
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

1. INTRODUCTION 

 
   The investigation of the natural convection flows of an 
incompressible fluid near a surface has many important 
applications in engineering, such as aerodynamics, the 
boundary layer along a liquid film condensation process and 
the cooling process of the electronic components. In 
particular, the natural convection along a semi-infinite 
vertical wall has been studied extensively in the existing 
literature, including: Squire [1] who has used the integral 
method and obtained the Nusselt number expression, in case 
of an isothermal vertical plate. Ostrach [2] studied 
numerically the natural convection and calculated the Nusselt 
number for various Prandtl numbers, Ede [3] analyzed the 
well-known experimental data in the special range of 
Rayleigh number and showed, that they are rather well 
described by the generalized formula for the local Nusselt 
number. Based on the analysis of various experimental data, 
Churchill and Usagi [4] gave an accurate correlation relating 
Nusselt number to Prandtl and Rayleigh numbers. For vertical 
plates in a turbulent regime with a constant wall temperature, 
Cebeci and Bradshaw [5] proposed a Nusselt expression by 
solving the integral equations of motion and energy. Bejan 
[6] investigated the steady state flow behavior using a scaling 
analysis to obtain scaling laws for the dominant parameters 
characterizing this kind of flow and it was found that these 
scaling laws are in a good agreement with the numerical and 

theoretical results. Proceeding from the integral equations and 
using the dimensional method, the analysis of different 
regimes of free-convective flow near an isothermal vertical 
plate due to the simultaneous action of temperature and 
concentration gradients was carried out in [7]. Based on the 
similarity theory, Sparrow and Gragg [8] carried out 
investigations in the wide range of Prandtl values and 
suggested the limiting dependencies for the local Nusselt 
number. Using the integral method, Sparrow [9] obtained a 
formulation of the local Nusselt number by making the same 
assumptions concerning the scales of the boundary layer as in 
[1]. Churchill and Ozoe [10, 11] generalized the data of 
works [4, 8, 13] and suggested an accurate Nusselt number 
formula which is valid for all Prandtl number in a laminar 
flow. Fujii [14] analyzed the solutions obtained by many 
researchers [8, 15, 16–19] and proposed a theoretical Nusselt 
number correlation, in case of a constant heat flux. Recently, 
Oleg, Martynenko and Khramtsov [20] studied natural 
convection problems for different geometries by means of 
analytical, numerical and experimental analysis. 
   It is known that the integral method may be used to solve 
analytically the equations governing the thermoconvection 
process with a relatively good efficiency. From this method, 
we try to determine, via ad hoc formulae of the velocity and 
temperature profiles, the Nusselt-Rayleigh coefficients for all 
Prandtl numbers when the sidewalls are isothermal and 
uniform heat flux. From this, we use the same velocity profile 
form adopted by the similarity method in our study [21]. The 
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objective is to check the validity of the behavior of the flow 
and to determine the heat transfer rate, in order to compare 
the conduction regime versus the convective regime by 
evaluating the Nusselt number.  

 
2.  BASIC FLOW AND FORMULATIONS 

 
We consider natural convection evolving along a vertical 

plate, where the coordinate y is taken positive upward in the 
vertical direction, and the direction x is taken normal to the 
surface of the plate. The plate is placed in an extensive and 
quiescent fluid, and is maintained under an isothermal wall or 
a uniform heat flux on a wall condition, See Figure 1. We are 
interested in the study of a steady state laminar natural 
convection of an incompressible fluid with constant 
proprieties. Within the framework of the Boussinesq 
approximations, the equations of motion for the velocity V(u, 
v) and the temperature T take the form 
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For complete description of the vertical natural-convective 
boundary layer, Eqs. (1), (2), and (3) should be supplemented 
with the boundary conditions: 
 
a- constant wall temperature 

 
u(y, 0) = ν(y, 0) = ν(y, x→∞) = 0,  

 
T(y, 0) = T0, T(y, x→∞) = T .  

 
b- constant heat flux density on a wall 

 
 u(y, 0) = ν(y, 0) = ν(y, x→) = 0,  

 

 ,0  
dT

y q
dx

, T (y, x→) = T . 

 
where v is the kinematic viscosity, α is the thermal diffusivity, 
β is the volumetric thermal expansion coefficient, g is the 

gravitational acceleration,  T is the uniform temperature far 

away from the plate, and q

 

is the heat flux density on a wall.  

In opposition to the similarity method which seeks to find a 
local solution of the boundary layer differential equations, the 
integral method proceeds with direct integration of the 
velocity and temperature profiles within the boundary layer.  

In the context of our work, it is a global method based on 
the analytical integration of the momentum and energy 
boundaries layer differential equations. The problem may be 
expressed as 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             

 

Figure 1. Structure of a natural convection flow and a 
thermal boundary layer on a vertical surface; (a) for an 

isothermal wall and (b) for a uniform heat flux on a wall 
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Bejan [6] gives a detailed study of the scales intervening in 

the momentum and energy equations, combined with a 
qualitative analysis taking account of the fluid properties 
influence on the forces balance appearing in the momentum 
equation. This reasoning mode, apparently rarely quoted in 
current research of natural convection, proposes new 
formulations completely different from that found by many 
researchers since 1930. 

From the Bejan’s scale analysis, it is found that the 
thermoconvective boundary layer geometry for fluids with   

Pr  1 differs completely from that of fluids with Pr  1. 
Therefore, it is clear that two size scales must obligatorily 

control the velocity profile form: one (Pr  1) by the shearing 

layer thicknesses of the wall  and the thermal layer 

thickness T, the other (Pr  1) by the dynamic boundary 

layer thickness   and thermal layer thickness T.  
In order to avoid any kind of ambiguity on the difficulties 

of connecting the velocity profile form depending on two 
thicknesses at the same time, we refer qualitatively to Bejan’s 
scale analysis of the velocity behavior in the 
thermoconvective boundary layer. It is clear that in case of Pr 
~ 1 where the dynamic and thermal boundary layer 

thicknesses are almost equal  ( ~ T ), the velocity formula 
can be written only according to one of the thicknesses.    

Flow 
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Indeed, the velocity and temperature profiles obey to this 
case are given by the following expressions:   
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From Bejan’s scale analysis, we found that V~ y1/2 and         

T ~ ~ y1/4 which indicates the scales of the vertical velocity 
and the thermal and dynamic boundary layer thicknesses, 
respectively.     

                                                                        

3. RESULTS AND DISCUSSION 

 
    In the relevant situations involving natural convection 
acting by free cooling on a vertical plate, we consider two 
important cases: uniform wall temperature, and uniform wall 
heat flux. 

 
 3.1 Uniform wall temperature  

 
     Replacing the profiles of Eqs.(6) and (7) in the integral 
equations system of Eqs. (4) and (5), we arrive at the 
following results: 

 
  0.115 1.329   g T                                                      (8) 

 
  0.0886                                                                          (9)  

 
The local Nusselt number is given by the following 

expression    
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where q  is the conductive heat flux, k is the thermal 

conductivity coefficient, T0 is the wall temperature, and 
3




y

g Ty
Ra  is the Rayleigh number. 

From the Eqs. (8), (9) and (10) relations, we obtain the 
local Nusselt number according to the influence parameters 
such as  Ray and Pr 
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Taking account of the asymptotic limits related to Pr, the 

global Nusselt number NuH corresponding to two interesting 
physical situations is given as 

 

- Pr  0              
1/4

0.68 PrH HNu Ra    

 

- Pr              
1/40.677H HNu Ra  

 

We note that these limiting expressions are anticipated 
correctly by Bejan’s qualitative study, [6]. 
Churchill and Chu [11], on the basis of analysis of a large 
number of works, suggested the following correlations 
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The integral method developed by Karman applied by 

Squire [1] in the problem of the natural convection obtained 
the following dependence for the local Nusselt number:  
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From the numerical solution of the basic differential 

equations, Le Fevre [12] also suggested a general form of 
empirical dependence  for the local Nusselt number: 
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It should be noted that many researchers have used the 

integral method approximation presented previously, with 
different choices of the velocity and temperature profiles, to 
obtain the heat transfer coefficient law. Figure 2 gives a 
comparison of the Nusselt number theoretical expressions, 
established by integral method, with the Churchill-Chu’s 
experimental correlation for a wide range of Pr values and in 
case of the laminar natural convection of an isothermal 
vertical wall.  

 

 

 

 
 
 
 
 
 
 

Figure 2. Average Nusselt number relating to uniform 
isothermal vertical wall  in laminar natural convection 

   On this figure, the results of the present work are shown to 
match closely with results obtained by Squire [1], and the 
experimental data. Bejan’s scale analysis demonstrates 
geometrically and phenomenologically that the velocity 
profile depends not only on the dynamic thickness which is 
the case of the profiles chosen by Squire, and the present 

study, but also on the two thicknesses  (Pr  1) and             

 (Pr  1). We explain this discordance by the fact that the 
choice of velocity and temperature profiles always remains 
approximate and based on a simple theoretical analysis.      
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3.2 Uniform wall heat flux 

 
 Using the integral method equation and keeping the same 
velocity and temperature profiles, we find   
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q
g
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                                                     (15) 
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where 
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g q H
Ra

k
, and  q = constant. 

From these last equations, we derive the local Nusselt 
number as 
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Taking account of NuH corresponding to two interesting 

physical situations verifies Bejan’s scale laws. 
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Churchill and Ozoe [10] generalized the experimental 
results by many researchers and proposed the following 
formula which is valid for all Pr number in a laminar flow:   
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T. Fujii and M. Fujii [14] analyzed the solutions obtained 

by various researchers [8, 15, 16–19] and suggested the 
following expression of Nusselt number:     
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The application of the direct integration method in case of 

a constant heat flux on a surface also allowed us to find the 
temperature distribution corresponding to the given value of 
the heat flux. 
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   Figure 3 shows that the temperature on the wall at y = 0 
increase when Pr >1, and remains almost the same when     
Pr <1. Also, along the wall, we see the same temperature 
distributions curves for all fluids of Pr <1, but for fluids of  
Pr > 1 the curves increase but the temperature distributions 
decrease approximately by the same variations.                                  
Figure 4 represents the variation of the heat transfer 
coefficient depending on Pr and Ra. The results obtained by 
the analytical solution procedure introduced in the preceding 

section are consistent with that in the literature. The graphical 
output of the results reveals that there is a good agreement  of 
the average Nusselt number expressions with that obtained by 
Fujii’s theoretical correlation and Churchill-Ozoe’s 
experimental correlation.  

 
 

Figure 3. Temperature variation corresponding to the given 
values of the heat flux 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4. Average Nusselt number relating to uniform heat 
flux of vertical wall in laminar natural convection 

 
 

4. CONCLUSION 

 
   The study of the thermoconvection, particularly the steady-
state natural convection flow over a semi-infinite vertical 
plate maintained at a uniform temperature and uniform heat 
flux are carried out using the new direct integration of 
momentum and energy equations. This method is different 
from those used by many researchers. Our approach proceeds 
from phenomenological considerations based on Bejan’s 
work. From the behaviour of the phenomena, analytical 
formulae of the velocity and temperature profiles are 
proposed in case of Pr ~1. This condition permits us to solve 
the integral equations system in order to generalize the heat 
transfer coefficients expressions for all Pr values in the two 
relevant physical situations; isothermal vertical wall and 
uniform heat flux wall. 
   These results appear very satisfactory when we compare 
them with the theoretical and experiment correlations.  
Consequently, we can conclude that the analytical form of the 
selected velocity profile, used by both similarity and integral 
approaches, meets the phenomenological requirements 
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imposed by the natural convection mechanism acting on a 
vertical wall in steady-state laminar regime. 
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NOMENCLATURE 

 
g 

H 

k 

gravitational acceleration, m.s-2 

reference length, m 

thermal conductivity, W.m-1. K-1 

NuH 

Nuy 

Pr 

q’’ 

RaH 

Ray 

T 

T0 

T 

u, v 

V 

x, y 

global Nusselt number  

local Nusselt number  

Prandtl number  

 heat flux density, W.m-2 

global Rayleigh number 

local Rayleigh number  

temperature, K 

wall temperature, K 

ambient temperature, K 

velocities componets, m.s-1 

velocity, m.s-1 

coordinates, m 

 

Greek symbols 

 

 

 thermal diffusivity, m2. s-1 

 

 

T 

 

 

thermal expansion coefficient, K-1 

dynamic layer thickness, m 

thermal layer thickness, m 

shearing layer thickness of the wall, m 

kinematic vescosity, m2.s-1 
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