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Water quality monitoring is crucial for detecting changes in aquatic resources. Traditional 

methods, which typically involve in-situ sample retrieval followed by laboratory 

assessments, have been perceived as laborious and time-consuming. Herein, a state-of-the-

art, open-source framework is introduced, leveraging the potent synergy of the Internet of 

Things (IoT) and cloud computing for real-time water quality evaluations. Commercially 

accessible sensors were utilized for the instantaneous acquisition and interpretation of 

essential water quality parameters: pH, temperature, total dissolved solids (TDS), and 

turbidity. Accuracies of 98.54%, 96.85%, and 98.10% were obtained for temperature, pH, 

and TDS measurements, respectively, based on chosen accuracy metrics. The resilience of 

the proposed system was ascertained through a comprehensive study at the Troso River, 

Indonesia. During this evaluation, 4,833 data entries were amassed within a two-hour 

period. Outcomes from this research, elucidated in the subsequent sections, underscore the 

proficiency of the system in real-time water quality surveillance. This investigation 

augments the extant literature, underscoring the transformative role of cloud computing in 

facilitating instantaneous raw data collection for water quality assessment endeavors. 
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1. INTRODUCTION

The alteration in surface and groundwater quality has been 

observed as a consequence of industrialization and 

urbanization. Despite its paramount importance, water 

remains an elusive primary drinking source for an estimated 

844 million individuals worldwide [1]. Defined by its 

degradation from various human activities, such as agriculture 

and industry, 'wastewater' often presents significant challenges 

[2]. Even though surface water is invaluable globally, its 

quality and composition are significantly influenced by 

diverse wastewater sources. Toxic substances, heavy metals, 

and both organic and inorganic particles are commonly found, 

accompanied by physical, chemical, and biological 

contaminants like bacteria and viruses [3]. Disturbingly, such 

pollutants are believed to account for nearly 1.5 million annual 

deaths in children below five, primarily from ailments such as 

diarrhea [4]. This revelation is further exacerbated when 

considering that a mere 3% of Earth's water resources are 

freshwater, and these resources are being contaminated at an 

accelerating pace [5]. 

Traditional methodologies, like atomic absorption 

spectrophotometry, gas chromatography, and flame 

photometry, have been employed for water quality assessment. 

Nevertheless, these techniques are often marked by substantial 

costs and extended analysis times [6, 7]. Moreover, the need 

to transport samples to laboratories for in-depth evaluation has 

been identified as a major limitation, resulting in concerns like 

heightened expenses and inefficiencies [8]. 

The Water Quality Index (WQI) is recognized as an 

essential benchmark for water quality evaluation and has been 

utilized in diverse environments and nations, ranging from 

lakes [9] and rivers [10] to groundwater sources [11] and 

agricultural drainages [12]. Notably, the NSF-WQI framework 

has gained traction in countries like Indonesia [13], Egypt [9], 

Switzerland [11], Iraq [14], India [15], Brazil [16], Algeria 

[17], among others. 

With technological progression, integration of WQI into 

novel assessment techniques has been observed. Such 

advancements have led to the creation of user-centric portable 

kits for on-the-spot analysis. However, occasional 

discrepancies between user needs and kit capabilities have 

been reported [18]. Modern water quality probes introduced to 

the market have been associated with integrated data 

collection and internet transmission, making them 

increasingly accurate and straightforward [19]. Furthermore, 

the fusion of Cloud Computing with the IoT has been noted, 

offering transformative monitoring capabilities [20-23]. IoT, 

described by its network of interlinked devices boasting 

sensing and communication features [24], provides a 

continuous influx of data. Wireless Sensor Networks (WSNs), 

pivotal to IoT, function both at data and edge levels. Raw data 

is aggregated at a local level and subsequently dispatched to 

the Cloud for further refinement [25], streamlining and 

enhancing the overall monitoring process [26]. 

However, obstacles remain. Certain parameters, such as the 

Biological Oxygen Demand (BOD), which demands a five-

day assessment period, have rendered real-time monitoring of 
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the WQI unfeasible [27, 28]. Additionally, sensor scarcity has 

been identified as a hindrance for real-time WQI assessment 

for select parameters [29-33]. 

A notable gap in real-time water quality evaluation is 

acknowledged, stemming primarily from sensor limitations. 

By capitalizing on open-source software and commercial 

hardware, the present study seeks to deliver real-time 

monitoring capabilities, despite sensor constraints, with an 

initial focus on parameters like pH, TDS, turbidity, and 

temperature. This method aims to bridge the discrepancy 

between sensor availability and effective water quality 

evaluation. 

 

 

2. METHODOLOGY  

 

2.1 Developmental stages of the online monitoring system 

 

The methodology underlying the creation of a real-time 

water quality monitoring system was segmented into three 

pivotal stages: 

a) Hardware and Software Design: In this foundational 

stage, the hardware and software components of the system 

were meticulously designed. Node stations were developed 

and sensors were integrated. During this phase, software tools 

suitable for data acquisition, storage, and transmission were 

chosen. 

b) Calibration and Validation: Subsequent to the design 

phase, calibration of the integrated sensors was undertaken to 

ascertain their accuracy and reliability. Validation was 

concurrently conducted, where sensor outputs were 

juxtaposed with established standards to determine their 

precision across diverse environmental conditions. 

c) Software Design and Data Transmission Protocols: Upon 

validating the hardware and sensors, emphasis was placed on 

formulating software designs and data transmission strategies. 

This entailed the identification or development of appropriate 

data analysis algorithms, as well as the establishment of 

protocols to facilitate real-time data transmission from node 

stations to the central processing mechanism. 

Together, these stages laid the groundwork for the eventual 

deployment of the real-time water quality monitoring system. 

The synergetic alignment of hardware, software, and data 

transmission strategies was deemed essential for ensuring the 

consistency and trustworthiness of the resultant water quality 

data. 

 

2.2 WSN  

 

A WSN is defined as a communication system that 

wirelessly interconnects a vast array of sensors, forging a 

robust framework for monitoring environmental parameters 

crucial to water quality assessment. At the heart of WSN 

functionality lie the Node Stations, which, being strategically 

positioned within the monitoring region, serve as vital 

conduits for data collection and transmission [34, 35]. By 

virtue of this integrated network, remote access to the systems 

and their accumulated data is made feasible. 

Spanning a spectrum of applications, the relevance of 

WSNs is acknowledged in realms such as smart homes [36], 

healthcare [36], industrial sectors [36], energy management 

[37], transportation [38], agriculture [39], and prominently, 

environmental surveillance [40]. Specifically in water quality 

monitoring, WSNs are employed to harness data from an 

assortment of sensors tasked with gauging parameters such as 

pH, TDS, turbidity, and temperature. These sensors are 

dispersed with precision across the monitoring expanse, 

ensuring data acquisition is exhaustive. The amassed data is 

then channeled to a centralized processing system via Node 

Stations, where it undergoes subsequent analysis and 

interpretation. 

Elucidated in Figure 1 is the bifurcation of WSN 

architecture into two predominant models: centralized and 

distributed. Delving deeper, the taxonomical classification of 

WSNs encompasses variations rooted in sensor management 

during monitoring, culminating in configurations like single 

node-single sensor, single node-multi-sensor, multi-node-

single sensor, and multi-node-multi-sensor assemblies [41-44]. 

Subject to the design and overarching objectives of the 

system, data visualization can be instantiated either in real-

time [43] or archived for deferred offline scrutiny [44]. It is 

imperative to acknowledge that the need for database facilities 

in some WSN implementations is obviated [45]; there exist 

systems where instantaneous data portrayal can be effectuated 

sans the mandate for expansive database reservoirs [46]. 

 

 
 

Figure 1. Synchronization data flowchart 

 

2.3 Integration of IoT and cloud computing in 

uninterrupted data acquisition and preservation 

 

Defined as a network of uniquely identifiable entities 

encompassing sensors, actuators, data storage mechanisms, 

and Central Processing Units (CPUs) [47], the IoT has been 

identified for its proficiency in autonomous data interchange. 

Through this capability, CPUs are enabled to process sensor 

data, subsequently leading to informed decisions, with the 

subsequent actions being executed by actuators. 

Within the purview of the present study, a pivotal role is 

played by IoT technology in facilitating real-time water 

quality surveillance. Through the integration of sensors into 

the IoT architecture, continuous data acquisition is ensured. 
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Parameters such as pH, TDS, turbidity, and temperature are 

securely channeled to cloud-based repositories [48], 

underscoring the preservation of the all-encompassing raw 

data. The amalgamation of IoT and cloud computing has been 

recognized as a potent solution for safeguarding raw data. By 

capitalizing on cloud capabilities, the sanctity of the amassed 

data remains uncompromised, while still being immediately 

accessible for ensuing assessment. 

Illustrating its adaptability, the utility of IoT spans varied 

domains like agribusiness, healthcare, environmental 

stewardship, and disaster mitigation [17, 49-51]. The inherent 

flexibility of its architecture permits limitless global object 

connectivity to the internet. Data collected is processed in 

cloud-based servers, culminating in insights congruent with 

the specific IoT service deployed [52]. Given the intrinsic 

sensitivity of the information, it is noted that an exhaustive 

multi-tier security structure encapsulating data, edge, fog, and 

cloud security strata has been integrated, bestowing 

comprehensive fortification upon the entire apparatus [53]. 

 

 

3. DESIGN 

 

3.1 Hardware and software design 

 

During the phase of hardware and software design, 

meticulous configuration of individual node stations for the 

water monitoring system was undertaken. For each node 

station, a specialized role was envisioned: the aggregation and 

transmission of water-related data. The node stations were 

equipped with sensor probes designed to measure key water 

parameters, such as pH, TDS, temperature, and turbidity. 

Data generated by these sensors underwent processing 

through dedicated signal converters. In this crucial conversion 

process, initial sensor readings were transformed into precise 

parameter values, a step commonly termed as data acquisition. 

Subsequent to this acquisition, data from various sensors were 

received by the microcontroller, and subsequently stored 

within the local database of the node station. This repository 

thus becomes an integral foundation for later stages of the 

study. 

 

3.2 Calibration and validation 

 

During the calibration tests, a verification procedure was 

employed to ascertain the level of error. The percentage error 

was formulated using Eq. (1), while the accuracy of sensor 

acquisition was determined by Eq. (2), wherein X represents 

the observed variable, and Xi denotes the predicted variable. 
 

% 𝑒𝑟𝑟𝑜𝑟 = |
(𝑥 − 𝑥𝑖)

𝑥
100%| (1) 

 

𝑆𝑒𝑛𝑠𝑜𝑟 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 100% − % 𝑒𝑟𝑟𝑜𝑟 (2) 

 

Calibration for the temperature sensors utilized in this study 

was deemed unnecessary due to the inherent calibration of the 

controlling library, Dallas Temperature. The validity of this 

parameter was further corroborated by comparing readings 

from the DS18B20 probe sensor and a conventional mercury 

thermometer. As illustrated in Table 1, a comparative analysis 

between the temperature sensor and the probe sensor using 

mercury as a reference yielded an error rate of 1.46% over ten 

iterations. Utilizing Eq. (2), an accuracy of 98.54% was 

deduced for the temperature sensor. 

Table 1. Results of temperature parameter verification 
 

No Sensor (°C) Mercury (°C) % Error 

1 29.25 29 0.86% 

2 30.63 30 2.10% 

3 31.75 31 2.41% 

4 32.05 32 0.15% 

5 33.57 33 1.72% 

6 34.8 34 2.35% 

7 35.46 35 1.31% 

8 36.46 36 1.27% 

9 37.86 37 2.32% 

10 38.06 38 0.15% 

% 𝑒𝑟𝑟𝑜𝑟 1.46% 

 

The pH sensor underwent calibration with three distinct 

buffer solutions, having pH values of 4.02, 6.84, and 9.10. Post 

operation over the Arduino Leonardo housed within the 

Lattepanda board, the potentiometer on the accompanying 

circuit board was adjusted to align the serial monitor reading 

with the pH value of the buffer solution. A tri-phase calibration 

procedure was executed to fine-tune the settings. Furthermore, 

the efficacy of the pH sensor was validated across three pH 

categories: normal, alkaline, and acidic. The outcomes of this 

comprehensive validation are tabulated in Table 2. 

Throughout 15 test iterations, the pH sensor was evaluated 

under varying temperatures (ranging from 15 to 35°C) and 

distinct water pH levels. The derived average error rate was 

3.15%, resulting in a pH sensor accuracy of 96.85%. 

 

Table 2. Results of pH parameter verification 
 

No Temp (°C) PH Sensor pH Buffer Solution % Error 

e 15 4.08 4.00 2.00% 

2 20 4.24 4.00 6.00% 

3 25 4.12 4.01 2.74% 

4 30 4.26 4.01 6.23% 

5 35 4.12 4.02 2.49% 

6 15 7.16 6.90 3.77% 

7 20 7.12 6.88 3.49% 

8 25 7.05 6.86 2.77% 

9 30 6.93 6.85 1.17% 

10 35 7.03 6.84 2.78% 

11 15 9.12 9.28 1.72% 

12 20 8.88 9.23 3.79% 

13 25 8.89 9.18 3.16% 

14 30 8.76 9.14 4.16% 

15 35 9.01 9.10 0.99% 

% 𝑒𝑟𝑟𝑜𝑟 3.15% 

 

Components of the turbidity sensor encompassed near-

infrared LEDs and photodiodes. An inverse relationship was 

observed wherein an increase in solution turbidity led to a 

decrease in the amount of light perceived by the photodiode, 

correspondingly reducing the photodiode voltage relative to 

unimpeded light transmission. Employing pure water as the 0 

NTU reference, calibration of the turbidity sensor was 

conducted between 0 NTU and 100 NTU standards. The 

potentiometer was adjusted based on the resultant solution 

water value to derive the calibration equation from a linear fit 

of NTU values against voltage readings.  

For the validation of TDS, a reference buffered TDS 

solution from a probe sensor was employed. The results of this 

comprehensive validation are presented in Table 3. Over ten 

iterations, the TDS sensor was assessed across a temperature 

range of 0-30°C. An error rate of 1.90% was identified, leading 

to a derived accuracy of 95.0% for the TDS sensor. 
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Table 3. Results of TDS parameter verification 

 
No Temp (°C) Sensor TDS (ppm) TDS Solution %Error 

1 0 746 758 1.58% 

2 5 901 876 2.85% 

3 10 983 999 1.60% 

4 15 1169 1122 4.19% 

5 20 1288 1251 2.96% 

6 23 1320 1329 0.68% 

7 24 1345 1358 0.96% 

8 25 1366 1382 1.16% 

9 26 1395 1408 0.92% 

10 30 1483 1515 2.11% 

% 𝑒𝑟𝑟𝑜𝑟 1.90% 

 

3.3 Software and data transmission design 

 

Data procured from the sensor probes at each station node 

is stored and subsequently analyzed to assess water quality 

acceptability. Figures 2 and 3 delineate the data transmission 

design and the synchronization of data phases, respectively.  

Such a design has been observed to provide advantages in 

the face of network challenges. In the event of a network 

disruption, data is preserved within the node station and 

dispatched to the cloud computing server once network 

continuity is re-established. This mechanism guarantees the 

integrity of the data, irrespective of network anomalies. 

Moreover, a filtration system is implemented, circumventing 

the transmission of duplicated or previously dispatched data. 

Figure 3 offers a visualization of the data transmission 

pathway from individual node stations to the cloud computing 

server, facilitating global accessibility. 

 

 
 

Figure 2. Design of node station data acquisition 

 

 
 

Figure 3. Data Transmission from node station to cloud 

computing server 

3.4 Component details 

 

For the development of a node-station design, an 

amalgamation of components spanning hardware, software, 

and communication networks is necessitated. Within the 

hardware construct, all components were integrated onto a 

Lattepanda v1 board, a singular computer board with an 

embedded Arduino Leonardo (SKU: DFR0419, sourced from 

Dfrobot.com). 

 

 
 

Figure 4. Front view of node station hardware 

implementation 

 

 
 

Figure 5. Side view of node station hardware implementation 

 

The turbidity sensor (SKU: SEN0189 from Dfrobot.com) 

functions as both a light transmitter and receiver, 

complemented by an amplifier. Its signal pins were attached to 

the analog inputs of the Arduino boards. A distinct 64-bit ID 

was possessed by one of the DS18B20 temperature sensors 

(SKU: DFR0198 from dfrobot.com), allowing for the 

connection of multiple temperature sensors to a single pin, 

specifically designed for one-wire applications. 

Constructed from a sensitive glass membrane with 

diminished impedance, the pH sensor (SKU: SEN0169-V2 

from Dfrobot.com) ensures precise pH readings. This 

electrode is characterized by remarkable thermal stability, 

rapid responsiveness, and suitability for a diverse range of pH 

measurements. It displays consistent reproducibility, 

resistance to hydrolysis, and alkali error elimination. Notably, 

the output voltage of the electrode remains linear across the 

pH range of 0 to 14. Augmented by the Ag/AgCl gel 

electrolyte salt bridge, the reference system demonstrates 

resilience against contamination and a stable half-cell potential. 
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The ring PTFE membrane, resistant to easy clogging, is 

optimal for prolonged online detection. A BNC (Bayonet 

Neill-Concelman) cable served as the linkage between the pH 

sensor and a circuit board, subsequently connected to the 

Arduino board's analog input A1. 

Among the sensors, the TDS sensor (SKU: SEN0244 from 

dfrobot.com) is noteworthy, connected to an analog input and 

featuring a waterproof probe for prolonged immersion in water. 

The analog turbidity sensor (SKU: SEN0189 from 

dfrobot.com) was also interfaced with the analog pin on the 

Lattepanda board, catering to water turbidity measurements. 

Figures 4 and 5 encapsulate the components utilized in the 

device, additionally showcasing the device in its elemental 

form. 

 

 

4. RESULTS AND DISCUSSION 

 

4.1 Real-time data transmission 

 

Referring to Figure 2, synchronization of raw data was 

achieved utilizing the HTTP response and HTTP request 

methods between each node station and the cloud server. Such 

methods ensure that newly stored data in a node station's 

database is subsequently dispatched to the cloud server. Four 

parameters were under investigation: pH, temperature, 

turbidity, and TDS. Data transmission was executed every 3 

seconds, resulting in the delivery of 28,800 raw data points 

from each node station during a single day of observation.  

 

 
 

Figure 6. Data transmission from node station to cloud 

server 

 

 
 

Figure 7. Individual node station data transmission to cloud 

server 

 

Figures 6 and 7 delineate the HTTP request and HTTP 

response processes, respectively, for the data transmission. 

Notably, a swift data exchange was observed, with an average 

latency of less than 1 second, which was derived from the 

interval between data procurement at the node station and data 

reception at the cloud computing server, as registered in the 

database. 

4.2 Raw data of the water monitoring system 

 

To corroborate the study's findings, data collection was 

undertaken from authentic scenarios. A node station was 

established in Troso Village, Jepara, Indonesia. As illustrated 

in Figure 8, the pollution levels in this area appeared elevated. 

Predominantly, the pollution emanated from residential 

sewage intermingled with waste from the home textile 

industry. Given that the river irrigates neighboring paddy 

fields, non-compliance with water quality standards may 

engender cascading pollution. Data procurement was 

conducted from 01:00 pm to 03:00 pm on November 22, 2022. 

Within this two-hour span, 4833 data points were amassed, 

with the average monitoring value presented in Table 4. 

Figures 9-11 showcase the real-time online display of the 

acquired data.  

 

 
 

Figure 8. Condition of the river in Troso village during a 

pollution event 

 

Table 4. Data procured from Troso village river (November 

22, 2022, 13:00 - 15:00) 

 
 Temp pH TDS Turbidity 

Max Value 29.6 4.7 81.7 41.4 

Min Value 29.1 3.9 51.6 36.5 

Avg Value 29.4 4.3 65.8 39.0 

 

4.3 Discussion 

 

Within the scope of this research, methodologies for 

enhancing water quality monitoring via a wireless sensor node 

network were scrutinized. The findings revealed the system's 

proficiency in real-time data acquisition, transmission, and 

subsequent storage in cloud-based repositories. Emphasis is 

laid on the pertinence of these findings to extant knowledge in 

this domain and potential real-world applications. 

Efficiency in real-time data transmission was noted upon 

synchronizing raw data via HTTP response and request 

protocols between node stations and the cloud server. Such a 

mechanism enabled fluid data interchange, incurring a 

negligible average delay of under 1 second. These results 

underscore the system's capacity to provide accurate and 

timely insights into water quality, even amidst network 

perturbations. This synchronization approach was discerned to 

be imperative for maintaining data integrity amidst potential 

network disruptions. 

The empirical deployment in Troso Village, Jepara, 

Indonesia, served as testament to the system's practical 

applicability. The continuous monitoring and transmission 

capabilities over a two-hour duration, culminating in the 

collection of 4833 data points, accentuate the system's 

robustness and reliability in dynamic environments. 
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Figure 9. Online interface displaying real-time data acquisition 

 

 
 

Figure 10. Log of raw data collected from Troso village river (November 22, 2022, 13:00-15:00) 

 

 
 

Figure 11. Graphical representation of raw data from Troso village river (November 22, 2022, 13:00-15:00)
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5. CONCLUSIONS AND FUTURE DIRECTIONS 

 

In this investigation, an integration of cloud computing and 

the IoT was effectively achieved, paving the way for a 

continuous real-time water quality monitoring system. 

Through this integration, seamless transmission of data 

streams, generated by sensors, to cloud platforms was 

facilitated. Notable accuracy rates were observed: 98.54% for 

temperature, 96.85% for pH, and 98.10% for TDS sensors. 

The cardinal outcome of this research lies in the evidenced 

accuracy and reliability of the introduced real-time data 

acquisition methodology. Such results attest to the system's 

potential utility as an efficacious real-time monitoring solution. 

A solid foundation has thus been laid for subsequent research 

endeavors, especially focusing on the optimization of cloud-

based computing to further enhance data acquisition speed and 

efficiency. 

It is acknowledged that the present study is not devoid of 

limitations. Prospective studies might delve into enhancing the 

system's resilience to connectivity disruptions and gauging its 

adaptability under an array of environmental circumstances. 

Additionally, the potential integration of machine learning 

algorithms, aimed at refining data analysis and predictive 

capacities, merits exploration, as this could bolster the 

system's analytical prowess. 

To encapsulate, the findings underscore the paramount 

importance of optimized data transmission techniques in the 

realm of real-time water quality monitoring. By addressing the 

intrinsic limitations of conventional systems and ushering in a 

rapid and dependable data conduit, the proposed methodology 

holds promise for elevating environmental monitoring 

protocols. It is envisaged that subsequent investigations will 

seek to refine this approach further and probe its synergistic 

integration with avant-garde technologies to furnish a holistic 

water quality assessment and management framework. 
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