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The diagnosis of various cardiac conditions necessitates meticulous analysis of 

Phonocardiogram (PCG) and Electrocardiogram (ECG) signals. In light of this, artificial 

intelligence and machine learning, coupled with computer-assisted diagnostic techniques, 

have been progressively integrated into modern healthcare systems, facilitating clinicians 

in making crucial diagnostic decisions. However, the effectiveness of these deep learning 

applications hinges on the availability of extensive training data, which exacerbates the risk 

of privacy violations. In response to this dilemma, research into methodologies for synthetic 

patient data generation has witnessed a surge. It has been observed that most attempts to 

generate synthetic ECG and PCG signals focus on modeling the statistical distributions of 

the available real training data, a process known as Data Augmentation. Among the various 

data augmentation techniques, Generative Adversarial Networks (GANs) have gained 

significant traction in recent years. This paper conducts an in-depth exploration and 

evaluation of GANs, specifically Deep Convolutional GANs and Conditional GANs, for 

the generation of synthetic ECG and PCG signals. 
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1. INTRODUCTION

Cardiac complications contribute significantly to global 

mortality rates [1]. Amidst the rise of wearable technologies 

and artificial intelligence, the precision and automation of 

cardiovascular detection have become increasingly pertinent 

in medical practice. Arrhythmias, abnormalities in heart 

rhythms, can range from minor inconveniences to life-

threatening emergencies. Arrhythmias develop when the 

normal electrical impulses of the heart are disrupted, leading 

to heartbeats that are exceptionally slow, rapid, or irregular. 

Utilization of Electrocardiogram (ECG) and Phonocardiogram 

(PCG) signals can facilitate effective prediction and diagnosis 

of heart disease [2, 3]. Artificial auscultation, while providing 

a cost-effective and time-efficient tool for cardiac diagnostics, 

demands considerable training for clinicians. 

The electrocardiogram serves as a critical diagnostic tool for 

arrhythmias, tracking the heart's electrical activity. Conversely, 

the PCG records heart sounds. Figure 1 presents a visual 

representation of the fundamental components of an ECG 

waveform that recur with each rhythmic contraction and 

relaxation of the heart [2]. The P, T waves, and QRS complex, 

including the R peak, signify the three primary constituents of 

a standard electrocardiogram waveform that encapsulate an 

entire cardiac cycle. 

By employing a phonocardiograph, clinicians can trace the 

sounds and murmurs generated by the heart, including those 

induced by the closure of the atrioventricular, pulmonary, and 

aortic valves, as illustrated in Figure 2. Sound S1 is produced 

during atrioventricular valve closure; sound S2 occurs during 

semilunar valve closure; the interval between S1 and S2 is 

systole; and the interval between S2 and S1 of the following 

cycle is diastole [3]. 

Due to the complexity of the PCG signal waveform in 

comparison to the ECG, and the propensity for significant 

disturbances during collection, PCG has been less extensively 

explored [4]. Visual evaluation of an ECG for cardiac 

irregularities may not yield reliable results. As deep learning 

methodologies gained traction, automatic processing of ECG 

and PCG data, along with other medical and healthcare-related 

sectors, began to incorporate deep network topologies. 

The advent of artificial intelligence, particularly for medical 

applications, has seen significant progress in recent years [5]. 

Incorporation of attention mechanisms into deep learning 

models has greatly benefitted both image and sequence data 

[6]. Despite the burgeoning popularity of deep learning 

algorithms for e-health applications, the identification of key 

factors that enhance prediction or diagnostic accuracy still 

necessitates large datasets. Deep learning algorithms strive to 

emulate new synthetic data by first identifying patterns that 

emerge from suitable training data. This process, known as 

Data Augmentation, allows for the expansion of a training set 

through synthetic generation of additional samples. When 

crucial modalities are unavailable for multimodal medical 

image segmentation, data generation is employed as a 

substitute [7]. Consequently, the model is taught to generalize 

higher quality images while concurrently circumventing 

overfitting. The Generative Adversarial Network (GAN), a 

popular form of generative modeling, is used to create both 

time series data and visuals [8]. GANs find application in 

healthcare [5, 9], financial technologies [10, 11], image 

inpainting [12, 13], fashion technology [14, 15], among others. 
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This study explores the application of GANs in synthesizing 

ECG and PCG signals de novo. Section III delves into the 

architecture of GAN and Deep Convolutional GAN (DCGAN); 

Section IV details evaluation measures; Section V presents the 

results and the datasets used for simulation. A brief review of 

relevant literature is provided in Section II. 

 

 
 

Figure 1. ECG signal and its characteristic waveforms [2] 

 

 
 

Figure 2. PCG signal and its recordings [3] 

 

 

2. LITERATURE REVIEW 
 

Contemporary methodologies for the classification of PCG 

and ECG signals primarily deploy traditional supervised 

machine learning approaches. A fusion of Mel-frequency 

cepstral coefficient (MFCC) features and dynamic time 

wrapping (DTW) was paired with a linear Support Vector 

Machine (SVM) to accomplish the classification of PCG 

signals [16]. The SVM method has also been extensively 

employed by researchers for the classification of ECG signals. 

Rizal et al. in used Short-time Fourier Transform for 

classification of PCG signals [17]. 

However, these methods have faced challenges in 

adequately scaling to incorporate ECGs from an expansive 

variety of individuals. Notwithstanding the time and effort 

required, each patient's ECG signal exhibits unique dynamics 

and morphology, significantly influenced by the patient’s 

current health condition. Fully connected networks have 

demonstrated superior performance on recognized clinical 

benchmarks when compared to the state-of-the-art [17]. The 

simultaneous acquisition of ECG and PCG data, as 

implemented by Martins et al., facilitated enhanced diagnosis 

of heart disease [17]. Zhang et al. [18] proposed the detection 

of coronary artery disease using multi-modal features. 

Multimodal feature models were suggested based on ECG and 

PCG signals, followed by a comparison of the relative 

accuracy of different modes in data classification. 

Despite the promise of numerous deep learning methods for 

ECG or PCG classification and detection, their efficacy is 

predicated on the availability of ample training instances. The 

infrequency of potentially lethal arrhythmias results in a dearth 

of training data for deep learning algorithms, necessitating the 

use of medical image augmentation. Simple data augmentation 

techniques such as snipping, flipping, and adding noise have 

been attempted. 

However, the management of complex data like medical 

imaging challenges these elementary methods. The variational 

autoencoder (VAE), an alternative deep model, has been 

overlooked in favour of more popular approaches [19]. 

Nevertheless, a significant drawback is that their output 

images are often blurry and indistinct. 

A recently introduced model in the field of data 
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augmentation is the Diffusion Model, based on the diffusion 

mechanism [20]. While these models are still nascent in the 

field of medicine, they are hampered by significant 

computational costs and prolonged sample times. Figure 3 

illustrates various data augmentation methods for biomedical 

images. 

The extensive heartbeat categorization challenge has 

resulted in a scarcity of deep ECG and PCG models suitable 

for clinical application. In the case of phonocardiograms, the 

classification of individual types of heart murmurs has seen no 

significant breakthroughs due to the shortage of labelled PCG 

data [21]. 

To mitigate this challenge, this study proposes the training 

of deep learning models with simulated ECG and PCG signals, 

representing a range of arrhythmias, using generative 

modelling. 

 

 
 

Figure 3. Various approaches for synthetic data generation/data augmentation 

 

 

3. ARCHITECTURE 
 

For the purpose of generating artificial ECG or PCG signals, 

we implemented and compared different architectures of GAN, 

DC GAN and conditional GAN. 

 

3.1 Generative adversarial networks 

 

Generative adversarial networks were first proposed in 

2014 by a team of academics led by Goodfellow et al. [8]. The 

field of “generative models” includes GANs. The GANs come 

under semi-supervised deep learning model. In contrast to 

other methods, GANs use a game-theoretic concept to train a 

synthetic image model. 

As such, GANs are founded on the idea of zero-summation 

games, in which each participant actively seeks to maximize 

his or her personal benefit at the detriment of all others. The 

GAN’s output is the collaborative effort of the Discriminator 

and Generator networks. The Discriminator’s goal is to master 

the ability to recognize and reject fake distributions generated 

by the Generator, whereas the Generator’s goal is to master the 

art of fooling the Discriminator with genuine-looking fakes. 

GAN is a deep learning technique that has risen in popularity 

in recent years due to its widespread use in fields such as image 

identification, video creation, anomaly detection, and security 

applications such as steganography. 

The GAN is a well-liked deep generative model because of 

its two core components, the generator and the discriminator. 

The generator (G) takes as input a latent vector of N 

dimensions (z) with a Gaussian distribution and outputs a 

vector of the same shape. After been trained on instances of 

both sorts of data x, the discriminator’s output (D) is the 

likelihood of correctly determining whether the created data 

output is fake or real. The discriminator and the generator 

engage in a zero-sum game that ultimately results in a 

convergence condition. The objective function of a GAN is 

expressed in terms of min-max optimization, as indicated in 

Eq. (1). 

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷V(D, G) = 𝐸𝑧 log (1 − 𝐷(𝐺(𝑧))) +

𝐸𝑥 log(𝐷(𝑥))  
(1) 

 

D(x) represents the probability that D is applied to the real 

data x, while D(G(z)) is the probability that D is applied to the 

generated data G (z). E stands for the expectation, and G (z) is 

the data generated by the generator G. To improve the D, we 

want to make D (G (z)) to zero, and to improve the G, we want 

to make it to 1. The architecture of the GAN is shown in the 

Figure 4. 

 

 
 

Figure 4. Architecture of GAN 

 

The generator strives to lessen the possibility that the 

discriminator would incorrectly predict its output as fake, and 

both it and the discriminator want to boost the probability of 

accurate classification of actual and fake data. The 

discriminator gives each set of false and authentic data a 

probability of 0.5 under ideal conditions because their 

distributions are statistically identical. In this research, we 

introduced a GAN that comprises of a generator that can 

generate accurate ECG or PCG signals and a discriminator that 

can tell the difference between real and artificial signals. 
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3.2 DCGAN 

 

Deep Convolutional Generative Adversarial Networks 

(DCGANs) are a new form of CNNs developed by Narváez 

and Percybrooks [22] with certain architectural requirements. 

These requirements compelled CNN to implement three 

architectural shifts. In order to work under these constraints, 

CNN modified its architecture in three ways. One way to 

improve the network’s accuracy is to replace Discriminator 

strided convolutions and generator fractional strided 

convolutions are used in place of fully linked hidden layers 

and pooling layers. The second adjustment is the 

implementation of LeakyReLU activations across the entire 

discriminator network and ReLU activations across all except 

the final layer of the generative model. Thirdly, both the 

generator and discriminator will now make advantage of batch 

normalisation. 

 
3.3. Conditional GAN 

 

The extension of GANs to a conditional GANs is possible 

by conditioning both the generator and discriminator on 

additional information y [23]. This additional details, which 

can take the form of labelled classes or data from other 

modalities, allows for a more versatile and context-aware 

generative process. The conditioning process can be achieved 

by introducing y as an additional input layer for both the 

discriminator and generator. The architecture of CGAN is 

shown in the Figure 5. 

 
 

Figure 5. Architecture of CGAN 

 

 

4. EVALUATION METRICS 

 
The metrics used to evaluate GAN performance are 

generally consistent with those used to evaluate more 

conventional image creation methods. Simply, this involves 

calculating an image-to-image distance. 

Because of its superior accuracy over the more 

commonplace Euclidean metric and other distance metrics, we 

choose to use the structural similarity measure (SSIM) in this 

research. 

 
4.1 Structural similarity index 

 
The SSIM index [24] is a statistic for judging the quality of 

digital still images and movies. The three terms of brightness, 

contrast, and structure are the basis for the SSIM Index’s 

quality evaluation. Multiplying these three quantities together 

yields the overall index. 

If we have two photos, x and y, we can get their SSIM using 

the formula below. 
 

𝑆𝑆𝐼𝑀 (𝑥, 𝑦) =
(2⋅µ𝑥µ𝑦+𝑐1).(2.𝜎𝑥𝑦+𝑐2)

(𝑐12+µ𝑥2+µ𝑦2 ).(𝑐22+𝜎𝑥2+𝜎𝑦2 )
  (2) 

 

𝜎𝑦2-variance of y. 

𝜎𝑥2-variance of x. 

𝜎𝑥𝑦-covariance of y and x. 

µ𝑦-mean of y. 

µ𝑥-mean of x. 

The constant constants c1 and c2 are determined based on 

the dynamic range of pixel values. The SSIM value is equal to 

one, if and only if both of x and y are equal. 

 

4.2 Cross correlation coefficient 

 
By measuring the degree of similarity between two signals, 

cross-correlation analysis can be used to infer information 

about the signals [25]. The cross correlation of matrices is X 

and H is given in the Eq. (3). X is of size M*N and H is of size 

P*Q. 

 
𝐶 (𝑘, 𝑙) 

= ∑ ∑ 𝑋 (𝑀, 𝑛) 𝐻∗ (𝑚 − 𝑘, 𝑛 − 𝑙)𝑁−1
𝑛=0

𝑀−1
𝑚=0   

(3) 

 

where, −(P−1)≤k≤M−1, −(Q−1)≤l≤N−1. 

 

 
5. RESULTS 

 

5.1 Datasets 

 
Both the PTB and MIT-BIH databases [26, 27] are used to 

assess the efficacy of the technique. There are a total of 549 

entries in the PTB diagnostic database, representing 290 

people (209 men, with an average age of 55.5; age range of 17 

to 87, with 57 as the mean, and 81 females, with a mean of 

61.6). Fifteen simultaneous measurements of a signal are 

contained in each record. Every signal is digitally sampled at 

a rate of one thousand per second. Myocardial infarction, Fetal 

ECG, PCG recordings, atrial fibrillation, myocardial 

hypertrophy, myocarditis, healthy individuals, and other data 

are among the many diagnostic categories available. The MIT-

BIH database contains 23 healthy recordings with sequential 

numbers between 100 and 124, and 25 recordings with 

junctional, heart blocks and supra-ventricular arrhythmias. 
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5.2 Simulation results 

 

The genuine and synthetic ECG and PCG signals generated 

by GAN are displayed in Figure 6 and Figure 7, respectively 

whereas Figures 8 and 9 shows real and artificial ECG and 

PCG signals generated using DCGAN. Figure 10 shows the 

ECG signal generated by CGAN. Table 1 gives a comparison 

of the evaluation metrics used for three different architectures 

GAN, DCGAN and CGAN. Since DCGAN uses 

convolutional networks instead of a fully connected layer as in 

GAN, DCGAN gives better performance compared to GAN. 

In CGAN, since labelled or auxiliary information is given to 

the Generator, it comparatively gives a good performance 

compared to GAN. 

 
 

 
 

 

 
 

 

Figure 6. Real and synthesised ECG signals using GAN 

 
 

 
 

 

 
 

 

Figure 7. Real and synthesised PCG signals using GAN 

 
 

 
 

 

 
 

 

Figure 8. Real and synthesized ECG signals using DCGAN 
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Figure 9. Real and synthesized PCG signals using DCGAN 

 
 

 
 

 

 
 

 

Figure 10. Real and synthesized ECG signals using CGAN 

 

Table 1. Similarity results between real and generated signals 

 
Method Signal Cross Correlation Coefficient SSIM 

GAN ECG 0.9532 0.9621 

GAN PCG 0.9605 0.9699 

DCGAN ECG 0.9652 0.9756 

DCGAN PCG 0.9638 0.9732 

CGAN ECG 0.9785 0.9814 

 

 

6. CONCLUSION 

 
For several reasons, collecting large amounts of patient data 

may prove challenging. To better train supervised machine 

learning classifiers on datasets, the synthesis of accurate 

information or data has arisen as an interesting area of research 

in healthcare, particularly medicine. To create synthetic heart 

sounds and ECG signals for use in training/testing 

classification models, a GAN-based architecture was 

implemented. Moreover, DCGAN and CGAN architecture are 

also implemented and the generated ECG and PCG signals 

shown better performance with CGAN with respect to GAN 

and DCGAN architectures. These synthetically generated 

ECG and PCG samples are given to a classifier as a 

substitution of original data. The synthetically generated 

samples showed a 98% similarity to the original data. In the 

future direction, 99.9 percent comparable images can be 

generated with the help of improved GAN architectures or by 

employing diffusion models. 
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