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An automated risk model for Brucellosis detection in cattle farms, termed DeepBrucel, was 

developed and validated. A comprehensive survey encompassing 51 variables related to 

farm characteristics, management practices, and reproductive pathologies was administered 

across 632 cattle farms in Ecuador. The extensive dataset thus obtained was utilized to 

implement and compare classifiers based on regression, neural networks, and deep learning 

methodologies. A wide-ranging primary experimentation protocol enabled the 

identification of critical variables and the optimal topology for the neural networks. 

Superior performance was exhibited by a deep neural network model with three hidden 

layers, which achieved an impressive accuracy of 98.4% in predicting Brucellosis risk. 

DeepBrucel, now publicly available, provides a highly accessible and robust tool for the 

diagnosis and control of Brucellosis in cattle farms. 
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1. INTRODUCTION

Brucellosis, a contagious disease primarily affecting 

livestock, has emerged as a global health concern. This 

infectious disease inflicts a significant toll on livestock, 

including cattle, goats, sheep, and pigs, resulting in adverse 

effects such as abortion, infertility, decreased milk production, 

and mortality [1]. It is primarily transmitted through ingestion 

of contaminated pasture, food, water, or through contact with 

infected animal excretions or vaginal secretions. The 

significant prevalence of Brucellosis, especially in regions like 

the province of Carchi, where it ranges from 1.97% to 10.62%, 

underscores the magnitude of the problem [2]. The challenges 

in distinguishing vaccinated animals from infected ones using 

serological tests, coupled with the high cost and limited 

control of vaccines, have exacerbated the problem. 

The current endeavor intends to address these issues by 

introducing an automated diagnostic mechanism to assess the 

risk of Brucellosis in cattle farms in the Carchi province. This 

study builds upon previous research [3] that identified relevant 

risk factors, employing a multivariate approach to develop an 

automatic model that determines Brucellosis risk. 

1.1 Related work 

There is a substantial body of literature on Brucellosis, 

focusing on identifying risk factors, seroprevalence, and 

management practices associated with the disease. An early 

study [4] employed univariate and multivariate statistical 

methods to identify clinical predictors for relapse in patients 

with Brucellosis. The study discovered a 67% relapse rate 

within 12 months, emphasizing the need for additional care in 

high-risk patients. 

Peng et al. [5] used ArcGIS software to analyze the 

incidence rate of Brucellosis in China over time. It revealed 

that sheep inventory, GDP, and climate were significantly 

correlated with Brucellosis incidence. Furthermore, a study 

conducted in Pakistan used Pearson's Chi-square test and deep 

learning techniques to correlate epidemiological data with test 

results [6]. This study achieved over 83% accuracy in 

classifying and prioritizing the main risk factors associated 

with Brucellosis. In Algeria, a multivariate analysis found a 

3.49% seroprevalence in the bovines tested, with common 

feeders in pastures and intensive livestock being the main risk 

factors for tuberculosis transmission [7]. In addition, a 

comprehensive investigation was executed across five districts, 

encompassing a total sample pool of 1907 subjects selected 

from 212 herds [8]. Blood specimens were procured from the 

cattle, with seropositivity scrutinized using the Rose Bengal 

test, and validation was performed through indirect ELISA. A 

comprehensive evaluation of risk factors was facilitated by 

administering questionnaires, coupled with the application of 

Chi-square and Fisher's Exact Test, as well as multivariate 

logistic regression analysis. The study unveiled a 

seroprevalence of 13.6% and identified a host of risk factors. 

These encompassed the education level of the owners, the 

incorporation of new animals into the herd, interaction with 

small ruminants, a history of abortions, advanced age of the 

animals, and a pronounced lack of disease awareness amongst 

cattle owners. 

Sil et al. [9] focused on the use of advanced techniques for 

disease detection, as demonstrated by a study that employed a 

microspectroscopic vibrational Raman technique combined 

with multivariate analysis and deep learning to detect Brucella 

and Bacillus pathogens based on DNA analysis. The 

researchers achieved 96.33% accuracy using a convolutional 

neural network (CNN) architecture. 

Furthermore, studies have been conducted to evaluate risk 
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factors in specific regions, such as a study in Hisar, India, 

which identified the presence of other animals in the herd, 

particularly sheep and goats, and the use of a common water 

source as significant Brucellosis risk factors [10]. A similar 

study in the Ludhiana district in Punjab found that 17.9% of 

cows and 11.9% of buffaloes tested positive for Brucella [11]. 

Moreover, an estimated seroprevalence of 9.7% was 

reported among individuals with direct contact with cattle [12]. 

In a study conducted in Fayoun, Upper Egypt, the incidence of 

Brucellosis in both humans and cattle was investigated. 

Logistic regression analysis illuminated an elevated 

probability of Brucellosis in illiterate individuals, those 

employed in livestock-related occupations, those with an 

infected family member, and those with a familial history of 

the disease. The study further revealed that domestic cattle 

rearing and exposure to bovine abortions without adequate 

protective measures were significant risk factors. The 

consumption of raw milk and homemade cheese demonstrated 

significance in the univariate model, with the latter being 

strongly associated with Brucellosis in the multivariate model. 

Molecular genotyping disclosed the presence of various 

genotypes, with G6 being the reference strain for Brucella 

melitensis. 

Subsequently, a study encompassing 740 dairy animals 

from 534 households across 52 villages in Bihar and Assam 

was instigated [13]. The application of serological tests using 

iELISA yielded a positivity rate of 15.9% in Assam and 0.3% 

in Bihar. Analysis of risk factors was facilitated through a 

survey and statistical tests, including Chi-square, T-tests, and 

logistic regression. The study identified significant risk factors 

such as the location of artificial insemination, age, and 

management practices. 

Research into Brucellosis persists to be a focal point of 

exploration. In 2022, a seroprevalence study and evaluation of 

risk factors were conducted in the Jimma region of Ethiopia, 

with data from 424 bovine blood samples and 114 households 

being scrutinized [14]. Univariate analysis with a Chi-square 

test and multivariate logistic regression models were 

employed to investigate the relationship between 

seropositivity and risk factors. The study identified 

seropositive animals predominantly as adults of the local breed, 

and it unveiled a significant association between body 

condition, pregnancy, abortion, and reproduction. The analysis 

also reported higher seroprevalence in animals managed under 

extensive systems and in contact with other pregnant bovines. 

Simultaneously, Male Here et al. [15] delineated a study 

conducted in Ireland, utilizing data from 6,611,854 

slaughtered animals. Logistic regression models were applied 

to analyze the risk of tuberculosis confirmation lesions in 

factory injuries. Purchased animals presented a higher risk of 

confirmation than those raised domestically. Small herds, 

lactating dairy herds, and herds with a history of tuberculosis 

were associated with an increased probability of confirming 

tuberculosis lesions. 

Conversely, a study executed in Egyptian governorates 

examined 400 bovine samples using serological analysis with 

an iELISA kit [16]. Risk factors were identified through farm 

and owner registration, and the data were analyzed using 

logistic regression and classification and regression trees 

(CART).  

The study uncovered a 65.5% seroprevalence in bovines 

raised in herds exceeding 100 animals and significant 

associations with factors such as disinfection following birth, 

abortion history, and shared equipment use. 

2. MATERIALS AND METHODS 

 

The research approach was directed in a mixed way 

(quantitative and qualitative), favoring broad methodologies 

that reinforce multimodal designs and allow a broader vision 

of the subject studied. In the first qualitative point, the 

appropriate variables that will be entered into the different 

multivariate techniques models as training data were selected 

based on previous studies will additionally induce a 

quantitative approach allowing statistical analysis to 

determine risk percentage so that farms implement actions to 

control this pathology. In addition, the qualitative approach is 

part of this research in an in-depth analysis of the results 

obtained from implementing different models, determining 

advantages, limitations selecting the best alternative for the 

pathology automatic diagnosis. 

 

2.1 Study site and sample collection 

 

The present investigation was carried out in the Tulcán-

Carchi Province, where ten parishes of the canton were 

evaluated, of which 600 samples were analyzed, conducting a 

survey applied to the owners of the different locations of 

livestock exploitation taking into account the progressive 

increase of Brucellosis being a risk factor for animals and 

humans due to their interaction causing a great impact at an 

economic, social and health levels. 

 

2.2 Survey instrument and variables 

 

The instrument was built using associated risk factors 

identified in previous studies [2, 3], where it was possible to 

determine, as a first point of interest (factor), location 

exploitation taking into account the parish and the number of 

people working-data will allow locating geographical area and 

activities carried out on the farm. As a second point of interest, 

the general data of the farm was addressed, taking into account 

surface, farm type, production, other animals, breed, and 

number of cattle heads for inventory purposes and to know if 

the animals were treated separately in addition to find out 

breeds or quantity that pose greater Brucellosis infection 

susceptibility. The third point is farm generalities, considering 

restrictions on the property entry, determining hygiene 

mechanisms and restrictions on individuals who may be 

carrying the bacteria. In addition, food origin and water source 

was recorded as untreated water maybe a disease transmission 

mechanism. The fourth point addressed was the production 

system considering bull semen origin, calving place and 

disinfection since hygiene is of vital importance to prevent 

direct contagion with workers and cows whether the place is 

free of possible infections. As a fifth point, reproductive 

pathology was considered, taking abortions into account. 

Metritis was recorded in sick animals since this is a known risk 

factor for Brucella. As a sixth and seventh point, the diagnosis 

and sanitary calendar were recorded, whether there are tests, 

samples, and preventive control measures. In addition, the 

vaccination schedule was considered since commonly having 

a record of each bovine's condition makes disease detecting 

treatment easier. The eighth and ninth point is the milking and 

workers data since quality expertise parameters and equipment 

disinfection are taken into account as workers may be in direct 

contact with the bovine posing direct contamination risks. As 

the tenth point is the risk of food consumption Whether 

workers are aware of the disease although Brucellosis depends 
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to a large extent on animals, the human being is an accidental 

host at product consumption becoming a carrier of this 

pathology. 

As mentioned before, the instrument was created based on 

previous studies results [2, 3], where relevant key risk factors 

were selected based on a literature review. Then they were 

structured in a survey and validated using classic statistical 

techniques: Confirmatory Factorial Analysis, Regressions for 

the ordinal, categorical, and numeric variables, respectively [2, 

3]. This way, 51 variables were classified as representative 

regressors for the Brucellosis risk variable. Variables that 

comprised the instrument are presented in Table 1. 
 

Table 1. Instrument variables 

 
Factor Code Variable 

Location q1 Canton 

Farm description 

q2 Total area 

q3 Exploitation type 

q4 Number of cattle 

q5 Cattle breed 

q6 Inventory of other animals 

Farm generalities 

q7 Restriction on the entry of individuals. 

q8 Source of replacement animals 

q9 Where does the drinking water for the animals come from? 

q10 Feeding system 

q11 Use of organic waste to fertilize the pastures 

Production system 

q12 Reproductive system employed 

q13 Origin of the bull 

q14 Where does the semen used come from? 

q15 Percentages of cows in your herd that are primiparous 

q16 There is a specific place for births 

q17 Do you disinfect the farrowing pens? 

Reproductive pathology 

q18 Do the cows in your herd miscarry? 

q19 What is the fate of the aborted tissues? 

q20 What is the fate of sick animals? 

q21 Is there metritis in animals? 

Diagnosis 

q22 Are diagnostic tests performed? 

q23 Has Brucellosis been diagnosed in your herd? 

q24 In which species was the sample taken? 

q25 What preventive and control measures were taken? 

Sanitary calendar 

q26 Is there a vaccination schedule? 

q27 Do you vaccinate animals against Brucellosis? 

q28 What type of vaccine was used? 

q29 what kind of animals are vaccinated? 

Milking 

q30 What type of milking do you use? 

q31 Do you know the quality parameters of your herd's milk? 

q32 Is disinfection of equipment hands and udders carried out? 

Workers data 

q33 What type of activity is carried out in your herd? 

q34 Is there a periodic medical check-up of the workers? 

q35 Have you been tested for Brucellosis? 

q36 Have there been abortions in your family? 

q37 What animals have you had contact with? 

q38 Have you had contact with placentas, fetuses, or secretions? 

q39 Do you use any type of protection at work? 

Food consumption risk 

q40 What kind of cow's milk do you drink? 

q41 What kind of yogurt do you eat? 

q42 What kind of cheese do you eat? 

q43 What kind of butter do you eat? 

q44 Is self-consumption of milk carried out in the APU? 

q45 Do you make products from the milk produced? 

q46 Do you know what Brucellosis is? 

q47 Do you know how Brucellosis is transmitted? 

q48 Do you know what the symptoms are in humans? 

q49 Do you know what the symptoms are in animals? 

q50 Has any family member had Brucellosis? 

q51 Do you know of any control program for this disease? 

2.3 Data analysis 

 

Database compilation for any study is susceptible to 

including missing data and outliers, which is why it is 

recommended that all statistical analysis begins with applying 

a data analysis protocol. Among the most used techniques for 

data treatment for multivariate samples are Mahalanobis 

distances. This technique allows the measurement of the 

number of standard deviations in which an observation is 

located concerning the mean in a distribution; since outliers do 
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not behave similarly to common observations, this measure 

can be used to detect outliers. From a geometric point of view, 

the Euclidean distance is the shortest distance between two 

points; however, the correlation between highly correlated 

variables isn’t considered. The difference between the 

Mahalanobis distance and the Euclidean distance is that it does 

value the correlation between variables [17, 18]. This is a 

scale-invariant metric contemplating the distance between a 

point generated by an 𝒙 ∈ ℝ𝑝 , p-varied probability 

distribution fX(.) and the mean μ=E(X) in the distribution. 

Assuming that the distribution fX(.) has finite moments of 

second order, the covariance matrix can be determined as 

∑=E(X-μ). Thus, the Mahalanobis distances are defined as: 

 

𝐷(𝑿, 𝜇) = √(𝑿 − 𝜇)𝑇Σ−1(𝑿 − 𝜇) (1) 

 

2.4 Modeling techniques 

 

2.4.1 Principal component analysis 

The principal component analysis is a dimension reduction 

technique where a group of correlated variables is intended to 

become a shorter group of uncorrelated variables. Principal 

Component Analysis (PCA) is commonly used as an 

exploratory data analysis technique, examining the 

relationship between a group of variables, so it can be used as 

a dimension reduction technique [19]. Furthermore, as 

described in the studies [20, 21], the PCA can be used to 

determine the number of hidden layers that must be 

implemented in a neural network. For a dataset x(1), x(2),⋯, x(m) 

with n-dimensional observations, it is intended to reduce the 

dataset to k-dimensional observations (when k<n). Therefore, 

the process begins with data standardization: 

 

𝑥𝑗
𝑖 =

𝑥𝑗
𝑖 − �̅�𝑗

𝜎𝑗

 (2) 

 

Then, the covariance matrix is calculated using the 

following: 

 

Σ =
1

𝑚
∑(𝑥𝑖)(𝑥𝑖)

𝑇

𝑚

𝑖

, Σ ϵ ℝ𝑛×𝑛 (3) 

 

Next, covariance matrix eigenvector and eigenvalue are 

obtained using the equation: 

 

𝑢𝑇Σ = 𝜆𝜇, 

𝑈 = [
| | |
𝑢1 𝑢2 … 𝑢𝑛

| | |
] , 𝑢𝑖  ∈  ℝ𝑛 

(4) 

 

In this way, the original data is projected to a subspace of k-

dimensions so that covariance matrix main eigenvectors are 

selected. These new variables represent original data and its 

variance. Each of these new vectors can be obtained using the 

expression: 

 

𝑥𝑖
𝑛𝑒𝑤 =

[
 
 
 
𝑢1

𝑇𝑥𝑖

𝑢2
𝑇𝑥𝑖

⋮
𝑢𝑘

𝑇𝑥𝑖]
 
 
 

 ϵ ℝ𝑘 (5) 

 

In particular, PCA is a useful tool for neural networks model 

design because, as mentioned in the studies [20, 21], it can be 

applied to determine how many necessary components explain 

a significant amount of the variance observed in the dataset, 

equivalent to the number of hidden layers of the network. A 

good rule of thumb is to consider at least a higher number of 

hidden layers as components are required to explain 70% of 

dataset total variance [21]. 

 

2.4.2 Neural networks 

Neural networks, as a classification technique, constitute an 

assembly method in which each artificial neuron emulates the 

behavior of a biological neuron by combining a set of weights 

at input, activating and transmitting a signal only if the input 

signal combination is large enough to reach a threshold. There 

is a large number of activation functions that can be selected 

for the functioning of each neuron. However, in the present 

work, we selected the RELU (Rectified Linear Unit) 𝑅𝑒𝐿𝑈 →
ℴ = max (0, 𝑧) to design the hidden layers and the SoftMax 

𝑆𝑜𝑓𝑡𝑀𝑎𝑥 → ℴ = 𝑒𝑧𝑗/∑ 𝑒𝑧𝑖
𝑖  for the output layer that must 

have a binary behavior. Artificial neural networks constitute 

an assembly technique that can enter as many input variables 

as necessary, employing a neuron in the input layer commonly 

not provided with an activation function. Subsequently, as 

many links as necessary are generated, where a weight wi,j is 

assigned for each link, which is a parameter that will be 

estimated through the learning process, activating or not 

neurons different combinations of the hidden and output layers, 

thus allowing each neuron or combinations to learn non-linear 

behaviors from data. The expression obtains the signal 

propagation process in each layer of the neural network: 

 

𝑿𝑗 = 𝑾𝑖𝑗 · 𝑰 (6) 

 

𝓞𝑗 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑿𝑗) (7) 

 

where, Xj represents the matrix of total input signals from the 

neurons of a j layer neural network, Wij represents the matrix 

of weights of existing links between the current layer j and the 

previous layer i, I is the matrix of input signals and 𝓞𝑗 

represents the matrix of output signals from each neural 

network layer. Determining the learning of a neural network, 

error 𝑒𝑜𝑢𝑡𝑘
= 𝑡𝑘 − ℴ𝑘  of each neuron of the final layer is 

calculated by comparing the obtained value y with the 

expected value for each observation t. These errors must be 

back-propagated through the neural network links where each 

output comes from to allow weights update. Errors can be 

back-propagated in the neural network using the expression: 

 

𝝃𝑖 = 𝑾𝑖𝑗
𝑇 · 𝝃𝑗 (8) 

 

where, ξi represents the matrix of errors that will be back-

propagated to the previous layer of the neural network and ξj 

are errors coming from the next neural network layer. Once 

the errors are backpropagated in the neural network, these 

weights allow the neural network to retain information from 

previous examples adding new information from new 

observations. One of the most widely used processes for this 

purpose is gradient descent formulated as follows: 

 
𝜕𝝃

𝜕𝑾𝑗𝑘
=

𝜕 ∑ (𝑡𝑛 − ℴ𝑛)𝑛

𝜕𝑾𝑗𝑘
=

𝜕𝝃

𝜕𝓞𝑘
·

𝜕𝓞𝑘

𝜕𝑾𝑗𝑘
 

= −2(𝑡𝑛 − ℴ𝑛) ·
𝜕𝓞𝑘

𝜕𝑾𝑗𝑘
 

(9) 
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where, 𝑾𝑗𝑘
(𝑟+1)

 represents the new updated weight for a link jk, 

updated from its previous value 𝑾𝑗𝑘
(𝑟)

, and the gradient ∂ξ/∂Wjk 

that enters a new portion of information moderated by the 

Learning-rate hyper-parameter α [22-24]. 

 

2.4.3 Deep learning 

Artificial neural networks having two or more hidden layers 

with consecutive non-linear activation functions are called 

Deep Learning models [22]. However, excessive addition of 

hidden layers and a greater number of neurons is not always 

the best alternative leading the model to overfitting problems. 

In addition, calculating parameters involved in the model can 

become a challenging task since calculating the parameter 

update will involve a larger number of derivatives. This 

problem can be addressed by using the chain rule, which is 

stated as follows: 

 
𝑑𝑓3

𝑑𝑢
(𝑥) =

𝑑𝑓3

𝑑𝑢
(𝑓2(𝑓1(𝑥))) ×

𝑑𝑓2

𝑑𝑢
(𝑓1(𝑥)) ×

𝑑𝑓1
𝑑𝑢

(𝑥) (10) 

 

Example, for a Deep Learning model with two hidden layers, 

in addition to the matrix of weights Wk involved in each layer, 

a Bias term can be added as an intercept Bk. The concept of a 

two-hidden-layer model is presented in Figure 1. 

 

 
 

Figure 1. Two hidden layers deep learning model 

formulation 

 

Following the proposed formulation, the gradients used for 

weight update in the neural network connections can be 

calculated using the expressions: 

 
𝜕𝐿

𝜕𝐵2

=
𝜕𝜆

𝜕𝑃
(𝑃, 𝑌) × 

𝜕𝜓

𝜕𝐵2

(𝑀2, 𝐵2) (11) 

 
𝜕𝐿

𝜕𝑊2
=

𝜕𝜆

𝜕𝑃
(𝑃, 𝑌) × 

𝜕𝜓

𝜕𝑀2

(𝑀2, 𝐵2) ×
𝜕𝜌

𝜕𝑊2

(𝑂1,𝑊2) (12) 

 
𝜕𝐿

𝜕𝐵1
=

𝜕𝜆

𝜕𝑃
(𝑃, 𝑌) × 

𝜕𝜓

𝜕𝑀2

(𝑀2, 𝐵2) ×
𝜕𝜌

𝜕𝑀1

(𝑂1,𝑊2)

×
𝜕𝛽

𝜕𝑀1

(𝑁1) ×
𝜕𝛼

𝜕𝐵1

(𝑀1, 𝐵1) 
(13) 

 
𝜕𝐿

𝜕𝑊1

=
𝜕𝜆

𝜕𝑃
(𝑃, 𝑌) ×

𝜕𝜓

𝜕𝑀2

(𝑀2, 𝐵2) ×
𝜕𝜌

𝜕𝑀1

(𝑂1,𝑊2)

×
𝜕𝛽

𝜕𝑀1

(𝑁1) ×
𝜕𝛼

𝜕𝑀1

(𝑀1, 𝐵1)

×
𝜕𝛾

𝜕𝑊1

(𝑋,𝑊1) 

(14) 

 

Once the learning process and parameters update is 

configured, there is still an open question regarding the 

number of neurons retained in each hidden layer. There are 

many approaches tending to answer this open question, like 

formulas of: Li, Chow, and Yu, Tamura and Tateishi, Xu and 

Chen, Shibata and Ikeda method, Hunter, Yu, Pukish III, 

Kolbusz and Wilamowski, and the Sheela and Deepa, listed in 

the study of Vujičić et al. [25]. Nevertheless, given the large 

number of input neurons required in our method, we followed 

the recommendations of Demuth et al. [26], which consider all 

the possible configurations of neurons for the hidden layer, 

from half to twice the number input layer neurons. This 

procedure involves harder experimentation work but ensures 

an appropriate search interval to guarantee the finding of a 

good model. 

 

2.4.4 Model validation 

For model validation, the dataset was split into training and 

test datasets, used to verifying the performance of each 

classification model when trying to predict unseen data 

outcome. For this purpose, the rule of thumb rule was applied 

for 70% proportional to the training data, and 30% was kept 

for validation purposes. 

Once the training stage of each model finished, we extracted 

the classifier performance metrics using the confusion matrix. 

The confusion matrix is widely used as a performance 

evaluation tool for validating classification models. It provides 

a tabular representation of the predicted and actual 

classification models output types. The confusion matrix aids 

in understanding how well a classification model performs in 

correctly classifying instances into their respective classes. It 

provides a detailed breakdown of model's predictions, 

enabling pattern identification, biases, and errors. This 

information helps fine-tune the model, adjust classification 

thresholds, optimizing model performance for specific 

objectives or requirements. The matrix consists of four 

components: true positives (TP), true negatives (TN), false 

positives (FP), and false negatives (FN). 

From these measures, some performance metrics can be 

calculated: 

 

Precision. Also known as “positive predictive value”, 

measures the ratio of accurately predicted positive instances to 

the total number of positive predictions made by the detector. 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (15) 

 

Accuracy. This metric evaluates the overall success rate 

indicating algorithm effectiveness, representing the proportion 

of correct predictions. 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 +  𝐹𝑃
 (16) 

 

In addition, we considered two important metrics related to 

the error obtained in each prediction made over the unseen 

data. 
 

MSE. MSE (Mean Squared Error) is a common 

performance metric in machine learning measuring the 

average squared difference between the predicted and actual 

values. It quantitatively measures the model's accuracy, with 

lower MSE values indicating better predictive performance. 
 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦′ − 𝑦)2

𝑡=𝑛

𝑡=1

 (17) 

 

Loss. Loss refers to the objective function quantifying the 

discrepancy between predicted output and true target value 
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during training. It represents the error or cost incurred by the 

model and guides the optimization process minimizing the 

error improving model performance. For example, the 

categorical cross entropy Loss employed in the ML proposed 

models is defined as: 

 

𝐿𝑜𝑠𝑠𝐶𝐸 = −∑ 𝑦𝑖 · log (𝑦𝑖
′)

𝑖=𝑁

𝑖=1

 (18) 

 
 

3. RESULTS 

 

The database used for the study consisted of 632 

observations from a multivariate instrument comprising 51 

variables, 21 of which were binary and 30 categorical. These 

variables were proposed by experts in Brucellosis studies [3], 

representing the risk factors involved in the presence of 

Brucellosis on cattle farms. Since the proposed instrument is 

of a categorical and ordinal multivariate nature, it is a complex 

problem to be dealt with using conventional statistical 

techniques. This is why in this study, artificial neural networks 

and Deep learning were selected as the main techniques due to 

the great advances and excellent results in recent years, 

especially for handling data composed of non-linear variables 

[23]. Additionally, the results were contrasted with logistic 

regression, selected as a classical statistical technique due to 

its high popularity and in the obtaining of classification models 

excellent results based on non-linear regressors. 

The database was processed using the statistical 

programming language R, in conjunction with Python over the 

Anaconda distribution, allowing TensorFlow and Keras 

packages handling from RStudio, through the library reticulate. 

Data analysis began by imputing 127 missing data distributed 

throughout the database, representing 0.394% of the sample, a 

proportion that is significantly lower than 5%; therefore, the 

criterion was met, and KNN technique (K- Nearest Neighbors) 

was used to impute data through the library VIM. 

Next, the coded categorical variables were used to detect 

outliers, for which the Mahalanobis Distances were used, 

obtained with respect to the data centroid. For this process, a 

191.5196 cutoff score was defined based on χ2 conserving 

99.9% distribution excluding 0.01% of furthest distance 

(outliers). In this way, no atypical observations were detected, 

so the database kept its 632 observations. 

Then, the categorical and binary variables were transformed 

into Dummy type variables, depending on the parameter levels 

of each variable, using the recipes and tidyverse libraries. Thus, 

the coded database using dummy variables was made up of 

125 variables, from which 124 were considered regressors 

(features) or data for the input neuron layer, and the variable 

brucelosisdiagnos (diagnosis of Brucellosis) was considered 

as the single response variable (labels). Additionally, the 

libraries GGally and skimr were used as data visualization 

mechanisms to verify the information before training the 

models. The results are presented in Table 2. 

As seen in Table 2, through data processing, a database was 

obtained with no atypical or missing data, and each of the 124 

regressor variables had a variance different from zero.  

 

Table 2. Descriptive statistics of the coded variables in dummy format 

 

Variable Name N.Missing Complete.Rate Num.Mean Num.Sd 
Num 

p0 

Num 

p25 

Num 

p50 

Num 

p75 

Num 

p100 
Hist. 

canton_tulcan 0 1 0.2693662 0.44402157 0 0 0 1 1 ▇▁▁▁▃ 

canton_huaca 0 1 0.10739437 0.30988689 0 0 0 0 1 ▇▁▁▁▁ 

canton_montufar 0 1 0.24823944 0.43237223 0 0 0 0 1 ▇▁▁▁▃ 

canton_espejo 0 1 0.16901408 0.37509469 0 0 0 0 1 ▇▁▁▁▂ 

canton_mira 0 1 0.04753521 0.21296823 0 0 0 0 1 ▇▁▁▁▁ 

canton_bolivar 0 1 0.1584507 0.36548496 0 0 0 0 1 ▇▁▁▁▂ 

totalsurface_1a10hect 0 1 0.88380282 0.3207437 0 1 1 1 1 ▁▁▁▁▇ 

totalsurface_10a20hect 0 1 0.05985915 0.23743481 0 0 0 0 1 ▇▁▁▁▁ 

totalsurface_20a50hect 0 1 0.01760563 0.13162895 0 0 0 0 1 ▇▁▁▁▁ 

totalsurface_morethan50h 0 1 0.00176056 0.04195907 0 0 0 0 1 ▇▁▁▁▁ 

exploittype_intensive 0 1 0.41021127 0.49230548 0 0 0 1 1 ▇▁▁▁▆ 

exploittype_extensive 0 1 0.26760563 0.44310103 0 0 0 1 1 ▇▁▁▁▃ 

exploittype_mixed 0 1 0.17605634 0.38120381 0 0 0 0 1 ▇▁▁▁▂ 

productiontype_milk 0 1 0.79049296 0.40731552 0 1 1 1 1 ▂▁▁▁▇ 

productiontype_meat 0 1 0.00352113 0.05928673 0 0 0 0 1 ▇▁▁▁▁ 

productiontype_mixed 0 1 0.00528169 0.07254695 0 0 0 0 1 ▇▁▁▁▁ 

productiontype_others 0 1 0.01056338 0.10232414 0 0 0 0 1 ▇▁▁▁▁ 

cattlenumber_1to10 0 1 0.77640845 0.41701863 0 1 1 1 1 ▂▁▁▁▇ 

cattlenumber_10to20 0 1 0.17957746 0.38417345 0 0 0 0 1 ▇▁▁▁▂ 

cattlenumber_20to30 0 1 0.0193662 0.13792984 0 0 0 0 1 ▇▁▁▁▁ 

cattlenumber_30to40 0 1 0.01232394 0.11042433 0 0 0 0 1 ▇▁▁▁▁ 

cattlenumber_40to50 0 1 0.00352113 0.05928673 0 0 0 0 1 ▇▁▁▁▁ 

cattlebreed_holstein 0 1 0.97535211 0.15518624 0 1 1 1 1 ▁▁▁▁▇ 

cattlebreed_jersey 0 1 0.00704225 0.08369584 0 0 0 0 1 ▇▁▁▁▁ 

cattlebreed_f1 0 1 0.00528169 0.07254695 0 0 0 0 1 ▇▁▁▁▁ 

cattlebreed_brownsuiz 0 1 0.00528169 0.07254695 0 0 0 0 1 ▇▁▁▁▁ 

cattlebreed_pizan 0 1 0.00352113 0.05928673 0 0 0 0 1 ▇▁▁▁▁ 

inventory_sheep 0 1 0.00880282 0.0934918 0 0 0 0 1 ▇▁▁▁▁ 

inventory_goats 0 1 0.01056338 0.10232414 0 0 0 0 1 ▇▁▁▁▁ 
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inventory_pigs 0 1 0.38028169 0.4858839 0 0 0 1 1 ▇▁▁▁▅ 

inventory_dogs 0 1 0.8028169 0.39822245 0 1 1 1 1 ▂▁▁▁▇ 

inventory_cats 0 1 0.16549296 0.37195243 0 0 0 0 1 ▇▁▁▁▂ 

inventory_horses 0 1 0.01408451 0.11794331 0 0 0 0 1 ▇▁▁▁▃ 

inventory_camelids 0 1 0.00704225 0.08369584 0 0 0 0 1 ▇▁▁▁▁ 

inventory_others 0 1 0.06338028 0.24386045 0 0 0 0 1 ▇▁▁▁▁ 

restriction 0 1 0.69542254 0.46063391 0 0 1 1 1 ▃▁▁▁▇ 

provenance_neighbor 0 1 0.16373239 0.37035873 0 0 0 0 1 ▇▁▁▁▂ 

provenance_locality 0 1 0.32394366 0.46839131 0 0 0 1 1 ▇▁▁▁▃ 

provenance_fair 0 1 0.54577465 0.49833914 0 0 1 1 1 ▆▁▁▁▇ 

provenance_others 0 1 0.02288732 0.1496761 0 0 0 0 1 ▇▁▁▁▁ 

drinkh2o_river 0 1 0.34507042 0.47581027 0 0 0 1 1 ▇▁▁▁▅ 

drinkh2o_ditch 0 1 0.3221831 0.4677246 0 0 0 1 1 ▇▁▁▁▂ 

drinkh2o_well 0 1 0.01056338 0.10232414 0 0 0 0 1 ▇▁▁▁▁ 

drinkh2o_cistern 0 1 0.18133803 0.38563762 0 0 0 0 1 ▇▁▁▁▂ 

drinkh2o_potable 0 1 0.00352113 0.05928673 0 0 0 0 1 ▇▁▁▁▁ 

feedingsys_grazing 0 1 0.95422535 0.20918022 0 1 1 1 1 ▁▁▁▁▇ 

feedingsys_stabled 0 1 0.00176056 0.04195907 0 0 0 0 1 ▁▁▁▁▇ 

organicwaste 0 1 0.04049296 0.19728609 0 0 0 0 1 ▇▁▁▁▁ 

reprodsys_naturallymount 0 1 0.87147887 0.33496415 0 1 1 1 1 ▇▁▁▁▁ 

reprodsys_artificialinsem 0 1 0.08978873 0.28613084 0 0 0 0 1 ▁▁▇▁▁ 

reprodsys_mixed 0 1 0.03873239 0.19312654 0 0 0 0 1 ▇▁▁▁▆ 

bullprovenance_own 0 1 0.49119718 0.50036316 0 0 0 1 1 ▇▁▁▁▆ 

bullprovenance_neighbor 0 1 0.39788732 0.48989339 0 0 0 1 1 ▇▁▁▁▁ 

bullprovenance_fair 0 1 0.02112676 0.14393364 0 0 0 0 1 ▇▁▁▁▁ 

bullprovenance_other 0 1 0.01232394 0.11042433 0 0 0 0 1 ▇▁▁▁▃ 

semprovenance_own 0 1 0.29577465 0.45679247 0 0 0 1 1 ▇▁▁▁▁ 

semprovenance_insem 0 1 0.09683099 0.29598815 0 0 0 0 1 ▇▁▁▁▁ 

semprovenance_neighbor 0 1 0.00880282 0.0934918 0 0 0 0 1 ▇▁▁▁▁ 

semprovenance_other 0 1 0.01584507 0.12498603 0 0 0 0 1 ▇▁▁▁▁ 

farrowingdesinfection 0 1 0.00176056 0.04195907 0 0 0 0 1 ▇▁▁▁▁ 

abort 0 1 0.02288732 0.1496761 0 0 0 0 1 ▇▁▁▁▁ 

abortedtissue_bury 0 1 0.00528169 0.07254695 0 0 0 0 1 ▇▁▁▁▁ 

abortedtissue_waste 0 1 0.01408451 0.11794331 0 0 0 0 1 ▇▁▁▁▁ 

abortedtissue_animcons 0 1 0.01056338 0.10232414 0 0 0 0 1 ▇▁▁▁▁ 

sickanimaldest_sale 0 1 0.74823944 0.43440697 0 0 1 1 1 ▂▁▁▁▇ 

sickanimaldest_sacrifice 0 1 0.01584507 0.12498603 0 0 0 0 1 ▇▁▁▁▁ 

sickanimaldest_slaught 0 1 0.0193662 0.13792984 0 0 0 0 1 ▇▁▁▁▁ 

sickanimaldest_others 0 1 0.17429577 0.37969801 0 0 0 0 1 ▇▁▁▁▂ 

metritis 0 1 0.10035211 0.30073376 0 0 0 0 1 ▇▁▁▁▁ 

disagnostictests 0 1 0.00528169 0.07254695 0 0 0 0 1 ▇▁▁▁▁ 

brucelosisdiagnos 0 1 0.11267606 0.31647511 0 0 0 0 1 ▇▁▁▁▁ 

speciesample_cattle 0 1 0.0193662 0.13792984 0 0 0 0 1 ▇▁▁▁▁ 

speciesample _sheep 0 1 0.00352113 0.05928673 0 0 0 0 1 ▇▁▁▁▁ 

measures_periodicdiagnos 0 1 0.00176056 0.04195907 0 0 0 0 1 ▇▁▁▁▁ 

measures_massvaccinat 0 1 0.01056338 0.10232414 0 0 0 0 1 ▇▁▁▁▁ 

vaccinationcalendar 0 1 0.00880282 0.0934918 0 0 0 0 1 ▇▁▁▁▁ 

brucelosisvaccination 0 1 0.01232394 0.11042433 0 0 0 0 1 ▇▁▁▁▁ 

vaccinetype_cepa19 0 1 0.02288732 0.1496761 0 0 0 0 1 ▇▁▁▁▁ 

vaccinetype_rb51 0 1 0.00352113 0.05928673 0 0 0 0 1 ▇▁▁▁▁ 

milkingtype_manual 0 1 0.89084507 0.31210836 0 1 1 1 1 ▁▁▁▁▇ 

milkingtype_mechanic 0 1 0.10211268 0.30306333 0 0 0 0 1 ▇▁▁▁▁ 

milkparameters 0 1 0.01056338 0.10232414 0 0 0 0 1 ▇▁▁▁▁ 

equipmentdesinfection 0 1 0.89612676 0.30536496 0 1 1 1 1 ▁▁▁▁▇ 

activity_agriculturalind 0 1 0.59330986 0.49164909 0 0 1 1 1 ▆▁▁▁▇ 

activity_meetind 0 1 0.00176056 0.04195907 0 0 0 0 1 ▇▁▁▁▁ 

activity_diaryind 0 1 0.00352113 0.05928673 0 0 0 0 1 ▇▁▁▁▁ 

activity_vet 0 1 0.00176056 0.04195907 0 0 0 0 1 ▇▁▁▁▁ 

activity_livestock 0 1 0.70422535 0.45679247 0 0 1 1 1 ▃▁▁▁▇ 

periodicmedicalcontrol 0 1 0.08626761 0.28100628 0 0 0 0 1 ▇▁▁▁▁ 

brucelosistest 0 1 0.00176056 0.04195907 0 0 0 0 1 ▇▁▁▁▁ 

hadabortions 0 1 0.00352113 0.05928673 0 0 0 0 1 ▇▁▁▁▁ 

contactwith_cattle 0 1 0.94894366 0.22030669 0 1 1 1 1 ▁▁▁▁▇ 
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contactwith_sheep 0 1 0.01056338 0.10232414 0 0 0 0 1 ▇▁▁▁▁ 

contactwith_pigs 0 1 0.38380282 0.48673948 0 0 0 1 1 ▇▁▁▁▅ 

contactwith_goats 0 1 0.01056338 0.10232414 0 0 0 0 1 ▇▁▁▁▁ 

contactwith_equines 0 1 0.08450704 0.2783919 0 0 0 0 1 ▇▁▁▁▁ 

contactwithplacentas 0 1 0.10035211 0.30073376 0 0 0 0 1 ▇▁▁▁▁ 

workprotection 0 1 0.3415493 0.47464725 0 0 0 1 1 ▇▁▁▁▃ 

milkcons_pasteurized 0 1 0.03169014 0.17532825 0 0 0 0 1 ▇▁▁▁▁ 

milkcons_boiled 0 1 0.95070423 0.2166757 0 1 1 1 1 ▁▁▁▁▇ 

milkcons_raw 0 1 0.00352113 0.05928673 0 0 0 0 1 ▇▁▁▁▁ 

yougurtcons_pasteurized 0 1 0.38556338 0.48715714 0 0 0 1 1 ▇▁▁▁▅ 

yougurtcons_notpasteur 0 1 0.01232394 0.11042433 0 0 0 0 1 ▇▁▁▁▁ 

cheesecons_industrial 0 1 0.4471831 0.49764081 0 0 0 1 1 ▇▁▁▁▆ 

cheesecons_artisan 0 1 0.68661972 0.4642764 0 0 1 1 1 ▃▁▁▁▇ 

cheesecons_ownprod 0 1 0.07570423 0.26475745 0 0 0 0 1 ▇▁▁▁▁ 

buttercons_pasteur 0 1 0.07394366 0.26190984 0 0 0 0 1 ▇▁▁▁▁ 

buttercons_notpasteur 0 1 0.00880282 0.0934918 0 0 0 0 1 ▇▁▁▁▁ 

milkselfcons_raw 0 1 0.02288732 0.1496761 0 0 0 0 1 ▇▁▁▁▁ 

milkselfcons_boiled 0 1 0.95246479 0.21296823 0 1 1 1 1 ▁▁▁▁▇ 

milkselfcons_calostrum 0 1 0.29401408 0.45599988 0 0 0 1 1 ▇▁▁▁▃ 

milkselfcons_foam 0 1 0.00176056 0.04195907 0 0 0 0 1 ▇▁▁▁▁ 

producesproducts 0 1 0.12323944 0.32900159 0 0 0 0 1 ▇▁▁▁▁ 

knowsbrucelosis 0 1 0.17429577 0.37969801 0 0 0 0 1 ▇▁▁▁▂ 

knowshowtransmitted 0 1 0.16725352 0.37353102 0 0 0 0 1 ▇▁▁▁▂ 

hmansympt_abortions 0 1 0.02112676 0.14393364 0 0 0 0 1 ▇▁▁▁▁ 

hmansympt_orchitis 0 1 0.02288732 0.1496761 0 0 0 0 1 ▇▁▁▁▁ 

hmansympt_pain 0 1 0.00880282 0.0934918 0 0 0 0 1 ▇▁▁▁▁ 

hmansympt_others 0 1 0.01232394 0.11042433 0 0 0 0 1 ▇▁▁▁▁ 

animalsympt_abortions 0 1 0.17077465 0.37664363 0 0 0 0 1 ▇▁▁▁▂ 

animalsympt_sterility 0 1 0.10739437 0.30988689 0 0 0 0 1 ▇▁▁▁▁ 

animalsympt_weakanim 0 1 0.01232394 0.11042433 0 0 0 0 1 ▇▁▁▁▁ 

animalsympt_metritis 0 1 0.00352113 0.05928673 0 0 0 0 1 ▇▁▁▁▁ 

familymember 0 1 0.01760563 0.13162895 0 0 0 0 1 ▇▁▁▁▁ 

controlprogram 0 1 0.0193662 0.13792984 0 0 0 0 1 ▇▁▁▁▁ 

 

3.1 Logistic regression 
 

As a first approach, logistic regression was selected as the 

conventional classification technique for comparison to the 

designed neural network models. Logistic regression was 

obtained using all 124 regressor variables, and 

𝑏𝑟𝑢𝑐𝑒𝑙𝑜𝑠𝑖𝑠𝑑𝑖𝑎𝑔𝑛𝑜𝑠 ys variable as response variable. The 

logistic regression model was obtained using the 𝑔𝑙𝑚 R 

function, for which only 23 variables reached the significance 

level, reaching AIC coefficient of 318.39, a null deviation of 

387,413, and a Residual deviation of 76,391. The results 

observed through logistic regression suggest that the logistic 

regression model is quite far from being able to explain 

variables behavior of the proposed instrument. For this reason, 

it was decided to use multivariate techniques based on neural 

networks. 

 

3.2 Zero hidden layers classifier 

 

As seen in Table 2, each survey variable introduces different 

dispersion and distribution; therefore, a first normalization 

input layer adjusted to data behavior was designed in such a 

way that allows the neural network to use data on similar 

scales avoiding affectation effects on the gradients scale used 

in the training process. This normalization layer was 

implemented using the layer_normalization and adapt 

functions of Keras. Additionally, the response variable was 

coded in Dummy format, through which two neurons were 

designed for the output layer capable of delivering the 

probability whether the farm is prone to the appearance of 

Brucellosis, respectively. This encoding was done using the 

to_categorical function of Keras. 

Next, an artificial neural network classification model 

without hidden layers was developed as a first neural 

approximation, consisting only of the normalization layer and 

two neurons in the output layer. The model was trained for 372 

learning stages using Stochastic Gradient Descent (SGD) 

optimization, with Momentum set to 0.8 a learning rate decay 

starting at 0.1 and decreasing at 0.1/372 in each new learning 

stage. Three hundred seventy-two learning stages were 

selected following the rule of thumb [26], using triple the 

number of variables as learning stages. The learning process 

results are presented in Figure 1, and the architecture of the 

classifier is presented in Figure 2. 

The classifier designed with two neurons in the output layer, 

without hidden layers, was evaluated in the 30% observations 

test set, corresponding to 192 observations unidentified by the 

classifier. Through these new observations, the classifier 

performance was evaluated, incicating a 5.6826267 loss, 

0.8593750 accuracy, and 0.1210219 MSE obtained. 

 

3.3 Establishing neural network topology  

 

As seen in the classifier results Figure 2, performance 

metrics are still considerably far from optimal performance, so 

a set of models of Shallow Neural Networks and Deep Neural 

Networks was proposed, aiming to improve classifier 

performance. Thus, a technique for determining the optimal 

topology of the neural network was used, consisting of 

principal component analysis (PCA) to calculating the neural 
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network optimal number of hidden layers [20, 21] and the 

exploration of all possible configurations in the neurons 

number of hidden layers following the recommendations [26]. 

As a dimension reduction technique, PCA makes it possible 

to determine the number of variables by which the variance in 

a group of variables can be progressively explained.  

The PCA was executed using the princomp function of R; 

results are seen in Table 3 and Figure 3. 

As shown in Figure 3, more than three main components are 

required in the model to explain more than 70% variance from 

observed data. For this reason, according to the studies [20, 

21], models with up to 4 hidden layers were proposed to 

determine the topology of the neural network. 

 

 
 

Figure 2. Training process of the two-neuron classifier without hidden layers 

 

Table 3. Results of the principal component analysis 

executed on the database 

 
Components Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 

Standard deviation 0.5094 0.4464 0.3551 0.24470 0.1525 

Proportion of variance 0.3884 0.2983 0.1887 0.08961 0.0348 

Cumulative ratio 0.3884 0.6867 0.8755 0.96515 1,0000 

 

 
 

Figure 3. Two-neuron classifier architecture without hidden 

layers 

 

3.4 One hidden layer shallow neural network 

 

Next, the optimal number of neurons was determined for the 

shallow neural network model with a single hidden layer. An 

iterative loop was designed to train various networks using 

different configurations, storing parameters and performance 

metrics.  

For the first hidden layer, activation function relu was used, 

with L2 regularization using a penalty parameter of L=0.01 to 

reduce parameter value preventing overfitting problems when 

adding neurons. Like the previous classifier, the SGD 

optimizer was used in this model with a 0.1 learning rate, a 0.8 

Momentum, and a 0.0002688 learning-rate decay. For the first 

hidden layer selection of the number of neurons, all the 

possible configurations of neurons were implemented, from a 

minimum of half to a maximum of double the neurons in the 

input layer, in this case, 62 to 248 neurons since there were 

124 entries for the hidden layer. The results of the performance 

metrics evaluated for each neuron first hidden layer 

configuration detailed in Table 4 and Figure 4. 

 

 
 

Figure 4. Cumulative variance proportion for each number of 

components obtained through PCA 

 

As seen in Table 4 and Figure 4, when testing all the 

configurations for the neural network first hidden layer 

number of neurons, it was determined that there are 

configurations with considerably higher performance. In 

particular, configurations of 79, 80, 89, and 158 neurons can 

be highlighted, reaching Loss values in validations 0.688, 

0.692, 0.349, and 0.598, respectively, suggesting that any of 

would be an optimal configuration. However, 89-neuron 

configuration reaching the best metrics in the experiments was 

selected. In addition, in Figure 4, the number of neurons in the 

hidden layer increase as the Loss values generally increase, 
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while the Accuracy increases and the MSE decreases, 

suggesting that increasing the number of neurons does not 

always improve the model. The training process and 

architecture of the neural network with a proposed hidden 

layer are presented in Figures 5 and 6. 

 

Table 4. Performance metrics for different neural network configurations with a  single hidden layer 

 
Number of Neurons Loss Accuracy MSE Number of Neurons Loss Accuracy MSE Number of Neurons Loss Accuracy MSE 

62 2.4104 0.9531 0.0527 125 31.6380 0.9219 0.0662 188 14.6382 0.9688 0.0313 

63 8.2155 0.9375 0.0517 126 24.3822 0.9375 0.0612 189 2.1478 0.9531 0.0385 

64 11.4289 0.9219 0.0659 127 1.1792 0.9375 0.0462 190 14.8598 0.9375 0.0625 

65 1.9282 0.9375 0.0577 128 4.2055 0.9531 0.0471 191 36.6496 0.9375 0.0576 

66 7.8743 0.9219 0.0752 129 7.8582 0.9531 0.0436 192 16.0786 0.9375 0.0514 

67 7.9107 0.9219 0.0631 130 16.3690 0.9219 0.0656 193 19.2104 0.9531 0.0320 

68 2.5824 0.9219 0.0689 131 0.7084 0.9688 0.0235 194 8.8482 0.9375 0.0508 

69 2.1165 0.9531 0.0510 132 42.7086 0.9375 0.0648 195 27.9806 0.9531 0.0446 

70 4.2298 0.9531 0.0499 133 5.3914 0.9375 0.0555 196 11.8391 0.9375 0.0680 

71 9.2280 0.9063 0.0590 134 9.9933 0.9531 0.0380 197 12.9974 0.9375 0.0556 

72 3.4622 0.9531 0.0424 135 6.4385 0.9688 0.0305 198 10.3186 0.9219 0.0573 

73 3.8671 0.9219 0.0781 136 26.2902 0.9531 0.0468 199 5.4273 0.9531 0.0443 

74 7.3284 0.9688 0.0247 137 2.6988 0.9688 0.0261 200 10.4735 0.9375 0.0560 

75 4.2898 0.9063 0.0796 138 4.7024 0.9688 0.0304 201 18.0530 0.9219 0.0723 

76 21.9443 0.9063 0.0716 139 24.8153 0.9219 0.0817 202 0.8184 0.9531 0.0462 

77 3.4176 0.9375 0.0502 140 1.2902 0.9375 0.0397 203 5.3224 0.9531 0.0401 

78 30.4339 0.9219 0.0585 141 8.4655 0.9531 0.0320 204 2.1262 0.9531 0.0365 

79 0.6890 0.9375 0.0487 142 14.0751 0.9219 0.0733 205 21.3395 0.9531 0.0397 

80 0.6922 0.8906 0.0555 143 18.5304 0.9531 0.0395 206 11.1953 0.9531 0.0469 

81 11.6949 0.9219 0.0607 144 5.3338 0.9375 0.0614 207 1.6601 0.9375 0.0458 

82 0.8093 0.9531 0.0477 145 13.9484 0.9375 0.0509 208 5.9637 0.9375 0.0477 

83 2.0386 0.9375 0.0425 146 19.9955 0.9531 0.0278 209 8.6627 0.9688 0.0312 

84 8.5365 0.9375 0.0576 147 13.0036 0.9375 0.0610 210 41.2424 0.9375 0.0661 

85 3.0151 0.9375 0.0560 148 12.5357 0.9375 0.0532 211 25.2603 0.9219 0.0679 

86 2.1296 0.9375 0.0427 149 18.5093 0.9219 0.0653 212 5.0725 0.9531 0.0401 

87 8.4835 0.9531 0.0460 150 12.9038 0.9375 0.0462 213 9.3957 0.9375 0.0571 

88 1.5523 0.9375 0.0463 151 9.0566 0.9375 0.0474 214 12.2781 0.9063 0.0608 

89 0.3495 0.9375 0.0461 152 20.3139 0.9219 0.0705 215 11.1058 0.9531 0.0428 

90 2.7658 0.9375 0.0525 153 14.0581 0.9063 0.0737 216 7.7778 0.9531 0.0404 

91 5.3761 0.9531 0.0345 154 6.5355 0.9375 0.0538 217 31.8098 0.9375 0.0549 

92 2.0979 0.9531 0.0448 155 1.7559 0.9375 0.0567 218 0.7161 0.9531 0.0419 

93 9.5000 0.9375 0.0453 156 8.3168 0.9531 0.0426 219 11.0355 0.8906 0.0708 

94 0.9192 0.9375 0.0321 157 4.7196 0.9219 0.0678 220 7.1842 0.9375 0.0437 

95 1.7273 0.9375 0.0509 158 0.5980 0.9531 0.0313 221 8.3809 0.9531 0.0399 

96 10.8275 0.9375 0.0557 159 20.5459 0.9375 0.0605 222 53.9297 0.9531 0.0406 

97 6.0879 0.9375 0.0470 160 2.2431 0.9531 0.0403 223 7.1866 0.9375 0.0593 

98 2.0375 0.9531 0.0417 161 7.6714 0.9375 0.0563 224 18.9589 0.9375 0.0488 

99 4.5898 0.9219 0.0573 162 3.6023 0.9375 0.0639 225 115.4788 0.8750 0.0930 

100 8.1701 0.9375 0.0397 163 3.5185 0.9531 0.0479 226 34.6113 0.9688 0.0313 

101 2.8501 0.9375 0.0456 164 5.6572 0.9531 0.0434 227 5.9036 0.9375 0.0513 

102 2.8431 0.8906 0.0740 165 7.3310 0.9375 0.0583 228 3.5541 0.9375 0.0662 

103 23.8387 0.9375 0.0525 166 10.5446 0.9219 0.0568 229 32.0479 0.9531 0.0368 

104 1.4773 0.9219 0.0611 167 14.1403 0.9531 0.0455 230 2.0574 0.9375 0.0548 

105 0.8356 0.9531 0.0544 168 16.6624 0.9531 0.0341 231 43.2719 0.9375 0.0475 

106 3.0973 0.9375 0.0551 169 2.7685 0.9688 0.0323 232 35.8593 0.9375 0.0550 

107 3.2981 0.9375 0.0470 170 13.2495 0.9375 0.0503 233 3.5197 0.9531 0.0415 

108 16.6581 0.9219 0.0777 171 20.0442 0.9219 0.0704 234 19.2165 0.9531 0.0356 

109 4.7416 0.9531 0.0499 172 21.9880 0.9375 0.0572 235 41.1777 0.9688 0.0313 

110 2.8413 0.9375 0.0589 173 1.7927 0.9531 0.0315 236 9.4484 0.9688 0.0344 

111 18.8791 0.9375 0.0559 174 89.9920 0.9063 0.0860 237 52.9232 0.9219 0.0663 

112 2.3230 0.9531 0.0424 175 16.4002 0.9375 0.0482 238 18.1829 0.9375 0.0553 

113 1.5639 0.9375 0.0580 176 14.9740 0.9531 0.0485 239 5.3080 0.9375 0.0500 

114 0.1114 0.9531 0.0373 177 11.6100 0.9531 0.0328 240 7.1684 0.9219 0.0641 

115 9.2677 0.9688 0.0235 178 13.0627 0.9375 0.0444 241 13.6392 0.9375 0.0527 

116 5.9265 0.9375 0.0552 179 6.5480 0.9531 0.0298 242 6.2603 0.9219 0.0656 

117 3.4074 0.9219 0.0602 180 1.4833 0.9375 0.0538 243 23.9679 0.9219 0.0749 

118 3.0353 0.9531 0.0418 181 14.2464 0.9063 0.0690 244 1.7815 0.9531 0.0434 

119 4.3757 0.9531 0.0571 182 24.2594 0.9688 0.0312 245 7.4158 0.9531 0.0507 

120 11.8774 0.9219 0.0715 183 0.9693 0.9688 0.0282 246 23.4501 0.9531 0.0437 

121 13.4641 0.9375 0.0569 184 11.5548 0.9531 0.0486 247 4.5637 0.9531 0.0452 

122 1.2233 0.9531 0.0446 185 1.3170 0.9688 0.0319 248 0.7573 0.9688 0.0343 

123 35.4805 0.9375 0.0528 186 19.2447 0.9688 0.0277     

124 1.7569 0.9531 0.0409 187 11.8491 0.9375 0.0663     
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3.5 Deep learning models 

 

Next, as detailed in Table 3, at least three hidden layers are 

the suggested number of hidden layers and components 

required to explain variable cumulative variance comprising 

the survey. That is why we explored the possible number of 

neurons configurations for each hidden layer. We built and 

trained a model for each hidden layer from half to twice the 

number of input neurons from previous layer that works as 

input for each hidden layer [26]. This allowed the testing of 

each configuration possible and select the most suitable 

number of neurons for each hidden layer based on 

performance metrics saving its parameters to be retrained in 

the next stage, adding an extra hidden layer. This process was 

repeated from two to four hidden layers. 

As the first step for exploring the deep learning alternatives, 

a second hidden layer was added to verify if there were 

performance improvements compared to previous 

configurations. For the next hidden layer, the most neuron 

number configurations were tried, from half to double the 

neurons of the previous layer. As the first hidden layer was 

designed with 89 neurons, combinations from 44 to 178 

neurons were tested in the second layer. Again, the neurons 

were implemented using the relu activation function, with L2 

regularization setting its parameter in L=0.001, and SGD 

performed the optimization with a 0.8 moment and a 

0.0002688 Learning- decay rate. Next, the above process was 

repeated to determine the optimal configuration of neurons in 

the third hidden layer. Next, each model was evaluated from 

39 to 158 neurons for the third hidden layer, thus considering 

from half to double the neurons of the previous layer. Once 

again, neurons were configured with relu activation function, 

L2 regularization, 0.8 Momentum, and a 0.0002688 learning-

rate decay to prevent overfitting. Finally, the greatest 

configuration for a neural network model with four hidden 

layers was determined. Similarly, every possible configuration 

from 23 to 94 neurons was tested. Like the previous ones, the 

fourth hidden layer was configured with the same 

hyperparameter configuration of the previous hidden layers. 

The results for Loss, Accuracy, and MSE metrics in each 

configuration, number of neurons hidden layers used in the 

second, third, and fourth hidden layers, are presented in Table 

5 and Figure 7. 

As can be seen in Table 5, in the second hidden layer section, 

there were several configurations in the optimal number of 

neurons that achieve excellent performance metrics, 

highlighting neuron configurations 79, 100, 142, 156, and 164 

reaching 0.1356, 0.1697, 0.1383, 0.1509 and 0.1375 Loss 

values respectively. Additionally, the configuration of 79 

neurons was selected for the second hidden layer since, even 

though it reached a slightly lower MSE than the configuration 

of 142 neurons, it has a lower Loss metric and a similar 

Accuracy value. Moreover, as seen in the third hidden layer 

section (Table 5), some neural network configurations 

presented paramount performance, as configurations of 47 and 

137 neurons stand out, reaching a 0.1341 and 0.1979 Loss 

respectively. In this way, the configuration of 47 neurons was 

selected since it reached a Loss lower than the models with 

two hidden layers and improved the accuracy reaching 97.31%. 

 

 

 

 
 

Figure 5. Loss, Accuracy, and MSE for each neuron configuration implemented for the first hidden layer of the neural network 
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Table 5. Performance metrics for the trained and tested deep learning configurations with two, three, and four hidden layers 

 

Two hidden layers Deep Learning models  

Number 

of 

Neurons 

Loss Accuracy MSE 
Number of 

Neurons 
Loss 

Accur

acy 
Mse 

Number of 

Neurons 
Loss Accuracy MSE 

44 0.2504 0.9531 0.0425 89 0.2761 0.9375 0.0528 134 0.2553 0.9219 0.0521 

45 0.1736 0.9531 0.0307 90 0.3328 0.9531 0.0462 135 0.3243 0.9375 0.0413 

46 0.2025 0.9531 0.0455 91 0.2401 0.9531 0.0465 136 0.2544 0.9375 0.0474 

47 0.2303 0.9531 0.0421 92 0.3380 0.9375 0.0582 137 0.2277 0.9375 0.0483 

48 0.2533 0.9531 0.0393 93 0.2738 0.9375 0.0548 138 0.2744 0.9688 0.0335 

49 0.3527 0.9375 0.0509 94 0.2700 0.9531 0.0399 139 0.3113 0.9531 0.0435 

50 0.1939 0.9375 0.0465 95 0.4145 0.9219 0.0674 140 0.3145 0.9375 0.0571 

51 0.2652 0.9375 0.0560 96 0.2674 0.9375 0.0590 141 0.2324 0.9531 0.0445 

52 0.2189 0.9531 0.0475 97 0.3774 0.9375 0.0532 142 0.1384 0.9688 0.0285 

53 0.3042 0.9531 0.0472 98 0.2193 0.9531 0.0361 143 0.2223 0.9531 0.0461 

54 0.3158 0.9531 0.0472 99 0.2105 0.9531 0.0376 144 0.2748 0.9375 0.0519 

55 0.3162 0.9219 0.0605 100 0.1698 0.9375 0.0414 145 0.3376 0.9375 0.0564 

56 0.2103 0.9531 0.0451 101 0.2273 0.9531 0.0359 146 0.2431 0.9375 0.0484 

57 0.2120 0.9531 0.0412 102 0.2016 0.9531 0.0357 147 0.2376 0.9375 0.0428 

58 0.2108 0.9531 0.0400 103 0.3204 0.9531 0.0410 148 0.3038 0.9531 0.0469 

59 0.3038 0.9063 0.0782 104 0.4358 0.8281 0.1168 149 0.1766 0.9531 0.0394 

60 0.2907 0.9531 0.0453 105 0.2164 0.9375 0.0486 150 0.2784 0.9219 0.0595 

61 0.2374 0.9531 0.0382 106 0.2545 0.9375 0.0517 151 0.4559 0.9375 0.0533 

62 0.2937 0.9375 0.0527 107 0.1987 0.9688 0.0328 152 0.2198 0.9375 0.0458 

63 0.3129 0.9375 0.0526 108 0.2385 0.9375 0.0505 153 0.2817 0.9531 0.0434 

64 0.2404 0.9531 0.0408 109 0.2447 0.9375 0.0517 154 0.2016 0.9375 0.0439 

65 0.2803 0.9375 0.0502 110 0.2396 0.9063 0.0533 155 0.2040 0.9375 0.0516 

66 0.2449 0.9531 0.0514 111 0.2354 0.9375 0.0498 156 0.1510 0.9531 0.0358 

67 0.3330 0.9531 0.0436 112 0.3918 0.9375 0.0554 157 0.1923 0.9688 0.0357 

68 0.1696 0.9531 0.0368 113 0.2591 0.9375 0.0491 158 0.2853 0.9375 0.0491 

69 0.2797 0.9531 0.0423 114 0.2739 0.9688 0.0365 159 0.3110 0.9375 0.0508 

70 0.2435 0.9531 0.0440 115 0.3307 0.9531 0.0477 160 0.2252 0.9375 0.0537 

71 0.4768 0.9375 0.0526 116 0.2076 0.9531 0.0395 161 0.2867 0.9531 0.0376 

72 0.2663 0.9531 0.0389 117 0.2806 0.9375 0.0500 162 0.2932 0.9375 0.0509 

73 0.2692 0.9531 0.0382 118 0.1995 0.9531 0.0348 163 0.3001 0.9375 0.0494 

74 0.3182 0.9531 0.0443 119 0.2140 0.9531 0.0435 164 0.1376 0.9375 0.0409 

75 0.2686 0.9531 0.0463 120 0.2331 0.9375 0.0529 165 0.3835 0.9375 0.0530 

76 0.1702 0.9375 0.0420 121 0.2612 0.9531 0.0390 166 0.2373 0.9688 0.0386 

77 0.2394 0.9531 0.0387 122 0.1968 0.9531 0.0425 167 0.2964 0.9375 0.0485 

78 0.2668 0.9531 0.0394 123 0.2185 0.9375 0.0481 168 0.2429 0.9375 0.0463 

79 0.1357 0.9688 0.0287 124 0.4783 0.9063 0.0919 169 0.3149 0.9688 0.0351 

80 0.3250 0.9531 0.0417 125 0.3513 0.9375 0.0590 170 0.2503 0.9531 0.0468 

81 0.2489 0.9375 0.0486 126 0.3121 0.9375 0.0514 171 0.2307 0.9531 0.0413 

82 0.3821 0.9375 0.0609 127 0.2183 0.9531 0.0396 172 0.2382 0.9531 0.0411 

83 0.2121 0.9531 0.0353 128 0.2211 0.9375 0.0455 173 0.2923 0.9531 0.0407 

84 0.2070 0.9688 0.0366 129 0.2870 0.9531 0.0440 174 0.4472 0.9375 0.0550 

85 0.2339 0.9219 0.0548 130 0.2201 0.9531 0.0376 175 0.2326 0.9531 0.0393 

86 0.2887 0.9531 0.0498 131 0.2411 0.9375 0.0583 176 0.2595 0.9531 0.0394 

87 0.2519 0.9531 0.0427 132 0.3420 0.9688 0.0354 177 0.2536 0.9375 0.0496 

88 0.1924 0.9531 0.0368 133 0.1965 0.9375 0.0459 178 0.2124 0.9375 0.0492 

Two hidden layers Deep Learning models 

Number 

of 

Neurons 

Loss Accuracy MSE 
Number of 

neurons 
Loss 

Accur

acy 
MSE 

Number of 

neurons 
Loss Accuracy MSE 

39 0.2712 0.9531 0.0463 79 0.3199 0.9375 0.0559 119 0.2646 0.9375 0.0527 

40 0.2913 0.9531 0.0421 80 0.3054 0.9375 0.0567 120 0.2734 0.9531 0.0427 

41 0.2852 0.9375 0.0561 81 0.4361 0.9531 0.0453 121 0.2560 0.9375 0.0522 

42 0.2022 0.9531 0.0407 82 0.3408 0.9375 0.0565 122 0.2105 0.9531 0.0412 

43 0.3129 0.9531 0.0455 83 0.2155 0.9531 0.0445 123 0.2258 0.9219 0.0538 

44 0.2501 0.9531 0.0421 84 0.2270 0.9531 0.0389 124 0.3114 0.9688 0.0303 

45 0.2857 0.9531 0.0490 85 0.1823 0.9375 0.0476 125 0.3024 0.9531 0.0401 

46 0.2727 0.9375 0.0497 86 0.3282 0.9531 0.0477 126 0.2778 0.9531 0.0482 

47 0.1342 0.9731 0.0278 87 0.2457 0.9531 0.0367 127 0.2433 0.9531 0.0476 

48 0.2533 0.9531 0.0448 88 0.2982 0.9375 0.0502 128 0.2293 0.9531 0.0378 

49 0.2393 0.9531 0.0421 89 0.2713 0.9375 0.0522 129 0.2442 0.9219 0.0558 

50 0.2467 0.9063 0.0716 90 0.2271 0.9375 0.0567 130 0.2480 0.9531 0.0465 

51 0.2343 0.9531 0.0444 91 0.2506 0.9375 0.0533 131 0.3499 0.9531 0.0517 

52 0.2166 0.9531 0.0420 92 0.2855 0.9375 0.0559 132 0.2429 0.9531 0.0435 
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53 0.2626 0.9688 0.0328 93 0.2452 0.9531 0.0443 133 0.2469 0.9375 0.0495 

54 0.2094 0.9688 0.0300 94 0.2554 0.9531 0.0436 134 0.2629 0.9531 0.0468 

55 0.2325 0.9531 0.0429 95 0.3894 0.9375 0.0613 135 0.3022 0.9688 0.0353 

56 0.2619 0.9531 0.0398 96 0.2595 0.9531 0.0466 136 0.2346 0.9375 0.0573 

57 0.2717 0.9531 0.0455 97 0.3251 0.9688 0.0342 137 0.1979 0.9531 0.0447 

58 0.2010 0.9531 0.0382 98 0.2032 0.9688 0.0345 138 0.5476 0.8750 0.1110 

59 0.3305 0.9375 0.0541 99 0.2484 0.9688 0.0368 139 0.2814 0.8906 0.0684 

60 0.2695 0.9375 0.0483 100 0.2629 0.9531 0.0421 140 0.2759 0.9531 0.0382 

61 0.2652 0.9375 0.0498 101 0.2820 0.9531 0.0473 141 0.2156 0.9531 0.0395 

62 0.2596 0.9531 0.0425 102 0.2814 0.9375 0.0509 142 0.3642 0.9375 0.0608 

63 0.2332 0.9375 0.0459 103 0.2500 0.9531 0.0422 143 0.3446 0.9375 0.0589 

64 0.2407 0.9531 0.0480 104 0.2624 0.9531 0.0402 144 0.2088 0.9531 0.0450 

65 0.2404 0.9531 0.0435 105 0.1975 0.9375 0.0445 145 0.3554 0.9531 0.0470 

66 0.2675 0.9531 0.0434 106 0.2479 0.9531 0.0454 146 0.3366 0.9375 0.0477 

67 0.2851 0.9375 0.0490 107 0.3459 0.9375 0.0544 147 0.2275 0.9531 0.0442 

68 0.2416 0.9531 0.0458 108 0.1998 0.9531 0.0380 148 0.3414 0.9531 0.0477 

69 0.2300 0.9219 0.0590 109 0.2838 0.9531 0.0371 149 0.3709 0.9219 0.0655 

70 0.3210 0.9063 0.0858 110 0.2870 0.9531 0.0459 150 0.3630 0.9375 0.0560 

71 0.3781 0.9531 0.0432 111 0.2113 0.9531 0.0428 151 0.2738 0.9531 0.0384 

72 0.3385 0.9531 0.0500 112 0.4097 0.9375 0.0554 152 0.2799 0.9531 0.0434 

73 0.2265 0.9375 0.0452 113 0.2425 0.9531 0.0413 153 0.2711 0.9531 0.0428 

74 0.2193 0.9531 0.0446 114 0.3220 0.9375 0.0543 154 0.2343 0.9375 0.0565 

75 0.2263 0.9375 0.0439 115 0.2717 0.9531 0.0427 155 0.1652 0.9375 0.0428 

76 0.2899 0.9531 0.0472 116 0.3447 0.9375 0.0594 156 0.2628 0.9375 0.0517 

77 0.3606 0.9375 0.0605 117 0.2949 0.9531 0.0453 157 0.2921 0.9375 0.0508 

78 0.3187 0.9375 0.0524 118 0.2482 0.9375 0.0460 158 0.2542 0.9531 0.0382 

Four hidden layers Deep Learning models 

Number 

of 

Neurons 

Loss Accuracy Mse 
Number of 

Neurons 
Loss 

Accurac

y 
Mse Number of Neurons Loss Accuracy Mse 

23 0.2481 0.9219 0.0607 47 0.2469 0.9531 0.0411 71 0.2186 0.9531 0.0413 

24 0.2404 0.9531 0.0357 48 0.2885 0.9375 0.0587 72 0.2211 0.9531 0.0405 

25 0.3580 0.9531 0.0421 49 0.3135 0.9531 0.0470 73 0.2980 0.9531 0.0479 

26 0.2375 0.9531 0.0404 50 0.2861 0.9531 0.0493 74 0.2429 0.9531 0.0478 

27 0.2982 0.9375 0.0572 51 0.3948 0.9375 0.0564 75 0.2674 0.9531 0.0408 

28 0.2733 0.9531 0.0467 52 0.2847 0.9375 0.0567 76 0.2474 0.9531 0.0463 

29 0.2197 0.9531 0.0452 53 0.3263 0.9375 0.0590 77 0.2874 0.9375 0.0508 

30 0.3402 0.9531 0.0496 54 0.2895 0.9688 0.0337 78 0.3817 0.9375 0.0588 

31 0.2634 0.9531 0.0362 55 0.2300 0.9531 0.0451 79 0.2413 0.9531 0.0415 

32 0.2761 0.9531 0.0480 56 0.2671 0.9375 0.0423 80 0.3294 0.9375 0.0534 

33 0.2946 0.9531 0.0459 57 0.3036 0.9531 0.0464 81 0.2362 0.9375 0.0503 

34 0.3544 0.8750 0.0941 58 0.2618 0.9531 0.0386 82 0.2083 0.9531 0.0452 

35 0.3458 0.9531 0.0429 59 0.2410 0.9531 0.0464 83 0.2618 0.9531 0.0477 

36 0.1785 0.9531 0.0376 60 0.2506 0.9531 0.0395 84 0.3681 0.9375 0.0509 

37 0.2711 0.9531 0.0477 61 0.2818 0.9531 0.0452 85 0.3294 0.9531 0.0458 

38 0.2579 0.9375 0.0470 62 0.2870 0.9375 0.0480 86 0.2281 0.9531 0.0399 

39 0.2765 0.9531 0.0398 63 0.1873 0.9531 0.0415 87 0.2675 0.9375 0.0546 

40 0.4514 0.8594 0.1120 64 0.2596 0.9531 0.0440 88 0.2908 0.9375 0.0557 

41 0.2173 0.9375 0.0490 65 0.4345 0.9375 0.0617 89 0.2629 0.9531 0.0367 

42 0.3062 0.9531 0.0432 66 0.1935 0.9531 0.0454 90 0.3219 0.9375 0.0547 

43 0.2535 0.9531 0.0454 67 0.3061 0.9531 0.0425 91 0.2551 0.9531 0.0459 

44 0.4291 0.9531 0.0494 68 0.3439 0.9375 0.0569 92 0.2917 0.9531 0.0468 

45 0.2601 0.9531 0.0447 69 0.1644 0.9531 0.0381 93 0.4655 0.9219 0.0635 

46 0.3015 0.9531 0.0469 70 0.2374 0.9375 0.0578 94 0.2506 0.9531 0.0422 

 

Finally, in the fourth hidden layer section (Table 5), the 

outmost configuration for the number of neurons in the fourth 

layer was obtained using 36 neurons. However, compared with 

the training results of the models proposed for three hidden 

layers, it can be seen that the three hidden layer models 

achieved better Loss, Accuracy, and MSE metrics. An 

observed overfitting problem is highly noticeable determining 

that including more layers does not always mean improving 

metrics performance. This can be detected in the case of the 

fourth hidden layer, where its addition implied worsened 

metric performance, so we kept the three hidden layers model 

as the leading of the 324 trained and tested models. 

Additionally, in Figure 8, through the projected trend lines 

for each metric, it can be seen that as the number of neurons 

increases, Loss and MSE increases, as accuracy decreases, 

suggesting that a greater number of neurons does not 

necessarily improve the model tending to present overfitting 

problems. This situation can be distinguised in the three rows 

Figure 8 being a common problem that occurred in hidden 

layers second, third, and fourth.  

It must be pointed out that metrics presented in Table 5 and 

Figure 8 were obtained once the training process in each 

classifier ended, so the classifier was tested using dataset test 

obtained by splitting the entire dataset, as detailed in section 
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2.4.4. Consequenly the performance metrics presented as 

results were obtained using each model to classify 189 

examples never seen before by the classifier during training. 

As introduced in Table 5, the most advantageous deep 

learning architecture was the sequential model with a 89, 79, 

and 47 neurons configuration in its three hidden layers, 

corresponding to the outmost shallow neural network 

configuration retrained looking for the best architecture for the 

second hidden layer (achieved with 79 neurons) being 

retrained again adding a third hidden layer looking for optimal 

configuration (achieving 47 neurons). The training process 

ended in the fourth stage because none of the proposed four-

hidden layers outperformed the best three-hidden layers model. 

The training process and the architecture of the most 

advantageous deep learning model in Figures 8-10. 

In addition, topologies of the best models trained and tested 

for each hidden layer are provided in the annex section. 

Finally, the performance of each proposed model was 

verified on the test data set that each model never observed 

during the training process [27]. The data set consisted of 64 

observations for which the Loss, Accuracy, and MSE were 

obtained again. Results in Table 6. 

 

Table 6. Implemented models comparison-evaluated on Test 

database 

 
Models Loss Accuracy MSE 

Logistic regression 7.75324 0.74521 0.24876 

Classifier without hidden layers 5.68262 0.85937 0.12102 

Shallow neural network - one hidden 

layer 
0.26870 0.93750 0.05369 

Two hidden layers sequential model 0.10575 0.98437 0.01113 

Three hidden layers sequential model 0.03923 0.98437 0.00604 

Four hidden layers sequential model 0.05210 0.97875 0.00431 

 

As seen in Table 6, the best-implemented model was the 

three hidden layers with 89, 79, and 47 neurons configuration, 

achieving 0.03923, 0.98437, and 0.00604 regarding Loss, 

Accuracy, and MSE metrics performance. This model was 

evaluated in greater detail using the confusion matrix and the 

ROC curve, achieving 0.984 Accuracy. Performance results of 

the Deep Learning classifier with three hidden layers are 

presented in Figures 6 and 7. 

As observed in Figures 11 and 12, the best model among 

trained and tested proposals achieved 0.984 accuracy being by 

far the highest among all techniques. The accuracy 

considerably outperforms traditional methods like logistic 

regression achieving 0.74521accuracy, confirming the 

advantages of using deep learning techniques for classification 

based on non-linear datasets [28]. Additionally, precision and 

specificity were close to one, indicating a good confidence 

level on the true positive classifications and true negatives 

classification, respectively. The Recall of 0.982 suggests an 

exceptional level of prediction for the farms that presented 

Brucellosis risk. Also, given the different proportions that the 

true positives and false negatives presented in the test dataset, 

we looked at the F1 score, which achieved a 0.991 level 

placing this model as an optimal overall classifier. Finally, the 

observed 0.996 AUC represents an approving performance 

measurement at different threshold settings, confirming that 

the proposed model performance is satisfactorily enough to 

distinguish between farms at risk presenting Brucellosis risk. 

 

 
 

Figure 6. Training process of the proposed one-hidden layer 

neural network 

 

 
 

Figure 7. Architecture of the proposed one-hidden layer 

neural network 
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Figure 8. Loss, Accuracy, and MSE for each neuron configuration implemented for the second, third, and fourth 

hidden layers of the neural network 
Note: The first row corresponds to (a) accuracy, (b) loss, and (c) MSE of every configuration trained for the second hidden layer. The second row corresponds to 

(d) accuracy, (e) loss, and (f) MSE of every trained configuration for the third hidden layer. Finally, the third row corresponds to (g) accuracy, (h) loss, and (i) 
MSE every trained configuration for the third hidden layer 
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Figure 9. Optimal training process for the proposed three-

hidden-layer neural network 

 

 
 

Figure 10. Best proposed architecture for three-hidden-layer 

neural network 

 

 
 

Figure 11. Three hidden layers deep learning classifier 

confusion matrix 

 

 
 

Figure 12. ROC curve for the deep learning classifier with 

three hidden layers 

4. DISCUSSION 

 

Through the exposed results, it is possible to visualize 

various multivariate techniques proposed in the literature 

analyzing categorical variables [23]. However, due to the 

binary coding given to the variables and the large number of 

variables considered (51 categorical variables equivalent to 

125 dummy variables) conventional techniques such as 

decision trees and multiple and logistic regressions are not 

robust enough to obtain adequate models from this data. In 

contrast, neural networks ensembles artificial neurons, where 

each neuron can learn non-linear behaviors from the data. For 

this reason, as seen in Table 6 neural networks, especially the 

Deep Learning models reached superior performance levels 

and precision detecting on the spot Brucellosis risk in cattle 

farms. The three hidden layer model achieved 98.4% accuracy 

and 98.2%, sensitivity rivaling laboratory test results, 

demonstrating current artificial intelligence highly-powered 

techniques for tasks analyzing. The considerably better 

performance observed in the Deep Learning models can be 

mainly attributed to the non-linear variables comprising the 

survey. Similarly, it can also be attributed to factors like data 

complexity and the high number of variables considered as 

Brucellosis risk factors, indicated in Table 2. Also, comparing 

classic methods like Logistic regression, which only relies on 

one activation function, neural networks models present the 

advantage of using more than one activation function, which 

can be trained using different input variables subsets, pattern 

discovery and combinations of activations to propagate the 

information improving the classification task. For example, 

the top model presented three layers using 215 trained neurons, 

combining different sets of variable input in multiple stages so 

shat the model finds the most effective way to combine 

activations. Also, it must be mentioned that ML techniques 

have considerably evolved in recent years, at designing neural 

networks. In this particular case, we observed that the 

incorporating of normalization and regularization techniques 

significantly improved tested models performance. So, due to 

the complexity of the data used in this problem, the addition 

of normalization and regularization, an appropriate selection 

of the optimizer, activation, and loss functions, where the key 

factors that allowed the best three hidden layer model to 

achieve metrics high-performance in line to what was 

expected in the early PCA analysis. 

An additional advantage implicit in this proposal is that the 

proposed diagnostic mechanism aims to be non-invasive and 

almost free since it does not require any people or animals’ 

intervention because the survey instrument only requires 

information already available in most farms in the Carchi 

province. Still, the variables in the survey considered levels to 

deal with information that does not apply to some farms. This 

configuration allowed the survey to be applied in 632 farms 

with minimum equipment (a smartphone or laptop) and 

minimum knowledge required by the interviewers visiting 

each farm gathering the required information in less than an 

hour per farm. The developed software was made publicly 

available for free download at 

https://github.com/erickherreraresearch/DeepBrucell; so its 

implementation and use in any farm in the Carchi province 

only requires a computer (commodity PC). 

Unlike previous studies such as [9], where the diagnosis of 

Brucellosis is made in each animal using measurements based 

on DNA samples in combination with Deep Learning 

techniques, the technique proposed in this study can be applied 
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without the need of laboratory samples using only categorical 

data representing risk factors widely identified in previous 

studies. As a result, it is possible to carry out an extremely 

precise diagnosis of Brucellosis risk in the farm but, limited to 

the generality of the farm that will allow the taking of general 

control actions. At the same time, the current method can be 

accompanied by laboratory tests identifying affected animals. 

A limitation in this proposal is the veracity of data provided 

by respondents when the model is finally used. This drawback 

can be addressed in large databases like the one used for this 

study using data cleaning techniques such as Mahalanobis 

distances, Z-Score, and imputation techniques. But when 

applied to small datasets or punctual observations, the model’s 

precision could be severely affected by false information. 

Another limitation may be due to the absence of animal or herd 

physiological variables, considerably contributing to the 

improving of diagnosis accuracy and overcoming issues 

related to data veracity which will be a work field addressed 

in future projects out of the scope in this study. One last weak 

point is the overfitting frequently observed during training 

processes, resulting from variable complexity. Nevertheless, it 

is suggested that there could be risk factors not-included that 

promote a more exhaustive variable selection that make up the 

survey as it will be explored in future work. 

To summarize, through an extensive experimentation, we 

compared multiple ML configurations to a classic 

classification technique to build an effective classifier for 

Brucellosis risk in farms based only on descriptive information 

about the farm and production system management. The 

leading model that outperformed the rest of tested 

configurations was the sequential Deep Learning model with 

125 neuron input and three hidden layers in 89, 79, and 47 

neurons configuration reaching a 0.98437 accuracy due to an 

appropriate topology selection and the use of normalization 

and regularization techniques highlighting the power of Deep 

Learning models in solving non-linear problems, even for 

complex multivariate data, where techniques like regressions 

and Shallow Neural Networks might become unsuitable. 

 

 

5. CONCLUSION 

 

In this study, a new Brucellosis risk detection method is 

proposed, applied to cattle farms at the Carchi province -

Ecuador based on the gathering of risk factors information that 

has been widely identified in previous studies. The 

information required for the diagnosis was collected as an 

instrument made up of 51 categorical variables including farm 

location, farm general information, reproduction systems, 

reproductive pathologies, diagnosis, health control, milking, 

workers, and food consumption risk. Data from each farm 

were structured as observations in the designing of automatic 

classifiers developed used multivariate techniques. The 

classifiers considered for this study were logistic regression, 

neural classifiers without hidden layers, shallow neural 

networks, and various Deep Learning models.  

Though an exhaustive experimental protocol, we conclude 

that Deep Learning models present a clear advantage over 

Shallow Neural Networks and classic techniques due to the 

non-linear nature of the risk factors proposed in the literature. 

Deep Learning models displayed the ability to capture risk 

factors non-linear behavior in optimum ways to combine 

information from these factors to produce an appropriate 

classification of Brucellosis risk on cattle farms, being crucial 

in this investigation due to data complexity and the large 

number of variables comprising the survey. Among all the 

techniques implemented, the 3 hidden layers model in 89, 79, 

and 47 neurons configuration achieved prime performance for 

the Brucellosis instant detection, reaching 98.437% accuracy, 

of 0.00604 MSE and 0.03923 Loss on a test database that was 

not observed by the classifier during training. 

In this way, it can be concluded that it is possible to 

Diagnose the existence of Brucellosis in cattle farms from 

main risk factors identification accurately and reliably, 

through the use of Deep Learning techniques that in this study 

have proven to be the most suitable to model Brucellosis risk 

factors in the Carchi province, among the tested alternatives. 

Constrains identified in this work were the veracity of the 

information provided by those surveyed, the absence of animal 

or herd physiological variables in the survey, and overfitting. 

These challenges will be addressed in future work, including 

animal physiological variables which would contribute to 

mitigating false information effects, and further selection of 

the new variables leading to a new set of more specific risk 

factors contributing to mitigating overfitting problems. 

 

 

DATA AVAILABILITY STATEMENT 

 

Video samples of each algorithm execution—indoors and 

outdoors is available as supplementary material in the GitHub 

repository: 

https://github.com/erickherreraresearch/DeepBrucell; along 

with all the .txt result files of each algorithm run for 

reproducibility. 
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APPENDIX A 

 

Architecture of the best neural network models evaluated in 

this study presented in Figures A1-A5. 
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Figure A1. Architecture of the classifier with two neurons in the output layer, without hidden layers 
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Figure A2. Optimal neural network architecture determined configuration with one hidden layer (89 neurons). 
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Figure A3. Architecture of the best determined neural network configuration with two hidden layers (89 and 79 neurons) 
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Figure A4. Architecture of the best determined neural network configuration with three hidden layers (89, 79 and 47 neurons) 
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Figure A5. Architecture of the best determined neural network configuration with three hidden layers (89, 79, 47 and 36 neurons) 
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