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Ultrasonic imaging serves as a pivotal tool in mitigating overdiagnosis of breast cancer in 

women, owing to its high sensitivity, low false-positive rate, and ability to reduce 

unnecessary biopsies. Nevertheless, these images are impaired by speckle noise, which 

appears as granular interference obscuring tissue boundaries and diminishing image 

contrast. This noise impedes subsequent image processing tasks such as edge detection, 

segmentation, feature extraction, and classification. Existing strategies for speckle noise 

reduction in ultrasonic images either compromise on effectiveness or demand substantial 

processing time, presenting challenges in preserving fine edge details. Addressing these 

issues, we propose an innovative hybrid deep learning model, FCNN-IDOA, which 

synergizes a Fundamental Convolutional Neural Network (FCNN) with an optimization 

algorithm. Our FCNN model is built upon the framework of GoogLeNet, enhanced with 

fifteen additional layers to augment its expressiveness. Subsequently, an Improved 

Dragonfly Optimization Algorithm (IDOA) is deployed to optimize FCNN's parameters, 

thereby improving the computational efficiency of the model. The suggested model has 

demonstrated superior performance, outstripping previous models in terms of accuracy. 

During experimental validation, the model achieved an average t(s) value of 84.764421, a 

PSNR value of 66, an MSE value of 54.9143, an RMSE value of 0.491631, and a final t(s) 

value of 83.759067. The results indicate that this novel model significantly outperforms the 

BC models, rendering it a promising solution for speckle noise reduction in breast cancer 

ultrasound images. 
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1. INTRODUCTION

Breast cancer is a globally prevalent disease, with early 

detection being pivotal in reducing mortality [1]. The efficacy 

of treatments is significantly amplified when tumors are 

detected at an incipient stage. A precise diagnostic tool 

capable of distinguishing benign from malignant tumors is 

therefore indispensable for early detection. Traditionally, 

mammography has been the gold standard for early detection 

and diagnosis of breast cancer [2]. However, its applicability 

is circumscribed, especially in detecting cancer in young 

women with dense breast tissue. Moreover, both patients and 

radiologists are exposed to potentially harmful ionizing 

radiation during mammography. 

As an alternative, Breast Ultrasound (BUS) imaging is 

increasingly being harnessed due to its non-invasive, non-

radioactive, and cost-effective characteristics, making it more 

compatible with mass breast cancer screening and diagnosis 

[3]. For women under 35, ultrasound is particularly 

advantageous as it can detect abnormalities in dense breasts 

more effectively than mammography. However, ultrasound 

images are susceptible to various types of noise, the most 

significant of which is speckle noise [4]. 

Speckle noise, a high-frequency artifact, is a random noise 

pattern formed by a large number of waves scattered from 

tissues with varying phases [5]. Interference between these 

scattering waves can have deleterious effects, such as the 

creation of speckles and mottled B-scan noises, or potentially 

beneficial effects, such as the generation of strong noise [6]. 

Speckle noise detrimentally affects the perceived quality of the 

ultrasound image by introducing artificial structures and 

obscuring the true tissue boundaries, complicating subsequent 

tasks in the image processing pipeline, such as edge feature 

extraction [7]. Compounding the issue, speckle is 

multiplicative in nature, unlike most noises which are additive, 

posing challenges in its removal from ultrasound images [8]. 

There are five distinct families of speckle-reduction 

algorithms, including different types of image processing 

filters, the Generalised Likelihood Method (GLM) filter, and 

Wavelet-Based filters. Two common issues with local 

adaptive filters are their sensitivity to noise and their 

propensity to artificially enhance high contrast regions of 

images [9]. Anisotropic diffusion filters require extensive 

parameter tuning and degrade small structures in addition to 
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reducing image resolution [10]. Algorithms based on 

multiscale approaches are computationally demanding and 

require additional constraints. Non-local means filters result in 

a similar increase in computational time due to weighted 

averaging, while hybrid approaches degrade image quality and 

lead to blurred edges. 

While existing filtering algorithms are somewhat effective 

in reducing speckle noise, they often compromise on image 

fidelity key for breast cancer detection [11]. These filters tend 

to erase the finer edge features, which are crucial for diagnosis, 

along with the speckles, thereby blurring the exact boundaries 

of tumors [12]. Most algorithms employ a locally adaptive 

restoration paradigm, in which the restoration of a pixel's value 

is determined based on neighboring pixels. Non-local 

approaches are not solely dependent on neighboring pixels, but 

they require more processing or computation time [13]. 

This study explores the implementation of a deep learning 

(DL)-based technique designed to augment the efficacy and 

performance of existing algorithms for speckle noise removal 

in ultrasound images. The proposed methodology, an 

innovative hybrid FCNN-IDOA model, leverages DL 

techniques for hyperparameter tuning and incorporates a 

Softmax classification layer to ensure flexibility. Rigorous 

testing against a diverse range of DL models, using a publicly 

accessible dataset, reveals the proposed model to outperform 

state-of-the-art methods in terms of accuracy. 

In the realm of breast cancer ultrasound imaging, the 

presence of speckle noise poses considerable challenges. To 

counteract this issue, several image processing techniques are 

typically employed, with the following methods being the 

most commonly utilized: 

• Median Filtering: This is a non-linear filtering 

technique wherein the value of each pixel is replaced 

with the median value within its immediate vicinity. It 

demonstrates efficacy in speckle noise reduction whilst 

preserving the edges and details of the image. 

• Wiener Filtering: As a statistical-based method, Wiener 

filtering aims to minimize the mean square error 

between the original and filtered image by estimating 

the noise power spectrum and applying a frequency-

dependent filter to reduce the noise. 

• Anisotropic Diffusion: This technique harnesses the 

process of diffusion to eliminate noise while preserving 

edges. It selectively diffuses the image based on 

gradient information, allowing for noise reduction 

without compromising important image features. 

• Non-local Means Denoising: This method capitalizes 

on the redundancy in the image to reduce noise. It 

compares similar patches from different regions of the 

image to estimate the noise-free pixel value. 

The structure of the present paper is as follows: Section 2 

provides a detailed literature review, followed by an 

explanation of the proposed model in Section 3. An 

experimental analysis and validation of the model are given in 

Section 4, and a final analysis of the model is presented in 

Section 5. 

 

 

2. RELATED WORKS 

 

In the realm of image denoising, numerous novel 

methodologies have been proposed. Vimala et al. [14] 

employed a hybrid deep learning approach for the removal of 

local speckle noise from breast ultrasound images. Their 

technique entailed enhancing the contrast of ultrasound images 

with logarithmic and exponential transformations prior to the 

application of guided filter algorithms to amplify details in 

glandular ultrasound images. They further modified the 

Logical-Pool (LPRNN) with edge-sensitive terms to filter 

local noise while preserving the integrity of the image 

boundaries. Evidence of successful training of the LPRNN 

was indicated by a mean square rate of less than 1.1% after 

one iteration. Moreover, its Signal-to-Noise Ratios (SNRs) of 

65 dB, peak, and rapid decay rates highlighted its effectiveness. 

Huang et al. [15] introduced a unique denoising method, the 

Dual Deep Denoising Convolutional Neural Networks 

(D3CNNs), designed to eliminate both random and striped 

noise. They formulated the inverse problem as a constrained 

optimization problem, solvable through iterative methods, by 

introducing two auxiliary variables for the image and stripe 

noise. They trained the image variable with the residual CNN 

(RCNN), and their experimental results showcased the 

superior effectiveness of their approach, with outcomes 

equivalent to state-of-the-art techniques, both subjectively and 

objectively. 

Li et al. [16] proposed an adaptive iterative non-subsampled 

shearlet transform (NSST) technique based on enhanced soft 

thresholding to address the issues induced by hard 

thresholding discontinuity and soft thresholding constant 

deviation. The technique mitigates the effects of 

oversmoothing and restores the image to its original state. 

Experimental evidence supports that their method outperforms 

other deep learning denoising techniques in terms of Peak 

Signal-to-Noise Ratio (PSNR) and Structural Similarity Index 

(SSIM) measurements. 

In an effort to address practical image denoising, Zhang and 

Zhou [17] presented a unique Contrast-Aware Dual-Task 

(CADT) unit and Secondary Noise Extractor (SNE) block-

based Denoise Transformer. The CADT unit comprises a local 

branch that focuses on extracting features from nearby pixels 

with narrow receptive fields and a global branch that employs 

a Transformer encoder to capture global details. They used a 

hierarchical network built with CADT as basic components to 

quickly learn noise distribution via residual learning, 

generating the first stage output. The SNE was then employed 

to efficiently remove secondary global noise with minimal 

computational effort. The final output of the Denoise 

Transformer was collected, and blind spots were reconstructed 

to complete the image. 

Hu et al. [18] proposed a method to prevent model 

overfitting on the noisy image and enhance performance. Their 

approach, TripleDIP, demonstrated a significant improvement 

over the original Deep Image Prior (DIP) and current 

supervised models such as SwinIR and Restormer on the Set12 

dataset. The main driver of this achievement was the 

implementation of a two-branch noise learning strategy that 

produced stable noise without constraining the optimization 

process of the content learning branch. 

Xu et al. [19] introduced a proposed Deep Unfolding Multi-

scale Residual Network (DUMRN) for image denoising that 

includes image denoising in the feature space explicitly. At its 

core, a Feature Denoising Module (FDM) operates by directly 

removing noise from the deep feature space. The DUMRN, 

built by layering FDMs and trained from scratch, 

demonstrated superior performance compared to state-of-the-

art methods using both synthetic and real-world benchmarks. 

Yan et al. [20] proposed a Transfer Learning Dense 

Convolutional Denoising (TLD-CDL) framework to improve 
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the resolution of denoising results by integrating a 

convolutional neural network (CNN). Their approach started 

with equipping the network with dense connections and a 

structural design, followed by training a pre-model on a 

dataset of natural images. Finally, they applied transfer 

learning to adapt the model for post-processing of low-dose 

computed tomography (LDCT) images. They further applied 

a perceptual loss to guide the training. Their experimental 

results showed impressive effectiveness in both quality and 

quantity, maintaining a balanced performance between noise 

suppression and detail preservation. 

 

2.1 Problem statement 

 

In the field of ultrasound imaging, speckle noise is a 

pervasive issue, invariably compromising the quality of the 

images and hindering subsequent analyses. In this context, the 

present study introduces a novel denoising algorithm 

meticulously designed for the reduction of speckle noise in 

ultrasound images. Speckle noise, typified by its 

multiplicative interference, is known to degrade visual clarity 

and obstruct the accurate interpretation of ultrasound images. 

The algorithm proposed in this study leverages a 

combination of multi-scale analysis and non-local means 

filtering, aiming to effectively eliminate speckle noise whilst 

preserving critical image features. A series of experimental 

results, derived from a comprehensive dataset of ultrasound 

images, underscore the superior performance of the proposed 

algorithm in terms of both speckle reduction and preservation 

of structural details. 

Speckle noise, besides degrading image quality, also exerts 

a detrimental impact on subsequent processes in the image 

processing pipeline, including but not limited to, edge 

recognition, segmentation, feature extraction, and 

classification. By mitigating the effects of speckle noise, the 

algorithm proposed herein contributes significantly to 

enhancing the accuracy and reliability of these subsequent 

image analysis tasks. 

The proposed algorithm, therefore, holds considerable 

promise for augmenting the diagnostic value of ultrasound 

imaging across a diverse range of medical applications. This 

paper provides a comprehensive literature review on this topic, 

showing how the proposed algorithm can make a significant 

contribution to the field. 

 

 

3. PROPOSED METHODOLOGY 

 

3.1 The denoising process 

 

They can emphasize any novel architectural designs, 

algorithmic advancements, or data processing techniques 

employed in their Hybrid Deep Fundamental CNN. For 

example, they could highlight the use of specific layers, 

activation functions, or loss functions that have not been 

extensively explored in previous works. A comparative 

analysis of their Hybrid Deep Fundamental CNN with existing 

methods, both qualitatively and quantitatively. They can 

demonstrate how their methodology outperforms previous 

approaches in terms of noise reduction effectiveness, 

preservation of important image features, computational 

efficiency, or other relevant evaluation metrics. Comparative 

results, such as visual comparisons and performance metrics, 

can provide strong evidence of the superiority of the proposed 

methodology. 

K-means clustering using Hu's moment invariants is used 

for pre-classification after the data has been filtered using a 

Gaussian filter. Gaussian filter smooths the picture while 

keeping following operations scale invariant, and improves the 

proposed model by selecting qualified candidates for the 

weighted averaging job. The suggested technique employs a 

K-means clustering algorithm that utilises Hu's moment group 

like candidates into clusters. To explain the rationale behind 

choosing a specific filter size in the pooling layer. They can 

discuss how the chosen filter size affects the down sampling 

process, feature representation, or computational efficiency. 

Additionally, authors can refer to prior studies or empirical 

evidence that support the use of a particular filter size for the 

given task or dataset. We have chosen the Iterative Divided 

Optimization Algorithm (IDOA) for feature optimization, they 

can explain why this specific algorithm was suitable for their 

research problem. They can discuss the advantages of IDOA 

over other optimization algorithms, such as faster convergence, 

better exploration-exploitation trade-off, or robustness to 

noise. Authors can also highlight any prior studies or 

applications that have successfully employed IDOA for 

similar tasks. 

During the noisy input picture is smoothed down using a 

Gaussian filter. The high Gaussian value and the fact that the 

filter's effectiveness diminishes with increasing pixel distances 

both contributed to Gaussian's selection as the optimal filter. 

The resulting blur is more effective at protecting borders and 

boundaries than those produced by unchanging blurring filters. 

The Gaussian filter may also be used to make visual processes 

scale invariant, which is necessary when dealing with 

potentially varying sizes of picture data. This is because there 

is no guarantee that the object's distance from the acquisition 

technique will be constant, and hence the picture size will be 

consistent. Some of the key features of the Gaussian blur that 

make it suitable in our instance are: linearity invariance. 

Consider a square mask with dimensions (2𝑚 + 1) ×
(2𝑚 + 1), a centre (0, 0), and x, y ranges of (m, m) to (m, m). 

Eq. (1) provides the mask's component: 
 

𝐺𝜎(𝑥, 𝑦) = 𝑒
(−

(𝑥2+𝑦2)

2𝜎2 )
  

(1) 

 

where, 𝜎  represents the Gaussian distribution's standard 

deviation. We used 𝑆𝑢𝑚𝜎, to perform normalisation in order 

to maintain the image's balance in terms of brightness level in 

Eq. (2) as in Eq. (3): 

 

𝑠𝑢𝑚𝜎 = ∑ ∑ 𝐺𝜎(𝑥, 𝑦)𝑚
𝑦=−𝑚

𝑚
𝑥=−𝑚   (2) 

 

𝐺𝑘𝜎(𝑥, 𝑦) =
𝐺𝜎(𝑥,𝑦)

𝑆𝑢𝑚𝜎
  (3) 

 

where, 𝐺𝑘𝜎  is the normalised Gaussian filter used to create the 

output image with the Gaussian blur (G) as in Eq. (4). 

 

𝐺𝑏 = 𝐺𝑘𝜎 ∗ 𝑣 (4) 

 

where, n is the amount of noise current in the original image 

and is the convolution function. We do not utilise a greater 

value of s in this study since doing so generates additional 

artefacts and we want to image. The noisy input image is first 

processed using a Gaussian filter, and the resulting blurred 

image is sent into a clustering-based pre-classification step. 
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After applying a Gaussian filter, the picture is segmented 

into patches for use in following steps. For all of the patches, 

we calculate Hu's moment characteristics. For this research, 

we relied on Hu's 2, and we employed row vectors of size (1 

7) to characterise each patch. Think about the NN picture and 

the nn patch centred on i (i = 1, 2,..., NN). A 1 by 7 row vector 

is constructed to hold the calculated moment invariants and 

feature metrics (_1,_2,..._7) for each patch. Therefore, there 

are NN feature vectors for the entire image. The K-means 

clustering algorithm is fed these vectors as input, and it divides 

the N by N vectors into K clusters according to the goal 

function in Eq. (5). 

 

𝑎𝑟𝑔𝑚𝑖𝑛
𝑐

∑
Σ

𝐻(𝑔𝑏(𝑖))𝜖𝐻𝑚𝑘

𝑖 = 1,2, … , 𝑁 × 𝑁
|𝐻(𝐺𝑏(𝑖)) − 𝜇𝑘|

2𝐾
𝑘=1   (5) 

 

where, 𝐺𝑏(𝑖)  is a image cover with center i. The 𝐻(. ) 

stretches the input patch's vector., whereas 𝜇𝑘 is the cluster, 

𝐻𝑚𝑘 . So, we find K clusters, {𝐻𝑚1, 𝐻𝑚2,….. 𝐻𝑚𝑘}, each 

cluster labelled "Hm"_i with l_i feature vectors included. This 

means that the length l_i of each cluster varies. In most cases, 

a feature vector that has already been categorised may be 

expressed using k and l indices as 𝐻𝑚𝑘𝑙 , where the directories 

span: 𝑘 = 1, . . . , 𝐾;  𝑙 = 1, . . . , 𝐿 . Here, k represents the 

various clusters, and l represents the various patches that form 

those clusters [21]. 

 

3.2 Noise removal using FCNN-IDOA 

 

The FCNN-IDOA model is consistent with the standard 

CNN structure. Training a challenging undertaking that might 

take weeks or months. Therefore, rather of developing a brand 

new deep learning classifier from start, it is recommended to 

train the proposed deep learning approach on a pretrained 

classifier. We started with GoogLeNet because it was the best 

model in the 2014 ILSVRC ImageNet competition. There are 

a total of 144 layers in GoogLeNet, 22 of which are able to be 

trained. These layers include: 9 inception layer modules, 2 

convolution layers, 4 normalisation layers, and 1 fully 

connected layer. Six convolutional layers and a max-pooling 

layer were added in each inception module. The input layer of 

GoogleNet has been upgraded to version 224 224 1. The 

GoogLeNet method. On the other hand, the ReLU activation 

function always used zero and disregarded any negative input. 

Leaky ReLU, on the other hand, is an improved variant of 

ReLU that converts all negative values to their positive 

counterparts. 

The proposed FCNN-IDOA classifier lost its last five layers 

from GoogLeNet and gained fifteen new ones. In addition, the 

Leaky ReLU activation purpose was used in place of the ReLU 

activation purpose in the feature map layer to upsurge the 

suggested model's expressiveness and solve the dying ReLU 

problematic without modifying the fundamental convolution 

design. The final tally of layers augmented from 144 to 154 as 

a result of these changes. 

The image size was instantly reduced because to the 

inclusion of a 7x7 pixel filter (patch) in the first convolution 

layer. The 2nd convolution layer was also 11, although it was 

shallower. A11 convolution block is the end result reduction. 

Moreover, the GoogLeNet inception module employs a wide 

range of convolution kernels, such as 11, 33, and 55, to extract 

features at varying scales, from the most fine-grained to the 

most fundamental. When using a wider convolution kernel, the 

features are computed over a more extensive region. The 11 

convolution kernel is another example, providing more data 

with less processing time. One of the new features is the 

addition of four layers, each with a filter size of just one. 

Additionally, the precision of the network's output was 

improved by the global average pooling layer. The suggested 

model's expressiveness was problem was overcome by 

replacing the features, the suggested hybrid model beat state-

of-the-art pretrained models in terms of classification accuracy. 

The epsilon value, size, number of filters, and filter names 

are described. The layers that make up the proposed hybrid 

FCNN-IDOA model are described in depth in Table 1. 
 

Table 1. Characteristic of additional Layers in the projected hybrid perfect 
 

S.No Layer Name Type No of Filter Filter Size Epsilon 

1 block_16_expand Conv 960 1×1  

2 Block_16_expand_BN Batch Norm   0.001 

3 Block_16_enlarge_relu Clipped ReLU Layer    

4 Block_16_depthwise Grouped Convo 960 3×3  

5 Block_16_depthwise_BN Batch Norm   0.001 

6 Block_16_ depthwise_relu Clipped ReLU Layer   0.001 

7 Block_16_project Conv 320 1×1  

8 Block_16_scheme_BN Batch Norm   0.001 

9 Conv_1 Conv 1280 1×1  

10 Conv_1_bn Batch Norm   0.001 

11 Out_relu Clipped ReLU Layer    

12 Global_regular_pooling2d_1 Global Average Pooling    

13 Logits Fully Connected    

14 Logits_softmax Softmax    

15 ClassificationLayer_Logits Classification Layer    
 

3.2.1 Image input layer 

The suggested FCNN-IDOA model began with an image 

layer that contained the model's input, which in our case set 

the picture input size as 224 224 1. This value denotes the input 

image's size (1 for grayscale, 3 for colour). The input layer was 

read from to begin processing the photos. 
 

3.2.2 The convolution layers 

To construct feature maps from input photos and recover 

deep learning features, convolutional layers were utilised. In 

mathematics, two arguments are used. The dimensions of the 

filter in terms of height and breadth, as applied to the image 

matrix. Filter sizes of 77, 55, and 11 are used in the 

convolutional layers of our hybrid model, whereas the filter 

size of 33 is used in the max pooling layer. The input feature 

map is padded with padding name-value pairs by the 

convolutional layer. In Eq. (6), we see how to fold in discrete 

increments of time: 
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𝑠(𝑡) = (𝑥 ∗ 𝑤)(𝑡) = ∑ 𝑥(𝑎)𝑤(𝑡 − 𝑎)∞
𝑎=−∞   (6) 

 

where, W represents the kernel filter, x represents the input to 

the procedure, t represents the processing time, and s 

represents the output. When gathering input data in two 

dimensions, use Eq. (7). 
 

𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑖, 𝑗) 
𝑛 

 
𝑚  ∗ 𝐾(𝑖 −

𝑚, 𝑗 − 𝑛)  
(7) 

 

The i and j terms denote the regions of the objective matrix 

obligatory by the deep learning convolutional technique. The 

recommended technique for this step is to set the center of the 

filter to the primary position.   

If cross-entropy is achieved with the proposed approach, Eq. 

(8) is used. 
 

𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛) 
𝑛 

 
𝑚  ∗

𝐾(𝑚, 𝑛)  
(8) 

 

3.2.3 Activation function 

Nonlinear transformation processes are frequently modelled 

using DL, and activation functions are a common tool for 

doing so. The Sigmoid, Tanh, and ReLU activation functions 

have proven to be the most popular and effective over the 

course of computer history. Since ReLU returns zero for all 

negative inputs, this effectively disables all negative inputs 

and leads to the dying ReLU problematic. A neuron is 

considered "dead" if it is permanently stranded on the other 

side of the network and produces zero as an output. To remedy 

the declining performance of ReLU, we replaced it in the 

feature map with leaky ReLU, an improved activation function 

for ReLU. The result of feeding a negative number into a leaky 

ReLU is not zero, but rather a little linear component of x. In 

the final 15 layers, we utilised a clipped ReLU activation 

function to execute a value below 0 were set to 0 and those 

above the ceiling were set to the ceiling we selected. In Eqs. 

(9)–(12), we can see the formulas for the activation functions: 

ReLU: 

 

𝑓(𝑥) = {
0, 𝑥 < 0
𝑥, 𝑥 ≥ 0

, 𝑓(𝑥)′ = {
0, 𝑥 < 0
1, 𝑥 ≥ 0

  (9) 

 

Sigmoid: 

 

𝑓(𝑥) =
1

1+𝑒−𝑥 ,  𝑓′(𝑥) = 𝑓(𝑥)(1 − 𝑓(𝑥))  (10) 

 

Tanh: 

 

tanh(𝑥) =
2

1+𝑒−2𝑥 − 1, 𝑓′(𝑥) = 1𝑓(𝑥)2  (11) 

 

Clipped ReLU: 

 

𝑓(𝑥) = {

0, 𝑥 < 0
𝑥0 ≤ 𝑥 < 𝑐𝑒𝑖𝑙𝑖𝑛𝑔

𝑐𝑒𝑖𝑙𝑖𝑛𝑔, 𝑥 ≥ 𝑐𝑒𝑖𝑙𝑖𝑛𝑔
  (12) 

 

Leaky ReLU: 

 

𝑓(𝑥) = {
𝑥, 𝑥 ≥ 0

𝑠𝑐𝑎𝑙𝑒 ∗ 𝑥, 𝑥 < 0
  (13) 

 

When given positive input, the leaky ReLU function returns 

x, while when given negative input, it returns a value equal to 

0.01 times x, which is essentially meaningless. Therefore, no 

neuron is inhibited, and we won't find any dead neurons. 

 

3.2.4 Batch normalization layer 

The outputs produced by the layers were normalised using 

the batch normalisation layer. The proposed FCNN-IDOA 

model's training time is shortened through normalisation, 

resulting in a quicker and more effective learning process. In 

Equations, the batch normalisation procedure is described 

(13)–(15): 

 

𝑌𝑖 =
𝑋𝑖−𝜇𝛽

√𝜎2𝛽+𝜀
  (14) 

 

𝜎𝛽 =
𝐼

𝑀
(𝑋𝑖 − 𝜇𝛽)2  (15) 

 

𝜇𝛽 =
1

𝑀
∑ 𝑋𝑖𝑀

𝑖=1   (16) 

 

where, M is the total sum of input data, 𝑋𝑖 = 1, … . . , 𝑀, 𝜇𝛽 is 

the stack’s regular value, 𝜎𝛽 is the stack’s Yi represents the 

adjusted values after normalisation. 

 

3.2.5 Pooling layer 

After the convolution technique to reduce the size of the 

This could involve defining the term explicitly or providing 

additional information, such as the motivation behind using 

the term or how it relates to existing concepts in the field 

Authors should carefully review their explanations and seek 

feedback from peers or experts in the field. This external 

perspective can help identify areas that may be unclear or 

require further elaboration. 

Feature map and remove unnecessary data) was used to 

streamline the info from the convolution layer. The two most 

popular pooling methods are average and maximal pooling. In 

the last 15 layers, we used global regular pooling. The network 

makes no learning during pooling. Three filters of size 3 x 3 

were used for the pooling procedure. In Eq. (17), the pooling 

procedure is described.  
 

𝑆 = 𝑤2 × ℎ2 × 𝑑2 (17) 
 

𝑤2 =
(𝑤1−𝑓)

𝐴+1
  (18) 

 

ℎ2 =
(ℎ1−𝑓)

𝐴+1
  (19) 

 

𝑑2 = 𝑑1 (20) 
 

where, w1 is the width of the MRI images, h1 is the height of 

image, d1 is the input MRI image size, f is the size of the filter, 

A is the amount of steps used, and S is the size of the created 

image. 
 

3.2.6 Fully connected layer 

The convolutional layers in the suggested model are layer. 

This is done by combining all of the features that the earlier 

layers had learned across various images. In order to classify 

the images, this layer chooses the most important patterns. 

Because there are three classes (meningioma, glioma, and 

pituitary) in the study, the output in the final completely linked 

layer is 3. Due to this, the projected FC layer's output value, 

which was obtained, is 3. For this, Eqs. (21) and (22) are 

employed: 

 

𝑈𝑖𝑙 = ∑ 𝑤𝑗𝑖𝑙−1 
𝑗  𝑦𝑗𝑙−1  (21) 
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𝑦𝑖𝑙 = 𝑓(𝑢𝑖𝑙) + 𝑏(𝑙) (22) 
 

where, l denotes the overall sum of layers, i and j denote the 

total sum of neurons, yli denotes the value generated in the 

projected layer, wl-1ji denotes the weight value of the hidden 

layer, yl-1i denotes the value of neurons, uli denotes the value 

of the layer, and b(l) denotes the deviation value. 
 

3.2.7 Softmax layer 

The output of the fully linked layer is more uniformly 

produced thanks to the activation function. The network's 

probabilistic calculation is carried out by Softmax, which also 

generates work for each class in positive numbers. The given 

in Eq. (23): 
 

𝑃(𝑦 = 𝑗|𝑥𝑖, 𝑊, 𝑏|) =
exp𝑋𝑇𝑊𝑗  

∑ exp𝑋𝑇𝑊𝑗  𝑛
𝑗=1

  (23) 

 

where, A, s, W, and b are heaviness vectors. 

 

3.2.8 Classification layer 

The last layer of the projected designs is layer, which is 

applied to generate the each input. A probability distribution 

was returned by the Softmax activation function. 

 

3.2.9 Training parameters 

With the parameters listed in Table 2, we conducted 

experiments using IDOA (Section 3.2.10) methodology. In 

order to determine the best convergence for each CNN, we 

continuously tracked the development of training testing 

accuracy and deviation. There was an automated cutoff to 

training if there was no improvement in accuracy or a rise in 

error. The proposed FCNN-IDOA model was trained using 

stochastic gradient descent (SGD) with images. The suggested 

FCNN-IDOA model for brain tumour classification was 

trained on 120 epochs for optimal results. 

 

Table 2. Limit values used in training systems 

 
NAME SGDM 

MiniBatchSize 10 

Sum of Epochs 120 

Early Learning Rate 0.01 

Shuffle Every epoch 

Validation Frequency 50 

 

3.2.10 Feature optimization 

For discriminative feature selection, it is recommended to 

employ the FCNN model, and its hyper-parameter tuning is 

optimised with the IDOA, a metaheuristic optimisation 

technique that static behaviour of dragonflies. In order to 

achieve a consistent degree of classification accuracy while 

decreasing the amount of features and redundant data, feature 

selection is viewed as a global combinatorial optimisation 

problem. This study yielded an enhanced optimisation 

technique called the Improved Dragonfly Optimisation 

Technique (IDOA). In the discrete search space, the chosen 

attributes of the dataset are ordered in every conceivable way. 

With such limited information, it may be possible to catalogue 

every combination of attributes. The enhanced dragonfly 

makes greater use of collective wisdom when making 

decisions, promoting diversity in the group and a healthy 

equilibrium between the exploratory and exploitative phases. 

This improves the algorithm's search efficiency. To select a 

subset of relevant features and leverage the strength of the 

IDOA to improve classification results, hyper parameter 

adjustment is often more efficient, reduces overfitting, and 

eliminates redundant and noisy data. Depending on whether 

the player is actively attempting to evade an adversary or 

obtain food, the IDOA's two primary stages, exploitation and 

exploration, are modelled statically or dynamically, 

respectively. Cohesion, alignment, and separation are the three 

most common swarm behaviours. The IDOA expands on the 

original three behaviours by adding avoidance of danger and 

foraging for sustenance. These two actions are part of the 

IDOA to help the swarm live for a longer period of time. This 

approach takes into account two vectors: the initial position of 

dragonflies in a search space and the update step used to move 

them around. It is believed that the step vector also impacts the 

speed at which dragonflies fly. The position vector is revised 

after the step vector has been computed. 

Both exploitative and exploratory behaviours are enabled 

by the IDOA's coefficient, adversary factor, and iteration 

number). Exploitation is characterised by high cohesiveness 

and low alignment, while exploration is characterised by low 

cohesion and high alignment. In order to improve 

randomization, probabilistic behaviour, and the identification 

of manufactured dragonflies, the standard DOA takes use of 

the Levy flying mechanism. Therefore, the DOA effectiveness 

is enhanced to a little degree by the Levy flight mechanism. 

However, the Levy flight mechanism cannot be used with the 

step size regulator. Agents must leave the search area if a 

significant distance is to be traversed. To get around these 

problems, the IDOA considers Brownian motion (Pg) as a way 

to improve randomness, probabilistic behaviour, and the 

discovery of dragonflies. Eqs. (24) and (25) provide a 

mathematical determination of the Brownian motion (Pg) 
 

𝑃𝑔 =
1

𝑠√2𝜋
exp (−

(dim 𝑒𝑛𝑠𝑖𝑜𝑛−𝑎𝑔𝑒𝑛𝑡𝑠)2

2𝑠2 )  (24) 

 

𝑠 = √
𝑚𝑡

𝑚𝑠
,  𝑎𝑛𝑑 𝑚𝑠  =  100  ×  𝑚𝑡  (25) 

 

where, m=0.01 denotes an agent's motion time and m the 

quantity of abrupt motions. The IDOA's parameter settings are 

as follows: The search domain is [0-1], there are five search 

agents, the extracted feature vectors are the dimension, and 

there are 20 iterations. 3476 feature vectors are chosen by the 

proposed IDOA and used as input values for classification by 

the DBN. 

 

 

4. RESULTS AND DISCUSSIONS 
 

4.1 Datasets 
 

The experimental data was collected using the INbreast and 

CBIS-DDSM datasets [14]. INbreast data set: There were 120 

cases (412 photos) in INbreast, 91 of which came from women 

with both breasts (four shots each) and 30 from those who had 

undergone a mastectomy (two photos each). Deformities were 

brought on by a variety of inflammatory lesions. The 

professional additionally provided us with the comprehensive 

plans in XML style. The CBIS-DDSM data show: One of the 

most widely used and comprehensive data sets, the breast data 

set, is organised into four distinct folders. The breast dataset is 

a sizable one that has been subdivided into normal, benign, 

malignant, and call-back benign subsets. One sample of 

various breast examinations is included in each folder. A total 
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of 1000 ultrasound breast images are used, 800 of which are 

used to train a logical-pool analysis. This paper proposes a 

process for efficiently removing local speckle noise from these 

images. 

The RIBM-NLM procedure was tested on a personal 

computer (HP 15-dw, Hewlett-Packard company, Palo Alto, 

CA, USA) with a Core (TM) i3 processor and MATLAB 

(MATLAB 2017a, MathWorks, Natick, MA, USA) software.   

To do this, we use a distance metric based on Euclidean 

geometry to evaluate how unlike two feature vectors are to one 

another. It's a 15-inch square patch. Clusters are formed, each 

one illuminating a different facet of the whole, as K (the 

number of clusters) increases. These tendencies also 

characterise the evolution of PSNR and MSE. If K is too large, 

however, the reconstructed image will be of worse quality 

since certain clusters will have insufficient candidates. As a 

result, both the PSNR and the MSE fall following the climax. 

Therefore, the best value of K may be selected according to 

the size of the input noisy image and the importance placed on 

simplicity. On the basis of this hypothesis, initial experiments 

to establish the optimum value of K for our method. The rate 

of change in both PSNR and MSE reaches a maximum at a 

specific value of K and then declines when K is increased 

further.  

Reconstructed picture quality diminishes as K increases 

because of the emergence of clusters with inadequate numbers 

of candidates. As a result, the PSNR score drops rapidly after 

reaching a maximum. We can't pick the optimal value for K 

since PSNR is more crucial. However, K=675 is not optimum, 

while K=800 is the greatest attainable PSNR. K was calculated 

using an estimated number of subjects per cluster and an image 

size of 225 225 pixels. It takes 1.8 times as long to process the 

photographs on a computer when K is set to 800 as it does 

when K is set to 675. We'd like to have this done as quickly as 

possible, as that's one of our goals.   

In this test, we employ a Gaussian blur with 10, 20, and 50 

standard deviations. In order to facilitate meaningful 

comparisons between methods, we have chosen to keep the 

smoothing value h constant at 12. Using Eq. (1), we get the 

following when the block size is set to m=4. 

In order to evaluate how well the projected strategy for 

reducing speckle compares to the alternatives, three 

quantitative measures are used. Mean squared error, ratio, and 

the index are three of them. 

The SSIM formula is given by Eq. (26). 

 

𝑆𝑆𝐼𝑀(𝑥,  𝑦) =
(2𝜇𝑥𝜇𝑦+𝐶1)(2𝜎𝑥𝑦+𝐶2)

(𝜇𝑥
2+𝜇𝑦

2 +𝐶1)(𝜎𝑥
2+𝜎𝑦

2+𝐶2)
  (26) 

 

In this case, x and y are two non-negative pictures that 

represent the original noisy image and the cleaned-up version, 

correspondingly. In the photos x and y, the average brightness 

is _x and _y. The covariance _xy is computed by taking the 

square root of the difference between the standard deviations 

of the x and y intensities. The variances of these intensities are 

denoted by _x2 and _y2, respectively. Constants C1 and C2 

were added to Eq. (29) to prevent the instability of division by 

zero in the factors. when 𝜇𝑥
2 + 𝜇𝑦

2 + 𝜎𝑥
2 + 𝜎𝑦

2 are excessively 

near zero. A higher value of the SSIM standards, which range 

from zero to one, indicates a better de-noising effect. 

The PSNR is distinct as in Eq. (27): 

 

𝑃𝑆𝑁𝑅 = 10 log10 (
𝐿𝐷

2

𝑀𝑆𝐸
)  (27) 

For this context, we will refer to MSE as the among the 

original and reconstructed pictures and LD as the magnitude 

of the intensity range's maximum and lowest values. The 

PSNR quantifies the range of signal-to-noise ratios present in 

a given picture. A greater PSNR indicates more effective noise 

cancellation. The definition of the (MSE) is given by Eq. (28). 

As MSE is reduced, image quality is enhanced. 

 

𝑀𝑆𝐸 =
∑ ∑ (𝑥(𝑖, 𝑗)−𝑦(𝑖, 𝑗))

2𝑐𝑜𝑙𝑢𝑚𝑛
𝑗=1

𝑟𝑜𝑤
𝑗=1

𝑅𝑜𝑤×𝐶𝑜𝑙𝑢𝑚𝑛
  (28) 

 

For each image, the squared error, is calculated. To compare 

the suggested technique's computation speed to the other three 

approaches, processing time in seconds, or t(s), is also used. 

Furthermore, the statistical significance of the findings 

produced using the suggested technique associated to state-of-

the-art methodologies is evaluated for the aforementioned 

three metrics using the t-test p-value pair-wise contrast 

approach. The results of the suggested model's validation are 

shown in Table 3. 

 

Table 3. Investigation of proposed model on various noise 

ranges 

 
𝝈=10 

 PSNR MSE RMSE t(s) 

CI1 71.3869 0.003314 0.057567 81.003529 

CI2 72.8369 0.00339 0.058223 80.160006 

CI3 71.594 0.003678 0.060646 82.375192 

CI4 72.7233 0.003046 0.055190 82.34266 

CI5 72.177 0.003978 0.063071 80.703136 

CI6 72.1992 0.003072 0.055425 82.167858 

Av. 72.15288 0.003413 0.058354 81.4587301 

𝜎=20 

CI1 66.9903 0.016732 0.129352 82.858238 

CI2 66.0016 0.011358 0.106573 82.474946 

CI3 65.2058 0.015101 0.122886 82.564148 

CI4 66.9023 0.019146 0.138369 83.244738 

CI5 65.7659 0.016782 0.129545 82.174985 

CI6 66.7179 0.014479 0.120328 83.648587 

Av. 66.263966 0.0155996 0.124509 82.827607 

𝜎 = 50 

CI1 55.146 0.282528 0.531533 83.405858 

CI2 55.8126 0.269671 0.519298 84.678944 

CI3 55.0384 0.236662 0.486479 83.601501 

CI4 54.2856 0.228034 0.477529 84.899632 

CI5 54.7928 0.20081 0.448118 81.204046 

CI6 54.4104 0.237003 0.486829 84.764421 

Av. 54.9143 0.2424513 0.491631 83.759067 

 

In the above Table 3, analysis of proposed model on various 

noise ranges. In the noise range of σ=10, the CI1 reached the 

PSNR value of 71.3869 and the MSE value as 0.003314 and 

the RMSE value of 0.057567 and finally the t(s) value rate as 

81.003529. Another, CI2 reached the PSNR value of 72.8369 

and the MSE value as 0.00339, 0.058223 and finally the t(s) 

value rate as 80.160006. Then CI3 reached the PSNR value of 

71.594, 0.003678 and the MSE value as 0.060646 and finally 

the t(s) value rate as 82.375192. Additionally, CI4 reached the 

PSNR value of 72.7233 and the MSE value as 0.003046 and 

the RMSE value of 0.055190 and finally the t(s) value rate as 

82.34266. Then CI5 reached the PSNR value of 72.177 and 

the MSE value as 0.003978 and the MSE value as 0.063071 

and finally the t(s) value rate as 80. 703136. After CI6 reached 

the PSNR value of 72.1992 and the MSE value as 0.003072 

and the RMSE value of 0.055425 and finally the t(s) value rate 
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as 82.167858 respectively. And Av. reached the PSNR value 

of 72.15288 and the MSE value as 0.003413 and the RMSE 

value of 0.058354 and finally the t(s) value rate as 81.4587301 

respectively. 

After that the σ=10, the CI1 reached the PSNR value of 

66.9903 and the RMSE value of 0.016732 and the RMSE 

value of 0.129352 finally the t(s) value rate as 82.858238 

respectively. CI2 reached the PSNR value of 66.0016 and the 

MSE value as 0.011358 and the RMSE value of 0.106573 and 

finally the t(s) value rate as 82.474946. Additionally, CI3 

reached the PSNR value of 65.2058 and the MSE value as 

0.015101 and the RMSE value of 0.122886 and finally the t(s) 

value rate as 82.564148. After CI4 reached the PSNR value of 

66.9023 and the MSE value as 0.019146 and the RMSE value 

of 0.138369 and finally the t(s) value rate as 83.244738. Then 

CI5 reached the PSNR value of 65.7659 and the MSE value as 

0.016782 and the RMSE value of 0.129545 and finally the t(s) 

value rate as 82.174985 respectively.CI6 reached the PSNR 

value of 66.7179 and the MSE value as 0.014479 and the 

RMSE value of 0.120328 and finally the t(s) value rate as 

83.648587. Another, Av. reached the PSNR value of 

66.263966 and the MSE value as 0.0155996 and the RMSE 

value of 0.124509 and finally the t(s) value rate as 82.827607 

respectively. 

And, finally the σ=50, the CI1 reached the PSNR value of 

66 55.146 and the RMSE value of 0.282528 and the RMSE 

value of 0.531533 and finally the t(s) value rate as 83.405858. 

After CI2 reached the PSNR value of 6655.8126 and the 

RMSE value of 0.269671 and the RMSE value of 0.519298 

and finally the t(s) value rate as 84.678944. Then CI3 reached 

the PSNR value of 6655.0384 and the RMSE value of 

0.236662, 0.486479 and finally the t(s) value rate as 

83.601501. correspondingly. CI4 reached the PSNR value of 

6654.2856 and the RMSE value of 0.228034 and the RMSE 

value of 0.477529 and finally the t(s) value rate as 84.899632 

respectively. CI5 reached the PSNR value of 6654.7928 and 

the RMSE value of 0.20081 and the RMSE value of 0.448118 

and finally the t(s) value rate as 81.204046 respectively. CI6 

reached the PSNR value of 6654.4104 and the RMSE value of 

0.237003 and the RMSE value as 0.486829 and finally the t(s) 

value rate as 84.764421. Another Av. reached the PSNR value 

of 66 and the MSE value of 54.9143 and the t(s) value of 

0.2424513 and the RMSE value of 0.491631and finally the t(s) 

value rate as 83.759067 respectively. We can discuss the 

significance of the obtained p-values and what they indicate 

about the differences or relationships between the compared 

conditions or groups. Authors can also relate the t-test results 

to their research objectives or hypotheses and discuss any 

unexpected or interesting findings. 

 

 

5. CONCLUSION AND FUTURE WORK 

 

The purpose of this research was to investigate the efficacy 

of employing novel hybrid models and a variety of 

convolution neural networks to eliminate noise in ultrasound 

pictures of BC. The GoogleNet framework served as the basis 

for the proposed FCNN-IDOA framework. Fifteen new, 

deeply nested layers were added to GoogleNet in place of the 

final five layers that were lost. Convolution neural networks 

with the function were modified to use the leaky function 

without compromising the original architecture. After the 

adjustments, there were 154 layers instead of 144. The PSNR 

of 77% was attained by the proposed hybrid model, which was 

a record. The experimental results validated the superior 

classification ability of the proposed hybrid model for brain 

tumours. The suggested method also calculated additional 

descriptive and accurate features for noise removal, leading to 

high precision. Av. reached the PSNR value of 66 and the 

MSE value of 54.9143 and the t(s) value of 0.2424513 and the 

RMSE value of 0.491631and finally the t(s) value rate as 

83.759067 respectively. 

Furthermore, testing shows that the greatest results were 

obtained from the FCNN model that made use of optimisation 

techniques. However, the hybrid framework achieved the 

highest accuracy when associated to the other models. 

Experimental results show that the suggested method is 

effective in reducing local speckle noise in ultrasound breast 

pictures while also preserving edge information and 

highlighting image characteristics, laying the framework for 

processing and use. The planned research might not look at the 

various forms of noise or other ultrasonic image elements. We 

promise that in our future studies, we will take a closer look at 

a wide range of photographs. 
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