy. It was inferred that ANN models 

demonstrated commendable efficacy in prognosticating 

tourism demand, imparting valuable insights for strategic 

tourism planning in I MAPE Indonesia. 

Wu et al. [12] proffered a novel forecasting methodology, 

amalgamating seasonal auto-regressive integrated moving 

average (SARIMA) with LSTM. This innovative approach 

was tailored for the prompt prediction of daily tourist arrivals 

in Macau SAR, China. LSTM, being a nonlinear AI 

methodology, is adept at encapsulating long-term 

contingencies in time series data. By synergizing the 

predictive prowess of SARIMA with LSTM's proficiency in 

residual reduction, the combined SARIMA + LSTM model 

was observed to eclipse other predictive techniques in efficacy. 

This research augments best practices in the tourism industry, 

particularly in terms of achieving precise daily arrival 

predictions. 

Furthering the discourse, Assaf et al. [13] incorporated the 

Bayesian Global Vector Autoregressive (BGVAR) model for 

the formulation and prediction of regional tourism demand. 

The BGVAR framework integrates Bayesian statistical tenets 

and effectively captures interdependencies spanning multiple 

variables within a vector autoregressive (VAR) model. The 

deployment of the BGVAR model for regional tourism 

demand was undertaken with the intent to refine the accuracy 

and reliability of predictions. 

Collectively, these studies underscore the continuous 

evolution and diversity of methods employed in tourism 

forecasting. Such advancements not only pave the way for 

enhanced predictive accuracy but also facilitate informed 

decision-making processes within the tourism industry. 

In the extensive review of literature concerning proxies 
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capturing tourism demand, the number of tourist arrivals was 

identified as the predominant variable employed. The 

discourse encompassed three principal methodologies utilized 

in the realm of tourist demand forecasting: econometrics, time 

series, and AI-based techniques. Nevertheless, in the present 

study, a composite model is introduced for forecasting tourist 

arrivals in Hawaii. Given that the time series of tourist arrivals 

manifests both linear and nonlinear characteristics, a 

composite prediction model, PROPHET -BGP-FNN, was 

constructed by integrating the PROPHET model, known for its 

adeptness at learning long-term historical data characteristics 

[14]. This hybrid model seeks to harness the advantages of the 

PROPHET model while preserving the predictive capabilities 

inherent to FNN-BGP models. 

The impetus for this research has been shaped by the 

pressing demand for robust and adaptable forecasting 

instruments tailored for the tourism sector, especially in 

prominent destinations such as Hawaii. This urgency has been 

exacerbated by unforeseen disruptions, notably the COVID-19 

pandemic. The envisaged practical ramifications of this 

research echo profoundly within the industry's recuperative 

endeavors. The composite forecasting model, PROPHET-BGP-

FNN, is posited to equip stakeholders with an instrumental 

tool adept at anticipating the intricate vicissitudes in daily 

tourist arrivals. The pivotal applicability of this study is 

perceived in its prospective contributions to reinvigorating the 

tourism domain, accentuating its adaptability and resilience 

during periods characterized by flux and unpredictability. 

Moreover, the efficacy of the PROPHET-BGP-FNN model 

in estimating the count of tourist arrivals is evaluated by 

contrasting its performance against that of four distinct models, 

notably SARIMAX, LSTM, and PROPHET. 

The ensuing manuscript is systematically organized. 

Section 2 elucidates the methodology underpinning the 

proposed PROPHET-BGP-FNN model, supplemented by 

foundational knowledge. Section 3 delineates the process of 

data preparation, the model's implementation, and an 

analytical exploration of the empirical results garnered. 

Conclusions are drawn in Section 4. 

 

2. METHODOLOGY  

 

2.1 Traditional prediction models 

 

2.1.1 LSTM model  

LSTM is identified as a variant of the recurrent neural 

network (RNN) architecture, formulated to address the 

intricacies of sequential data patterns. Contrary to 

conventional RNNs, the structure of LSTMs has been reported 

to counteract the vanishing gradient dilemma, allowing for the 

efficient retention and learning from extended sequences' 

dependencies [6]. Such proficiency is attributed to their 

specialized memory cell configuration, outfitted with distinct 

gates, namely input, forget, and output, which orchestrate the 

progression of information. These gates facilitate the LSTM's 

capacity to selectively conserve pertinent information across 

protracted intervals, and subsequently to generate accurate 

predictions or classifications across diverse realms, including 

natural language processing, speech recognition, and time 

series analysis [15]. Memory cells in LSTMs, integrated with 

these gate mechanisms, dictate the learning trajectory by 

discerning the information to be retained, omitted, or relayed 

[9]. Though acknowledged for their adeptness in deciphering 

sophisticated sequential patterns apt for time series analysis, 

LSTMs have been observed to grapple with impediments such 

as the vanishing gradient phenomenon during training. Such 

constraints could potentially undermine their efficacy in 

discerning prolonged sequence associations. The PROPHET-

BGP-FNN model is postulated to augment this by synergizing 

DL's prowess with Bayesian optimization, thereby amplifying 

the model's capability to discern both short and long-term 

sequence intricacies. 

 

2.1.2 SARIMAX (SARIMA with eXogenous Factors) model 

The SARIMAX model has been delineated as an advanced 

time series forecasting construct that broadens the 

conventional ARIMA model, facilitating the inclusion of 

seasonal components and exogenous variables. It has been 

demonstrated to discern patterns in time series datasets by 

emphasizing autoregressive (AR) and moving average (MA) 

components [9]. Concurrently, differencing is employed to 

ensure data stationarity. Furthermore, its framework 

encompasses the effects of seasonality through designated 

seasonal AR and MA terms. A distinctive feature of 

SARIMAX is its ability to assimilate exogenous regressors, 

thereby empowering the model to integrate external 

determinants influencing the behavior of time series data. Such 

versatility has rendered SARIMAX especially advantageous 

for forecasting tasks in which external variables critically 

impact observed data patterns, such as economic indicators in 

sales forecasts or meteorological data in energy demand 

predictions [10, 12]. Despite SARIMAX's strength as a 

comprehensive model adept at integrating seasonality and 

exogenous components, it has been noted to exhibit limitations 

when confronted with intricate, non-linear patterns frequently 

found in tourism datasets. Inherent assumptions of linearity 

and stationarity might not be optimal for modeling nuanced 

interactions within certain data sets. The PROPHET-BGP-

FNN model endeavors to redress these constraints by tapping 

into the non-linear potentials of DL combined with BGP, 

optimizing the extraction of both linear and non-linear data 

facets. 

In essence, both LSTM and SARIMAX, while pivotal in the 

domain of time series analysis, manifest discernible 

vulnerabilities, particularly in delineating multifaceted 

patterns and non-linear data relationships. The PROPHET-

BGP-FNN model emerges as a remedy, fusing DL, Bayesian 

optimization, and probabilistic modeling, thereby fostering a 

holistic forecasting paradigm aptly tailored for the intricacies 

characteristic of tourism demand data. 

 

2.2 The PROPHET-BGP-FNN prediction model 

 

2.2.1 Neural PROPHET model 

The foundation of Neural PROPHET is laid upon the Python 

and R-based model " PROPHET ", which has been documented 

for its utility in forecasting time series data [14]. A significant 

concept introduced by the Neural PROPHET model is modular 

composability, thereby amplifying its adaptability and 

versatility [15]. This model is constructed with discrete 

modules, each of which contributes an additive element to the 

forecast. Additionally, by scaling with the trend, numerous 

components can be adjusted to possess a multiplicative effect. 

Despite each module functioning with distinct inputs and 

modeling processes, it is mandated that they yield z outputs, 

where h symbolizes the consecutive future steps predicted. 

These prognostications, denoted as 𝑧,̂…,�̂�𝑡+ℎ−1, correspond to 

impending values of the time series 𝑧𝑡 , … , 𝑧𝑡+ℎ−1. In instances 
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where dependency is solely time-based, an arbitrary number 

of forecasts can be generated. From a mathematical 

perspective, this specific scenario is equated to a one-step 

ahead prediction with z=1. 

 

�̂�𝑡 = 𝑇(𝑡) + 𝑆(𝑡) + 𝐸(𝑇) + 𝐹(𝑡) + 𝐴(𝑡) + 𝐿(𝑡) (1) 

 

where, 

T(t) signifies the trend at time t; 

S(t) stands for seasonal effects at time t; 

E(t) represents event and holiday impacts at time t; 

F(t) corresponds to regression effects at time t for 

upcoming-known exogenous variables; 

A(t) indicates auto-regression effects at time t based on 

prior observations; 

L(t) delineates regression effects at time t for lagged 

observations of exogenous variables. 

To architect the model, individual component modules 

might be adjusted and amalgamated in isolation: 

Trend T(t): Within the Neural PROPHET model, the trend 

component encapsulates the overall trajectory and direction of 

time series data. Both linear and non-linear functions have 

been employed to depict the trend, thereby accommodating 

different trend patterns. The trend's essence, established by 

merging an offset (m) with a growth rate (k), has been 

traditionally recognized. The trend's influence at a distinct 

time (𝑡1) is deduced by magnifying the growth rate with the 

elapsed time from the trend's initiation (𝑡0), supplemented by 

the offset (m). 

 

T(𝑡1)=m+k.(𝑡1-𝑡0) (2) 

 

Seasonality S(t): Seasonality is characterized by repetitive 

patterns manifesting at consistent intervals within data. By 

integrating seasonal components, such as yearly or weekly 

seasonality, the PROPHET model captures these repetitive 

nuances. Through the employment of Fourier terms, the 

management of seasonality in Neural PROPHET has been 

facilitated [16]. For each designated seasonality, a 

predetermined number of Fourier terms are instituted, as 

portrayed in Eq. (3), wherein k is the number of Fourier terms 

earmarked for the seasonality with periodicity p. 

 

𝑆(𝑡) =∑ (𝑎𝑗 . cos
2𝜋𝑗𝑡

𝑝
+ 𝑏𝑗 . sin

2𝜋𝑗𝑡

𝑝
)

𝑘

𝑗=1
  (3) 

 

Holidays E(t): Special events or holidays can induce 

marked variations in time series data. A holiday component 

has been embedded in the PROPHET model to encapsulate the 

ramifications of such occurrences. This inclusion enables the 

pinpointing of specific dates or durations tied to holidays, 

allowing for their potential impact on the dataset to be 

considered. By acknowledging holiday effects, predictions can 

more adeptly capture anomalies arising during such intervals. 

The PROPHET model's versatility enables its classification 

both as a linear and non-linear construct, contingent upon its 

application and integral components. The overarching trend in 

time series data is captured through a linear regression model 

employed by PROPHET. Nonetheless, PROPHET also 

assimilates various non-linear elements, inclusive of 

seasonality and holiday implications, facilitating the depiction 

of intricate data patterns that might elude a rudimentary linear 

regression model. In essence, PROPHET emerges as a hybrid 

model, amalgamating both linear and non-linear 

methodologies. The integration of both linear and non-linear 

components equips PROPHET to comprehend an extensive 

gamut of intricate patterns within time series data, solidifying 

its stature as a formidable forecasting tool. 

 

2.2.2 The FNN model 

An FNN, as depicted in Figure 1, represents a foundational 

architecture within the realm of neural networks. This model 

encompasses several layers: an input layer designed for data 

reception, one or multiple hidden layers dedicated to 

processing and discerning patterns, and an output layer tasked 

with rendering predictions. Within these layers, neurons are 

interconnected through weights and biases. Data is transmitted 

through the network by these weighted connections, and, in 

the hidden layers, activation functions are applied to 

encapsulate nonlinear associations. The culmination of this 

process, known as forward propagation, yields the final output. 

Using labeled data alongside a loss function, the FNN 

undergoes training, wherein the adjustment of weights and 

biases is carried out to curtail prediction discrepancies. This 

model serves as the bedrock upon which more intricate neural 

network configurations are based, making it indispensable for 

activities like classification and regression. Notably, in recent 

times, the FNN has been recognized for its DL-based time 

series forecasting capacities, especially its prowess in 

delineating intricate temporal links within datasets. Within the 

sphere of tourism demand forecasting, this model has been 

employed to decipher the nuanced interconnections amongst 

myriad tourism demand determinants and to prognosticate 

forthcoming demand levels with precision [17, 18]. However, 

the quest for discerning the optimal set of hyperparameters for 

an FNN model has been identified as a process that can be 

arduous, resource-intensive, and computationally demanding 

[19].  

 

 
 

Figure 1. Depiction of a fully connected layered feed-FNN 

with a singular hidden layer. Neurons in the input layer are 

represented in green, outputs in red, and hidden neurons are 

illustrated in yellow 

 

2.2.3 BGP model 

BGP optimization is characterized as a methodology for the 

optimization of black-box functions. In instances where the 

analytical form of the function remains elusive, evaluations at 

specific data points can still be conducted. A notable attribute 

of the BGP is its proficiency in modeling intricate non-linear 

functions and discerning correlations amongst input variables. 

This model is delineated by a mean function and a covariance 

function, each elucidating the prior distribution over the 

functional space. The mean function denotes the anticipated 

836



 

value of the function, whereas the covariance function 

encapsulates the correlation magnitude between the input 

variables. By synergizing these models, both deterministic and 

stochastic facets of the time series were captured, leading to 

enhanced predictive accuracy [20]. 

For hyperparameter tuning within ML realms, the prowess 

of the BGP becomes evident. It demonstrates marked utility, 

especially when confronted with multifaceted models 

brimming with hyperparameters demanding calibration. An 

exemplar pseudo-code for Bayesian optimization is provided 

in Figure 2. 

The foundational step of the algorithm entails establishing 

a prior distribution over the objective function, emblematic of 

the preliminary beliefs regarding the function, pre-

observations. Subsequently, with each iteration, 

hyperparameters for evaluation are chosen in line with the 

acquisition function. This function optimally melds 

exploration with exploitation, earmarking the point 

characterized by the paramount expected enhancement in 

objective function value. Post this evaluation, the Gaussian 

process undergoes an update with the newly procured 

observation, and the procedure is iteratively repeated until an 

agreeable solution emerges. A salient advantage of Gaussian 

process-based optimization resides in its capability to manage 

noisy objectives that are resource-intensive to evaluate. 

Moreover, it extends a probabilistic framework conducive to 

uncertainty quantification and adaptive exploration. The 

algorithmic structure for Bayesian optimization is detailed as 

follows [20]: 

 
Algorithm 1 Pseudo-Code for Bayesian Optimization 

A Gaussian process prior is placed on f.  

At n0 points, f is observed pursuant to an initial space-filling 

experimental design. Here, n is set as n=n0. 

while n remains ≤ N: 

The posterior probability distribution on f is updated using 

accessible data. 

xn is defined as the acquisition function's maximizer over x, 

computed utilizing the prevailing posterior distribution. 

An observation is made: yn=f(xn). 

Increment n 

end while 

The concluding solution is returned: either the data point 

assessed with the supreme f(x) or the point epitomized by 

the most substantial posterior mean. 

 

2.2.4 BGP-FNN model  

The efficacy of the BGP-FNN model in modeling residuals, 

often elusive to traditional time series models, has been 

observed. By merging these methodologies, not only are the 

inherent strengths of both models harnessed, but a resilient 

framework for the quantification of uncertainty in predictions 

is also established. Bayesian optimization, rooted in 

probabilistic modeling of the function, identifies the 

subsequent evaluation point based on estimated performance. 

Iterative updates to the model with fresh evaluations aim to 

discern the optimal set of hyperparameters, enhancing the 

target performance metric. An efficient, automated 

exploration of the hyperparameter space is facilitated by 

Bayesian optimization, its objective being the identification of 

the most proficient configuration that amplifies metrics like 

accuracy. 

Upon integration with the FNN model, an avenue for 

pinpointing the pinnacle hyperparameters that boost the 

model's performance is paved. BGP-FNN models, 

representative of DL architectures, possess the capacity to 

concurrently process spatial and temporal attributes in 

sequence data. Nonetheless, the triumph of these models is 

intricately linked to hyperparameter selection, encompassing 

elements like learning rate, batch size, convolutional layer 

count, dropout rate, and regularization intensity. It has been 

observed that employing BGP-FNN enhances performance 

and generalization, curtails overfitting, and conserves 

resources in contrast to manual hyperparameter adjustments. 

For the task of identifying both spatial relations and 

temporal dependencies in time series data, the BGP-FNN 

model is utilized. The unique nonlinear patterns discerned 

become instrumental in modeling the residual sequence of the 

model in question. The capability of BGP-FNN model 

networks to assimilate spatial and temporal characteristics in a 

data sequence has been emphasized. A plethora of 

hyperparameters, including the count of convolutional filters, 

kernel dimensions, and learning rate, can be modulated to 

optimize the BGP-FNN model's performance. To automate the 

search for these hyperparameters' optimal values, Bayesian 

optimization can be deployed. This involves iterative 

evaluations of the model on a compact hyperparameter set, 

followed by the determination of the succeeding 

hyperparameter set based on prior outcomes.  

 

2.2.5 The PROPHET-BGP-FNN model  

The PROPHET-BGP-FNN model, as chosen for this study, 

emerges as an astute blend of disparate strengths, meticulously 

constructed to tackle the intricacies of forecasting tourist 

arrivals within time series data. This confluence of models is 

crafted to offer a resilient and precise predictive framework. 

Figure 2 delineates the operational process of the PROPHET-

BGP-FNN model. The decision to employ the PROPHET-

BGP-FNN model over alternative methodologies is 

underscored by its unique advantages. The cornerstone of this 

construct is the PROPHET model, recognized for its 

proficiency in navigating time series data laden with 

seasonality and trends. Concurrently, the BGP-FNN 

component amplifies the model's aptitude for discerning 

complex, non-linear patterns latent within the data. By 

melding these models, their individual strengths are leveraged 

while simultaneously instituting a robust paradigm for 

quantifying predictive uncertainties. As a result, both 

deterministic and stochastic facets of the time series are 

adeptly captured, culminating in heightened forecast precision. 

Furthermore, the incorporation of Bayesian optimization 

streamlines the hyperparameter optimization phase, 

conserving invaluable resources. 

Considering the complexities inherent in tourist demand 

data and the paramount significance of precise arrival 

forecasts, the PROPHET-BGP-FNN model stands out as a 

formidable contender, displaying marked superiority over 

conventional alternatives such as SARIMAX, PROPHET, and 

LSTM. This avant-garde methodology adeptly navigates the 

subtleties of tourism forecasting, thereby bolstering the 

trustworthiness and accuracy of projections. 

For time-series forecasting, the PROPHET-BGP-FNN 

model provides a robust solution characterized by enhanced 

precision and dependability. Over time, myriad models 

designed for predicting tourist demand have surfaced, 

encompassing econometric, time-series, or AI-driven 

strategies. In this instance, the PROPHET model's capabilities 

are merged with DL techniques, each grounded in distinct 
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philosophical frameworks. While the PROPHET model finds 

frequent application in econometric scenarios, its synergy with 

BGP-FNN models augments its overarching efficacy. A 

juxtaposition of this proposed model with conventional 

methodologies, utilizing these dual techniques, can be 

assessed on multiple criteria, most notably accuracy and utility. 

Through the amalgamation of the PROPHET model with BGP-

FNN, a potent strategy has been devised, its merit corroborated 

by the laudable performance metrics of MAPE and MAE. 

 

 
 

Figure 2. PROPHET-BGP-FNN-based tourist arrival time series forecasting process 

 

 

3. EMPIRICAL ANALYSIS 

 

3.1 Data preprocessing 

 

For the purposes of this empirical investigation, real data 

concerning visitor arrivals were analyzed to assess the 

proposed model's performance. Hawaii was chosen as the 

subject of research due to its prominent global recognition as 

a leading tourist destination, experiencing consistent visitor 

inflows from across the world. This selection serves as a 

representative study for global tourism sites. Data pertaining 

to visitor arrivals across the four principal Hawaiian Islands 

was amassed for the period spanning January 1, 2017, to 

December 31, 2021. Figure 3 delineates the trends in visitor 

arrivals, and the associated descriptive statistics are 

encompassed in Table 1. Further insights into the flow of 

arrivals over this timeframe are visually represented in Figure 

1, while Table 2 provides an in-depth statistical overview of 

the assembled dataset. Consequently, a total of 1824 

observations for each origin were documented in the curated 

dataset. 

 

Table 1. Descriptive statistics for daily tourist arrivals to 

Hawaii 

 
 Mean Standard Deviation 

Total (Oahu+Maui+ 

Big Isalnd +Kauai) 
23879 10740 

Oahu 10332 4303 

Maui 4833 2252 

Big Island 2185 1070 

Kauai 1599 902 

From Japan 3183 2386 

From Other country 1744 1196 

 

Traditional methods were utilized to segregate the time 

series into discernible components for subsequent modeling. 

The primary components identified within the tourist demand 

data incorporated trends, seasonality, autocorrelation, 

cyclicality, and irregular patterns. These characteristics are 

broadly segregated into two predominant categories: a 

deterministic component exhibiting linear attributes and a 

stochastic component displaying non-linear attributes. 

In the preliminary phase of this study, novel features were 

integrated into the dataset, aimed at enhancing the model's 

capacity to discern inherent patterns and interrelations. A 

prominent set of these incorporated features encompasses the 

mean and standard deviation computed over a rolling time 

window. These statistical attributes offer pivotal insights into 

data distribution, aiding the model in the identification and 

understanding of underlying trends and patterns. By 

assimilating this supplementary information, it is posited that 

the predictive accuracy and reliability stand to be heightened. 

This inclusion ensures the model's training encompasses data 

from both pre-pandemic and pandemic periods, facilitating a 

comprehensive understanding of COVID-19's impact on 

tourist inflows. 

The engineering of features, specifically standard deviation 

and mean, remains a pivotal step in data analysis, as it 

contributes significantly to the enhancement of a model's 

accuracy, interpretability, and generalization. Through the 

extraction of these salient data attributes, deeper insights into 

the latent patterns and trends can be procured, thus informing 

decision-making based on the ensuing analyses. The data's 

distribution and central inclination are accurately represented 

by these statistics, with the standard deviation elucidating the 

data's variance and the mean approximating the data's central 

position. Typically, the derivation of standard deviation and 

mean proves instrumental in pinpointing potential outliers, 

evaluating data quality, and gleaning essential information for 

the modeling process. The formulae employed for the 

computation of mean and standard deviation are as follows: 

 

Arithmetic mean = 𝑥 =
∑ 𝑥𝑖

𝑘
𝑖=1

𝐾
 (4) 

 

Standard deviation = √
1

𝑘−1
∑ (𝑥𝑖 − �̅�𝐾
𝑖=1 )2 (5) 

 

K: Sum of all observation. 

𝑥𝑖 : 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛.  
When a feature's standard deviation is observed to be 

significantly large, it is indicative of a pronounced variation 

within the data. Such variation often necessitates additional 

pre-processing steps to achieve normalization of the 

distribution. Conversely, a diminutive standard deviation 

intimates that the data predominantly clusters around a central 

value, a factor instrumental in discerning patterns and 

facilitating predictions. The mean of a given feature can shed 

light on the data's archetypal or anticipated value, which 

subsequently can serve as a benchmark in evaluating 
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performance. 

Subsequent to these observations, the dataset was bifurcated 

to facilitate empirical analyses, resulting in distinct training 

and validation sets.  

The PROPHET model was executed on Kaggle using the 

Python language, targeting a span of 10 months with a daily 

frequency. This dataset encompasses time series data for 

tourist arrivals in Hawaii. Through this method, seasonal 

patterns and variances in tourist arrivals over the stipulated 10-

month duration were captured. Opting for a daily frequency 

permitted a granular scrutiny of the day-to-day fluctuations in 

tourist activities, revealing any persistent patterns 

characteristic to specific days. The primary objective of this 

implementation was to offer a holistic view of tourist influxes 

to Hawaii, emphasizing seasonal trajectories, pinpointing apex 

travel durations, and furnishing accurate prognostications for 

imminent arrivals. 

 

 
 

Figure 3. Cumulative tourist arrivals to the Hawaiian Archipelago 

 

For the evaluation of the models discussed in this analysis, 

the metrics chosen were the Mean Absolute Error (MAE) and 

the MAPE. Their mathematical formulations are delineated in 

references [14, 21]. 

 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑

(|𝑅𝑣,𝑖−𝑃𝑣,𝑖|)

𝑅𝑉

𝑁
𝑖=1 ∗ 100  (6) 

 

𝑀𝐴𝐸 =
1

𝑁
∑

(|𝑅𝑣,𝑖−𝑃𝑣,𝑖|)

𝑁

𝑁
𝑖=1   (7) 

 

N: Sum of all observation,  

Rv: Reel value, 

𝑃v: Predictive value, 

The incorporation of error metrics, particularly MAE and 

MAPE, was deemed instrumental for a comprehensive 

evaluation of model performance. While MAE provides a 

straightforward quantification of the average discrepancies 

between predicted and observed values, serving as an indicator 

of prediction precision, MAPE presents a relative assessment 

by quantifying the mean percentage deviation between 

forecasted and actual outcomes, illuminating the comparative 

accuracy of predictions. These metrics together contribute to a 

discerning understanding of the predictive capabilities of the 

models, spotlighting their precision and elucidating errors in 

terms of both their magnitude and proportionality [22]. A 

graphical representation of MAE values can be viewed in 

Figure 4, aiding in a visual evaluation of model efficacy and 

predictive analysis. 

Residuals were subsequently computed using the formula: 

 

RE = 𝑅v – 𝑃v (8) 

where, 𝑅v denotes the actual value, Pv signifies the forecasted 

value, and RE stands for the computed residuals. Following 

this initial phase, the modeling process transitioned to its 

second stage, in which the BGP-FNN method was employed 

for modeling the sequence of residuals. The objective function 

of BGP is perceived as a stochastic function with a Gaussian 

process distribution in an optimization based on the Gaussian 

process. A Gaussian process represents a collection of random 

variables, any finite number of which exhibit joint normal 

distribution. It is characterized by a mean function m[x] and a 

covariance function k[x, x’], delineating the similarity between 

two distinct points. This Gaussian process is engaged in 

optimization to depict the distribution of objective function 

values across varying locales in the hyperparameter space. 

A neural network architecture consisting of two hidden 

layers and a fully connected output layer was utilized. In the 

implementation of the BGP-FNN model, neurons in the first 

hidden layer ranged between 8 and 64, whereas the second 

hidden layer comprised between 2 and 16 neurons. The precise 

neuron count for the final model was determined by the BGP, 

which searched for the optimal combination of 

hyperparameters to enhance performance on the training data. 

Within the hidden layers of the neural network, a 'tanh' 

activation function, representing the hyperbolic tangent 

function, was adopted. Specifically, the first hidden layer of 

the BGP-FNN was configured with 36 neurons, while the 

second layer contained 16 neurons. The training process for 

the BGP-FNN was orchestrated using the 'Adam' optimizer, 

denoting the Adaptive Moment Estimation method. 

For a comprehensive evaluation, the combined PROPHET-

BGP-FNN model was benchmarked against SARIMAX, 

PROPHET, and LSTM models, each applied to the tourist 
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arrival dataset. Table 2 offers a detailed juxtaposition of the 

results derived from LSTM, SARIMAX, PROPHET models, 

and the SARIMA–CNN–LSTM model. 

A comparative assessment of the various forecasting 

models yields profound insights into their predictive 

competencies. The PROPHET-BGP-FNN model consistently 

demonstrated superior outcomes in terms of MAE and MAPE. 

Remarkably, as depicted in Table 2 and Figure 4, the MAE 

and MAPE values associated with the PROPHET-BGP-FNN 

model surpassed those of the PROPHET, LSTM, and 

SARIMA models. The efficacy of the PROPHET-BGP-FNN 

model can be attributed to its amalgamation of techniques. The 

foundational component, PROPHET, adeptly captures inherent 

seasonality and trends present in the time series data. 

Concurrently, the BGP-FNN excels at discerning intricate, 

nonlinear patterns in the dataset. This integration, 

complemented by Bayesian optimization, offers automated 

and efficient hyperparameter tuning, optimizing the model's 

performance. 

While LSTM models, celebrated for their DL capabilities in 

time series forecasting, occasionally grapple with capturing 

complex patterns and mitigating vanishing gradients, the 

SARIMAX model, robust in addressing seasonality, 

sometimes falters in decoding non-linear patterns. Conversely, 

the PROPHET model, efficient in discerning seasonality and 

trends, witnesses performance augmentation when combined 

with the non-linear capabilities of the BGP-FNN. 

In essence, the PROPHET-BGP-FNN model emerges as a 

paramount solution for forecasting tourist arrivals, combining 

the strengths of multiple techniques while adeptly navigating 

the intricacies of tourism demand data. The synergetic fusion 

in the PROPHET-BGP-FNN model—where Prophet discerns 

trends, BGP identifies non-linear patterns, and FNN perceives 

temporal dependencies—equips it to supersede the limitations 

inherent to individual techniques. Thus, it furnishes 

predictions embodying both deterministic and stochastic 

attributes of time series data, marking the PROPHET-BGP-

FNN model as an innovative and reliable approach in 

forecasting tourist influx. 

The amalgamation of PROPHET, BGP, and FNN within a 

cohesive framework highlighted the potential of model 

integration to address intricate forecasting challenges. 

Forecasts from both the hybrid PROPHET-BGP-FNN model 

and the standalone PROPHET model were subjected to tests, 

with the predictive outputs presented in Figure 5. In Figure 5, 

the blue solid line depicts the actual tourist count, while the 

orange and green lines represent the predictions derived from 

the PROPHET and PROPHET-BGP-FNN models, 

respectively. The horizontal axis marks the indices of the test 

data, and the vertical axis signifies the count of tourists. A 

comparison between predicted and actual tourist counts 

revealed an intrinsic capability of the model to discern non-

linear characteristics within the data, thereby confirming its 

enhanced predictive potential. 
 

Table 2. Comparative performance of various models 

 

Model 
Error Parameter 

MAE MAPE 

Total   

LSTM 1594.2794 0.1021 

SARIMAX 1296.1470 0.0701 

PROPHET 1017.5928 0.0534 

PROPHET-BGP-FNN 800.1456 0.0408 

Oahu   

LSTM 862.4400 0.0948 

SARIMAX 518.0968 0.0556 

PROPHET 500.4545 0.0511 

PROPHET-BGP-FNN 436.2134 0.0385 

Maui   

LSTM 555.8937 0.1176 

SARIMAX 518.7983 0.1031 

PROPHET 412.8093 0.0791 

PROPHET-BGP-FNN 371.8901 0.0722 

Big Island   

LSTM 234.4733 0.1063 

SARIMAX 221.6927 0.0966 

PROPHET 189.6114 0.0768 

PROPHET-BGP-FNN 170.3490 0.0592 

Kauai   

LSTM 271.5920 0.0742 

SARIMAX 170.2401 0.0715 

PROPHET 191.7744 0.0868 

PROPHET-BGP-FNN 180.5601 0.0753 

From Japan   

LSTM 291.5920 0.1759 

SARIMAX 135.8123 0.0753 

PROPHET 220.7038 0.0868 

PROPHET-BGP-FNN 162.2541 0.0806 

From other country   

LSTM 272.4966 0.0971 

SARIMAX 182.6789 0.0681 

PROPHET 196.5215 0.0719 

PROPHET-BGP-FNN 107.3193 0.0307 

 
 

Figure 4. Comparative MAE of distinct models 
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Figure 5. Contrast between the predicted trajectory of the PROPHET, PROPHET-BGP-FNN model, and the true value trajectory 

 

 

In this study, an exhaustive suite of both traditional and 

advanced forecasting models was evaluated, culminating in 

the novel PROPHET-BGP-FNN model tailored for predicting 

tourist arrivals. The efficacy and limitations of each model 

were critically examined, with the PROPHET-BGP-FNN 

model emerging as the superior methodology. This superiority 

was further validated through its consistently lower MAE and 

MAPE values across diverse categories of tourist arrivals. Not 

only does the PROPHET-BGP-FNN model adeptly decipher 

deterministic and stochastic facets of time series data, but it 

also presents a pivotal solution for real-world applications. 

For practical implications, the accurate forecasts provided 

by the PROPHET-BGP-FNN model have the potential to 

revolutionize decision-making processes within the tourism 

sector. Tourism agencies might leverage such precise 

predictions for a myriad of decisions ranging from resource 

allocation and staffing to formulating marketing strategies and 

infrastructure development. Furthermore, entities such as 

hotels, airlines, and other tourism-affiliated establishments 

could refine their operations predicated on projected tourist 

inflows, thus ensuring service excellence during high-demand 

seasons and circumventing excess capacity during off-peak 

times. By offering actionable insights, the PROPHET-BGP-

FNN model stands poised to substantially elevate the 

operational efficiency and profitability within the tourism 

industry. In environments replete with challenges, high 

accuracy in predictions was achieved, underscoring the 

model's prospective utility in scenarios where precision in 

forecasting is of paramount importance for judicious decision-

making. 

4. CONCLUSIONS 

 

In the presented research, DL algorithms, notably the 

PROPHET-BGP-FNN model, were implemented and 

evaluated for their efficacy in forecasting daily visitor arrivals 

in Hawaii. The study was delimited to data solely sourced from 

Hawaii, implying the potential for further exploration with 

extended time series datasets and diverse geographical locales. 

Remarkable success was achieved with the approach, 

displaying superior performance over traditional models like 

SARIMAX, PROPHET, and LSTM. Through the synergetic 

fusion of PROPHET, BGP, and FFNN models, a novel and 

proficient tool for univariate tourism demand forecasting was 

introduced. These findings underscore the latent potential of 

DL and hybrid models within the sphere of tourism 

forecasting—a domain relatively untapped hitherto. 

The methodology delineated here innovatively employs 

PROPHET to distill the linear component of tourist arrivals, 

while the BGP-FNN model adeptly discerns intricate 

nonlinear patterns. Such a hybrid strategy not only exhibits 

formidable predictive accuracy but also demonstrates 

adaptability to the nuanced complexities intrinsic to tourist 

arrival datasets. While empirical analyses accentuated the 

PROPHET-BGP-FNN model's robust predictive capabilities, 

it is acknowledged that continuous and rigorous evaluations 

are paramount for future research endeavors. 

Future prospects encompass refinement endeavors, 

encompassing hyperparameter fine-tuning and topological 

redesigns of the PROPHET-BGP-FNN model. Extending the 

model's scope, beyond the confines of Hawaiian data and 
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venturing into longer time series datasets from varied locations, 

could further solidify the model's reliability and applicability. 

While challenges and unexpected outcomes were 

encountered during the research, the evident superior 

performance of the PROPHET-BGP-FNN model over 

conventional counterparts heralds a potential paradigm shift in 

tourism forecasting. With meticulous refinement and broader 

exploration, this model might assume a seminal role in 

bolstering decision-making processes not only within the 

tourism sector but in diverse industries that rely on precise 

forecasting. 
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