
Accelerating Code Assembly: Exploiting Heterogeneous Computing Architectures for

Optimization

Maksym Karyonov

Department of Information Communications and Software Engineering, O.S. Popov Odesa National Academy of

Telecommunications, Odesa 65023, Ukraine

Corresponding Author Email: maksymkaryonov2@ukr.net

https://doi.org/10.18280/isi.280415 ABSTRACT

Received: 21 March 2023

Revised: 20 July 2023

Accepted: 17 August 2023

Available online: 31 August 2023

Amid rapid technological advancements, the efficient optimization of software code

assembly and compilation is paramount to the swift and reliable functioning of high-

performance computing systems. This study investigates the potential for boosting code

assembly speed by exploiting various computing architectures. The adopted methodology

encompasses system analysis, examination of diverse computer system architectures, and

the application of optimization and resource management techniques to enhance the

assembly and compilation of program codes effectively. The paper delves into the evolution

of computer architecture and underscores the importance of machine code, elucidating their

impacts on IT development. Key areas of study include mobile object tracking, cache

memory-based architectures, and GPU inference mechanisms for neural networks. The

criticality of expertise, security, and contextual understanding when adopting these

technologies is also emphasized. The findings from this study could catalyze the inception

of novel code assembly technologies, thereby optimizing computing efficiency and

expediting software development. Consequently, these advancements could diminish the

time required for program creation and launch, thereby elevating industry productivity. The

practical significance of this research stems from its potential application in accelerating

code assembly.

Keywords:

computer technology, software development,

informatics, digital technologies, typical

block diagram, programming

1. INTRODUCTION

The impetus for this research arises from an inadequately

explored realm - accelerating code assembly utilizing diverse

computer architectures. Despite continuous efforts in the

evolution of modern computer system architecture and

structural advancements, a knowledge lacuna persists in

pinpointing the optimal strategies for program code

optimization. The objective of this research is to critically

appraise and cultivate contemporary methods to expedite code

assembly, keeping in mind the assortment of existing

architectural alternatives.

The multitude of presently available architecture options

necessitates exploration into avenues for code assembly

acceleration. Such an investigation holds potential to

significantly augment the efficacy of contemporary computers,

manifesting in enhanced data processing speed, expedited

information transmission and reception, and reduced

command response time. An essential facet of this study

involves identifying potential limitations and shortcomings

associated with the utilization of specific computer

architectures in the process of program code assembly.

Liu et al. [1] underscore the necessity for a symbiotic

relationship between hardware and software developers to

accelerate modern computing machine code assembly through

architecture alteration. They observe that while hardware

acceleration systems are predominantly driven by software

developers, the latter often face challenges in system

construction due to substantial disparities in equipment

concept comprehension and design tool application.

Harris and Harris [2], in their exploration of the

complexities of digital design and computer architecture

construction, point out the vast array of existing computer

architectures. They posit that the selection of a specific

architecture determines the nature of data processing and the

subsequent transformation methodologies. They further

suggest that the employment of varied architectures presents

additional opportunities to accelerate code assembly processes.

Hennessy and Patterson [3] highlight the choice of

computer architecture types in their collaborative research.

They present two pivotal factors in modern computer

architecture: memory hierarchy and parallelism, and suggest

that computer code may be viewed as the simplest

programming language or as a primitive computer program,

be it assembled or compiled.

Maroun et al. [4] investigated the principles of time-

predictable compilation using one-way code in their research.

They propose that the real-time architecture of the Patmos

instruction set offers a considerable degree of predictability.

Further, they note that one-way machine code is generated by

a compiler that produces high-performance programs.

The topic is further expanded by Ying et al. [5] who

investigated the prospects of extending memory page

management to prevent code pointer leakage. They note that

while code pointers are common in low-level languages, their

exposure without adequate protection significantly escalates

the risk to computer system security.

Singh and Singh [6], in their review of malware detection

Ingénierie des Systèmes d’Information
Vol. 28, No. 4, August, 2023, pp. 951-958

Journal homepage: http://iieta.org/journals/isi

951

https://orcid.org/0009-0001-1735-2841
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.280415&domain=pdf

principles in executable files, highlight an increase in code

acceleration options over the past decade. They propose that

the employment of diverse computer architectures to expedite

program code is a promising approach.

The study is structured into five sections, commencing with

an "Introduction" that delineates the research problem,

provides the context for the study, identifies a knowledge gap,

and establishes the primary study objective. The subsequent

section, "Materials and Methods", details the methodology

employed in the research, exploring various technological

aspects including system architectures, code assembly, IoT

edge computing, wireless devices, and multi-core systems.

The "Results" section elucidates the findings of their

investigation into different types of computing machine

architectures, providing an in-depth explanation of machine

code, computer architecture, and their foundational role in all

computing technology. The "Discussion" section offers an

extensive analysis and review of multiple research studies on

the significance of software optimization, computing system

architecture, and their role in code assembly acceleration and

performance improvement. The "Conclusion" section

encapsulates the study's findings, focusing on the impact of

varied computer architectures on system performance,

particularly in terms of code compilation speed. The primary

objective of this research is to examine the actual potentials

and prospects for accelerating code assembly through the use

of varied computer architectures.

2. MATERIALS AND METHODS

In this scientific study, it was used the method of system

analysis, combined with the analysis of various types of

architectures of computing machines and the code assembly

options. Identification of the most common types of

architectures has become the main goal of the study, which can

be effectively used to speed up the process of code assembly,

as well as to establish the characteristic features of

architectures of various types that can be used for this purpose.

To achieve this goal, it was studied the various materials,

including descriptions of existing types of architectures of

computing machines and the code assembly options, as well

as materials containing information on methods of system

analysis. As a result, it has been identified the most efficient

types of architectures that can be used to accelerate code

assembly.

In the context of the rapidly evolving software development

industry, the improvement of performance and optimization of

processes are the key factors for achieving success. The

suggested recommendations, based on the characteristics of

architectures, can significantly improve performance in the

process of code assembly. These findings can be used for

further research and development of new methods of process

optimization, which in turn will increase the efficiency of

software development and ensure its competitiveness. This

method was applied to analyze the information system that

included several components such as databases, servers, client

applications, and so on. With the help of system analysis, it

was possible to identify the key components of the system and

determine the interactions between them. This has made it

possible to better understand the processes occurring in the

system, identify the possible problems and bottlenecks that

may affect its operation, as well as develop recommendations

for optimizing the system to increase its efficiency and

reliability. In the course of the study, it was also analyzed

various types of architectures of computing systems and their

characteristics were determined. In addition, the options for

code assembly were studied and their advantages and

disadvantages were identified. For the study, it was used

materials from open sources, such as scientific articles and

publications in journals. The method of system analysis was

applied to evaluate the characteristics of various architectures

of computing systems, as well as to identify factors affecting

the code assembly. This method does not require experiments

or surveys. The analysis involved several steps, including

gathering information on architectures and code assembly

options, evaluating their characteristics, and identifying the

factors influencing code assembly performance.

To determine the characteristics of architectures of the

computing system that can be effectively used to accelerate the

code assembly, the method of system analysis was used. This

method was chosen due to its ability to analyze complex

systems and reveal their properties and characteristics. In the

course of the study, it was analyzed various types of

architectures of computing systems, such as SIMD (Single

Instruction Multiple Data), MIMD (Multiple Instruction

Multiple Data), SISD (Single Instruction Single Data), MISD

(Multiple Instruction Single Data), and others. It also

discussed the options for code assembly, such as compilation

at runtime, compilation at load time, and compilation at

assembly time. The advantages and disadvantages of each of

the options of code assembly are determined depending on the

type of architecture of the computing system.

The reliability of the study is guaranteed on the quality and

accuracy of the materials used, which were sourced from open

publications and scientific articles. Alternative approaches

could involve conducting experiments, surveys, or employing

specialized methodologies to analyze specific aspects of

computing architectures and code assembly. Validity factors

can be addressed by cross-referencing information from

multiple sources, ensuring consistency and coherence of

results. Mitigation strategies for challenges faced could

include systematic literature reviews, consulting domain

experts, and maintaining transparency in the analysis

methodology and decision-making process.

3. RESULTS

Machine code is the basis of the work of computers and

programming. This is a low-level language understood

directly by the processor, rather than a human. It is a set of

commands defined by a particular computing machine and it

is subject to interpretation by firmware or processor. Machine

code can be considered as the simplest programming language

and as an elementary level of perception of computer programs.

Some programmers create computer programs directly in

machine code if the code is too cumbersome and the process

of manually managing the processor and its resources is labor-

intensive. Computer architecture defines the fact how the

machine processes large amounts of information using the

principles of its transformation into data, following the

sequence of interaction between software and technical means.

Each specific type of computing machine has its own

individual structure. (“A Comparison of Build Systems” is a

study that compares different build systems, including their

performance on different computer architectures).

Figure 1 shows a block diagram of the typical architecture

952

of computing machines of the first and second generations. It

shows the main components of such machines and their

relationship, including the processor, RAM, input/output

devices and other components. Machine code and computer

architecture are the basic elements on which all computing

technology is based. Without them, it is impossible to create

effective programs and devices that are used in everyday life.

Therefore, knowledge of these concepts is essential for anyone

working in the field of computers and information technology.

Figure 1. Architecture (typical) of computing machine [7]
Note: ESD – external storage device; RAM – random-access memory; ALU

– arithmetic logic unit; CD – control device

Figure 1 shows the classical architecture of computing

machines, developed according to the von Neumann principle.

In this architecture, the processor and memory interact through

a common bus, which transfers information flows and control

signals from the processor to memory and vice versa. The

control device performs the function of isolating the necessary

memory cell, which contains information regarding the next

program instruction in the queue; for this purpose, the control

device provides for the placement of a special reader – a

program counter. However, as the amount of data and the

frequency of memory access grew, the typical von Neumann

architecture began to limit the capabilities of computing

machines. The sharp increase in overhead costs for

information transfer has led to the need to develop new

architectures.

In response to this problem, the designers of computing

machines began to create architectures that were optimized to

work with large amounts of data and allow more efficient use

of computing resources. Backbone architecture is one such

architecture, shown in Figure 2. In the backbone architecture,

the processor and memory are connected by a network of

backbones (rather than a common bus), which allows data to

be transferred in parallel and reduces the time for information

transfer. This architecture also provides an opportunity to

parallel processing of data and reduces delay in the data

transfer process, allowing making computations faster. Thus,

the development of new computer architectures makes it

possible to increase their performance and efficiency in

working with large amounts of data.

According to the data presented in Figure 2, the backbone

is a connecting link of all working sections of the computing

machine in this architectural solution (also called “bus”). It

includes three types of buses: data highway (used to receive

and transmit incoming information), control backbone (used

to control the reception and transmission of information and

control this process) and address backbone (used to track the

final directions of sending information arrays). The presence

of controllers in the backbone architecture of computing

machines is their key difference from analogs with a typical

von Neumann architecture. The controller performs the

functions of a specialized processor that controls the operation

of external devices. It is equipped with an autonomous

command system, and if necessary, it can receive a task to

perform data exchange from the central processor. In this case,

the central processor does not participate in the data exchange.

The modern personal computer has a logical organization of

its hardware components. In this case, all elements of the

system interact with each other through the backbone (Figure

2), which combines three types of buses (control, data, and

addresses). The command system is one of the key

components of the architecture of the personal computer. The

command system of modern computers includes the following:

the commands for input and output of data (designed for data

exchange with peripheral devices), commands for performing

specific actions (logical and arithmetic operations), control

commands (divided into commands for unconditional and

conditional transitions, as well as access to subprograms) and

commands of information redirection (provide copying of

information in different parts of the system).

Figure 2. Backbone architecture of computing machine [7]

M. Flynn's classification was introduced in 1966, and it

refers to computer architecture. This classification refers to the

main types of processor architecture, namely to single-

threaded, multi-threaded, single-core and multi-core

processors. Since then, many changes and improvements have

taken place in the field of processor architecture, and some of

them may not fit into M. Flynn's original classification. M.

Flynn's classification is the basis for describing various

architectures of computing systems and is an important tool

for analyzing and comparing different types of processors and

computer systems. However, it should be noted that M. Flynn's

classification still remains fundamental for many developers

and specialists in the field of processor architecture. Despite

the emergence of new technologies and architectures, the basic

principles of M. Flynn's classification are still applied in

modern processors. In addition, it should be noted that the

development of new architectures of processors and computers

is an active area of research and development, and new ideas

and technologies appear regularly. Perhaps in the future, there

will be a need to supplement or expand the classification of M.

Flynn in order to consider the new types of processors and

architectures.

According to M. Flynn's classification, presented in 1966

(“Understanding Flynn's Taxonomy and Its Relevance in

Modern Computing”, “Flynn's taxonomy”), there are the

following types of architectures of computing systems:

•MIMD (Multiple Instruction Multiple Data) is a type of

architecture of computing systems in which several processors,

working independently, execute a set of instructions on a set

of data, and each of them can be processed separately. MIMD

systems can be implemented both as clusters and as multi-core

processors that can work on different parts of the program

simultaneously. Each processor in such systems may have its

own set of instructions and can process data from its own

953

memory. This allows efficient solving of problems that can be

divided into independent subtasks. This approach is widely

used in parallel computing, where different processes can

work on different aspects of the same task. This allows getting

high productivity and reduces the time required to solve

complex tasks. However, the need for effective management

and synchronization of such systems can significantly

complicate their development and maintenance. The MIMD

architecture is used in various fields such as scientific research,

design, machine learning, graphics, multimedia, and others. It

allows effective parallelizing of the execution of tasks and

improving the system performance, which is especially

important in the rapidly growing complexity and volume of

processed data.

•MISD (Multiple Instruction, Single Data) is an architecture

of a multiprocessor computing system in which several

processors perform independent tasks using a common set of

data. However, in this architecture, all processors execute

different instructions, instead of executing the same

instruction on different data sets. In the MISD architecture,

each processor receives the same set of data from the shared

memory and executes its own unique instruction on them.

Thus, each processor works independently, but the computing

results must match between all processors. MISD systems are

widely used for cryptographic computations, such as

performing multiple decryptions of the same encrypted

message. In general, the MISD architecture is not very popular

for now, because it has few advantages compared to other

types of architectures. However, it remains interesting for

some specific applications where high computational accuracy

and reliability are required. X-ray computed tomography (CT)

scanner is one of the examples of a system that uses the MISD

architecture. Each slice of the body is processed by several

processors, and each of them executes its instruction on the

same data. Then, the computing results of all processors are

combined to create a body slice image.

•SISD (Single Instruction Single Data) is a type of

architecture of computing system in which one instruction is

executed on one data flow. This means that in the SISD system,

only one command is executed simultaneously, which

processes one piece of data. In the SISD-system, the central

processing unit executes instructions sequentially, applying

them to each data element. All operations are performed

sequentially, and no operation can start until the previous one

is completed. This means that there is no parallelism in SISD-

systems, which limits their performance. In general, the SISD-

architecture is the least efficient of all architecture types, but it

remains important in some specialized areas where high

computational accuracy and error tolerance are required. The

SISD-architecture is used in simple computing devices such as

calculators, some electronic devices for control and navigation,

and in older computers that do not have parallel processing

capability. However, the SISD-architecture is currently used

in computer systems where the results’ accuracy is of

paramount importance, for example in scientific computing or

signal processing. In these systems, the processor executes one

instruction on one data element, by providing a high

computational accuracy, but a low processing speed.

•SIMD (Single Instruction Multiple Data) is a type of

architecture of computer system where each processor

executes the same instruction on different sets of data. In this

case, each processor runs independently, but all of them

receive the same instruction. SIMD systems have high

performance for tasks that can be easily divided into many

identical computations on large data sets. However, the SIMD-

architecture may be ineffective for complex tasks that cannot

be easily divided into many identical computations on large

data sets. In addition, the need to use specialized instructions

for performing SIMD-operations can lead to restrictions in the

choice of programming languages and technologies. The use

of graphics processing units (GPU) to perform parallel

computing is one of the most common examples of SIMD-

architecture. For example, the GPU processor can be used to

compute physics effects in video games or to process graphic

images. SIMD-systems are also widely used in the field of

signal processing, where it is necessary to perform many of the

same computations on large amounts of data, for example, in

the processing of images and sound. SIMD-systems can also

be used in scientific and engineering computations such as

numerical modeling and data analysis.

4. DISCUSSION

In the study by Dvorak and Pergl [8], the researchers have

discussed the problem of rapid technological changes and they

have shown that modern IT companies should apply the latest

engineering technologies in order to keep up with the progress

of information technology. It has been noted that software

solutions quickly become obsolete, so the ability of software

to evolve and adapt quickly is essential. According to

scientists, the search for ways to accelerate the code is one of

the key aspects in this context. It has also been noted that the

ability to change software within a short period of time allows

for faster adaptation to changing market requirements. The

study has shown that using the latest engineering technologies

can help companies improve their performance and stay

competitive in the rapidly changing world of information

technology [9]. It is worth agreeing with the fact that it is

necessary to constantly adapt to rapidly changing market

requirements in the modern world of information technology.

New technologies and innovations in the IT sector can

significantly affect the performance of companies and their

competitiveness. The author also agrees with the fact that

finding ways to accelerate the code and improve the efficiency

of software is an important aspect in this context. However, it

is important to understand that both the latest engineering

technologies and also modern methods for project and team

management can help companies succeed and remain

competitive.

Lagadec and Plantec [10] have reviewed in their scientific

work the various technological advances in systems based on

the Smalltalk and they have emphasized that modern

programmable systems with a full interactive development

environment can be expanded promptly and adjusted to

specific contexts. This study notes that the implementation of

such technological solutions requires efficient code assembly.

This, in turn, determines the need to find new and more

efficient methods for optimizing the code assembly process.

Such methods can provide higher performance and

acceleration of the work of systems, which is an important

factor in modern information technology. In general, such

technological advances can increase the efficiency of various

systems and provide a better quality of work [11-13]. The

theme outlined in the study regarding the optimization of

process of the code assembly is indeed important and relevant

in information technologies. New and more efficient

optimization techniques can significantly improve system

954

performance and speed up programs. However, it should be

noted that such technological solutions can be difficult to

develop and require high qualifications of specialists. In

addition, the effectiveness of the application of new

technologies may depend on specific tasks and contexts, so it

is not always possible to achieve the declared performance. In

general, the study by Lagadec and Plantek emphasizes the

importance of finding new methods for optimization and

applying modern technological advances to improve the

quality of work of systems [10].

In the scientific work by Wang et al. [14-16] regarding the

study of prospects for the development of highly reliable

computers using a reliable architecture of a set of instruction

and emulators, the researcher draws attention to the

importance of the architecture of computing machines and the

speed of code assembly for the reliability and durability of

functioning of modern computing technology. According to

the researcher, the acceleration of code assembly can be

successfully implemented through the use of various

architectural solutions in computer technology when strictly

following the program instructions. However, this requires

high professional skills of the service personnel of enterprises

and organizations that use this technique, and their ability to

navigate freely in the most complex architectures of

computing machines. The highly reliable computers with

increased exploitation duration and a high degree of reliability

can be the result of the acceleration of the code assembly. The

author agrees with the fact of the study that the architecture of

computing machines plays an important role in the

performance and reliability of computers, and acceleration of

the code assembly can lead to improved system efficiency.

However, it is also important to pay attention to the aspects of

security and data protection when developing computers and

technologies, but security should not be sacrificed in favor of

performance and the speed of code assembly [17-19]. In

addition, along with the architectural solutions, software

testing and quality control, as well as fixing vulnerabilities and

updating the system, are important factors in improving the

reliability of computers.

In the scientific study by Wu et al. [20], it was considered

the methods of mobile object tracking based on the Internet of

Things (IoT) edge computing. It is stated here that the use of

multiple IoT devices is required for the efficient identification

of mobile objects. The use of the infrastructure of edge

computing (that allows offloading high-energy computing

devices) is a key factor for a successful solution to such

problems. However, to achieve the desired results, it is

required to accelerate the code assembly by means of changing

the architecture of these computing devices. It has also been

noted that in order to implement such solutions, it is necessary

to have highly qualified personnel, which are able to work

effectively with various computer architectures. In general, the

proposed methods can be useful for solving the tasks of

tracking mobile objects in the IoT environment [21]. Methods

for tracking mobile objects based on edge computing in the

Internet of Things, proposed in the study by Wu et al. [20] can

be useful for solving tasks in this area. However, the effective

identification of mobile objects requires the use of multiple

IoT devices and the use of edge computing infrastructure. In

addition, it is stated in the study that in order to achieve the

desired results, it is required to accelerate the code assembly

by changing the architecture of these computing devices and

the availability of highly qualified personnel.

Jiang et al. [22] emphasize in their research work on the

development of edge computing themes with energy

consumption that wireless devices have significant capabilities

to provide a wide range of services to users. Including data

segregation, real-time local analytics, as well as transmission

relaying. To achieve wider functionality of such devices, the

researchers consider it necessary to perform the high-quality

assembly of the program code and the competent selection of

architectural solutions. At the same time, it is noted that a

significant reduction in the power consumption of these

devices can be achieved through the use of edge computing

technology and the use of various optimization algorithms.

This allows for significantly increasing the efficiency and

performance of these devices and reducing energy costs [23,

24].

The opinion on this study can be expressed in the following

way: the study presents an interesting topic and contains

valuable information about capabilities of the wireless devices

and the optimization of their power consumption, which can

be useful for the development of more efficient and productive

devices.

In the joint scientific work of Uddin et al. [25], it is

discussed the main aspects of modeling of micro-threaded

multi-core architectures of computing machines based on the

cache memory. Scientists point to the difficulty of modeling

systems with a large number of cores that obey different

instructions. It is noted that building the architecture of

computing machines and the quality and speed of code

assembly are important factors for the effective functioning of

such systems. Moreover, it has been pointed out the need to

use software tools that can facilitate the task of modeling

micro-threaded multi-core architectures, as well as simplify

the process of developing and debugging applications for such

systems. In this work, it is also considered the possibility of

improving the performance of multi-core systems by means of

optimizing the operation of cache memory and the control of

data flow [26, 27]. This study is an important contribution to

the development of the field of multi-core system modeling

and may be useful for the development of more efficient and

productive computing systems in the future.

The group of research scientists represented by He et al. [28]

considered in the joint study the issues of efficient inference

mechanisms on GPU for a binary neural network. According

to the researchers, neural networks have become increasingly

powerful and popular in mobile computing in recent years.

This determines the high relevance of building a high-quality

architecture of computing machines and devices that require

significant computing resources. However, significant

differences in the architecture can make it impossible to

transfer the implementation of technologies to mobile devices,

which leads to a decrease in their performance. In their work,

scientists pay attention to the efficiency of inference

mechanisms on the GPU, which can significantly accelerate

the process of learning and predicting results for neural

networks. The results of the study can be used in the future to

create more efficient architectures of computing devices. The

study conducted by a group of scientists-researchers represents

an important contribution to the development of efficient GPU

inference mechanisms for a binary neural network. The results

of the work can be useful for creating more efficient

architectures of computing devices and improving the

performance of mobile computations. However, it should be

considered that the effectiveness of the inference mechanism

may depend on the specific architecture and requirements of

the application, so additional research and adaptation of

955

methods for specific tasks may be required.

Castello et al. [29] in their joint research work explored the

general methods for optimizing deep training on multi-core

ARM processors. Scientists believe that the platform for

distributed training of deep neural networks is an effective tool

for high-precision networks with complex architecture.

However, increasing the number of cores in a processor leads

to difficulties in designing effective methods of optimization

for deep training [30]. In their work, the researchers have

considered various optimization methods and have proposed

several recommendations that can improve the efficiency of

deep neural network training on multi-core ARM processors.

In addition, scientists drew attention to the importance of

changing the architecture of computing machines and

acceleration of the code assembly to improve the performance

of multi-core ARM processors [31, 32]. The research carried

out by the scientists is an important contribution to the

development of methods for optimizing deep training on

multi-core ARM processors. Recommendations proposed by

the researchers can help improve the efficiency of training

deep neural networks on such processors. However, it is worth

considering that this study is limited to the use of ARM

processors and it does not consider other platforms and

architectures.

Crookes [33] in his research work considered the prospects

for building a highly efficient computer architecture for image

processing. According to the study, in the future, the use of

standard microprocessor technology will have significant

prospects in building high-speed computers for image

processing. To accelerate the code assembly process, various

architectures of computing systems will be used. Crookes also

notes that there are many approaches to building the

architecture of computing machines for image processing.

Some of these approaches use specialized hardware such as

graphics processing units, while others use standard

microprocessors. In general, the study led to the conclusion

that the use of standard microprocessor technology in

combination with various architectures of computer systems is

an effective approach to building computing machines for

image processing [34]. This approach can be used to increase

the speed and accuracy of image processing. A study by

Crookes [33] provides information on the prospects for

building a highly efficient computer architecture of computing

machines for image processing. It is considered various

approaches to building such an architecture and it is noted that

the use of standard microprocessor technology has significant

prospects in this area. However, despite this, it is also

necessary to consider other approaches that can use

specialized hardware, such as graphics processors. The study

also highlights the importance of accelerating the code

assembly process to increase the efficiency of computing

machines. This study contains interesting information about

the prospects for building a high-performance computer

architecture for image processing; however, to fully

understand this area, it is necessary to consider the diversity of

approaches and architectural solutions.

The reviewed studies have practical implications for

computing and offer insights for the development of new tools,

methodologies, and techniques. They emphasize the

importance of efficient code assembly and architectural

choices in improving system performance, reliability, and

efficiency. They highlight the need for IT companies to adopt

the latest engineering technologies and optimize code

assembly processes to keep up with rapid technological

changes and remain competitive. They also emphasize the

significance of architectural solutions in accelerating code

assembly and enhancing the performance of computing

systems. In addition, the researchers explore specific domains

such as IoT edge computing, mobile object tracking, power

consumption optimization, multi-core architectures, neural

network inference mechanisms, and image processing. They

provide recommendations for leveraging edge computing

infrastructure, optimizing code assembly, and considering

different architectural approaches to improve system

functionality, energy efficiency, and accuracy.

5. CONCLUSIONS

Advancements in computer architecture, particularly the

shift from von Neumann to backbone architecture, have led to

more efficient data processing and use of computational

resources. Also, M. Flynn's classification continues to be a

fundamental tool in understanding, comparing, and

implementing different architectures of computing systems,

despite the rapid evolution in the field. For combating software

obsolescence, accelerating code assembly process emerges as

a crucial strategy, which, however, necessitates personnel

adept in complex machine architectures. The adoption of edge

computing and architectural modifications, particularly in IoT

environments and wireless devices, can enhance performance

and energy efficiency. The importance of efficient GPU

inference mechanisms and deep learning optimization on

multi-core ARM processors is underlined for improving the

performance in deep learning and artificial neural networks.

Even though standard microprocessors have high-speed image

processing potential, combining them with different system

architectures or specialized hardware like GPUs can lead to

improved performance.

In the modern world, there are a huge number of different

architectures of computing machines that are used to process

and analyze large amounts of information. Each of these

architectures has its own characteristics and can be effectively

used depending on the specific task. As part of the study, it

was analyzed various types of architectures of computing

machines and their application in accelerating the code

compilation. One of the main goals of the study was to find

out what types of architectures can be most effectively used to

accelerate the process of compiling code. During the study,

certain architectural solutions were identified that can help

increase the performance of computers and speed up the

process of code compilation.

This is one of the main conclusions of the study: the choice

of a particular computer architecture can have a great impact

on performance when performing various tasks, including

acceleration of the process of code compilation. For example,

some types of architectures, such as multi-core processors, can

provide significant performance gains and reduce the time of

the code compilation. However, for each specific task, it is

necessary to choose the architecture that will be most effective.

For example, the architecture with a large number of cores can

be more efficient for the tasks connected with processing a

large amount of data; while the tasks requiring high

computational accuracy may require a more complex

architecture with a large amount of cache memory and high

speed. Thus, the choice of a specific architecture of computing

machines is a key factor affecting the performance when

performing various tasks, including the acceleration of code

956

compilation. Further research in this area will allow the

development of more efficient computer architectures that will

increase productivity and acceleration of the process of

software development.

Building on the results of the article, future research can

delve into advanced and unconventional architectures such as

quantum and neuromorphic computing, seeking their potential

benefits in performance and energy efficiency. Further

exploration of different compilation techniques in relation to

specific architectures is also warranted. The role of artificial

intelligence optimizations, particularly with GPU inferences

and deep learning, could provide more insights into reducing

training time and enhancing AI systems' efficiency. An

investigation into optimizing different architectures for edge

computing and IoT could yield valuable results. Research into

software-hardware co-design, power efficiency, and the

influence of non-technical factors like team expertise and

economic considerations can also provide a more

comprehensive understanding of system performance.

REFERENCES

[1] Liu, Y., Li, Y., Qi, Z., Guan, H. (2019). A scala based

framework for developing acceleration systems with

FPGAs. Journal of Systems Architecture, 98: 231-242.

https://doi.org/10.1016/j.sysarc.2019.08.001

[2] Harris, S., Harrris, D. (2021). Digital Design and

Computer Architecture, RISC-V Edition. Burlington:

Morgan Kaufmann.

[3] Hennessy, J., Patterson, D. (2017). Computer

Architecture, 6 Edition. Burlington: Morgan Kaufmann.

[4] Maroun, E., J., Schoeberl, M., Puschner, P. (2021).

Compiling for time-predictability with dual-issue single-

path code. Journal of Systems Architecture, 118: 102230.

https://doi.org/10.1016/j.sysarc.2021.102230

[5] Ying, J., Hou, R., Zhao, L., Yuan, F., Zhao, P., Meng, D.

(2022). CPP: A lightweight memory page management

extension to prevent code pointer leakage. Journal of

Systems Architecture, 130: 102679.

https://doi.org/10.1016/j.sysarc.2022.102679

[6] Singh, J., Singh, J. (2021). A survey on machine

learning-based malware detection in executable files.

Journal of Systems Architecture, 112: 101861.

https://doi.org/10.1016/j.sysarc.2020.101861

[7] Aryal, H. (2016). Computer Organization and

Architecture.

https://nitsri.ac.in/Department/Electronics%20&%20Co

mmunication%20Engineering/Chapter1-

Introduction.pdf.

[8] Dvořák, O., Pergl, R. (2022). Tackling rapid technology

changes by applying enterprise engineering theories.

Science of Computer Programming, 215: 102747.

https://doi.org/10.1016/j.scico.2021.102747

[9] Yang, Z., Yung, S., Bodeveix, J.P.., Filali, M., Wang, T.,

Zhou, Y. (2021). Multi-task Ada code generation from

synchronous dataflow programs on multi-core:

Approach and industrial study. Science of Computer

Programming, 207: 102644.

https://doi.org/10.1016/j.scico.2021.102644

[10] Lagadec, L., Plantec, A. (2014). Preface to the special

issue on advances in Smalltalk based systems. Science of

Computer Programming, 215: 102747.

https://doi.org/10.1016/j.scico.2014.07.004

[11] Hartmann, C., Häublein, K., Reichenbach, M., Fey, D.

(2018). IPAS: A design framework for analysis,

synthesis and optimization of image processing

applications for heterogenous computing architectures.

Journal of Real-Time Image Processing, 14(3): 549-564.

https://doi.org/10.1007/s11554-016-0587-x

[12] Ginters, E. (2019). Augmented reality use for cycling

quality improvement. Procedia Computer Science, 149:

167-176. https://doi.org/10.1016/j.procs.2019.01.120

[13] Ginters, E., Barkane, Z., Vincent, H. (2010). Systems

dynamics use for technologies assessment. In the 22th

European Modeling & Simulation Symposium (EMSS

2010), Fes, Morocco, pp. 357-363.

[14] Wang, S.P. (2021). Design high-confidence computers

using trusted instructional set architecture and emulators.

High-Confidence Computing, 1(2): 100009.

https://doi.org/10.1016/j.hcc.2021.100009

[15] Kale, A.P., Sonawane, S., Wahul, R.M., Dudhedia, M.A.

(2022). Improved genetic optimized feature selection for

online sequential extreme learning machine. Ingenierie

des Systemes d'Information, 27(5): 843-848.

https://doi.org/10.18280/isi.270519

[16] Gao, J., Ismail, N., Gao, Y. (2022). Computer big data

analysis and predictive maintenance based on deep

learning. Ingenierie des Systemes d'Information, 27(2):

349-355. https://doi.org/10.18280/isi.270220

[17] Kashtanov, S.F., Polukarov, Y.O., Polukarov, O.I.,

Mitiuk, L.O., Kachynska, N.F. (2021). Specifics of

modern security requirements for software of electronic

machine control systems. INCAS Bulletin, 13(S): 87-97.

https://doi.org/10.13111/2066-8201.2021.13.S.9

[18] Nass, O., Kamalova, G., Shotkin, R., Rabcan, J. (2021).

Analysis of methods for planning data processing tasks

in distributed systems for the remote access to

information resources: Topic: Communication and

control systems and networks. In 2021 International

Conference on Information and Digital Technologies

(IDT), Zilina, Slovakia, pp. 273-276.

https://doi.org/10.1109/IDT52577.2021.9497583

[19] Bapiyev, I., Kamalova, G., Yermukhambetova, F.,

Khairullina, A., Kassymova, A. (2021). Neural network

model of countering network cyber attacks using expert

knowledge. Journal of Theoretical and Applied

Information Technology, 99(13): 3179-3190.

[20] Wu, Y., Tian, P., Cao, Y., Ge, L., Yu, W. (2022). Edge

computing-Based mobile object tracking in internet of

things. High-Confidence Computing, 2(1): 100045.

https://doi.org/10.1016/j.hcc.2021.100045

[21] Sandra, L., Trisetyarso, A., Ramadhan, A., Abdurachnan,

E., Lumbangaol, F., Isa, S.M. (2021). Social network

analysis algorithms, techniques and methods. In 2021

International Conference on Advanced Mechatronics,

Intelligent Manufacture and Industrial Automation

(ICAMIMIA), Surabaya, Indonesia, pp. 182-189.

https://doi.org/10.1109/ICAMIMIA54022.2021.980774

8

[22] Jiang, C., Fan, T., Gao, H., Shi, W., Liu, L., Cerin, C.,

Wan, J. (2020). Energy aware edge computing: A survey.

Computer Communications, 151: 556-580.

https://doi.org/10.1016/j.comcom.2020.01.004

[23] Culler, D., Singh, J.P., Gupta, A. (1998). Parallel

Computer Architecture. Burlington: Morgan Kaufmann.

[24] Bondarenko, I.N., Galich, A.V., Slipchenko, N.I.,

Troitski, S.I. (2012). Cone-shaped resonator the high-

957

https://nitsri.ac.in/Department/Electronics%20&%20Communication%20Engineering/Chapter1-Introduction.pdf
https://nitsri.ac.in/Department/Electronics%20&%20Communication%20Engineering/Chapter1-Introduction.pdf
https://nitsri.ac.in/Department/Electronics%20&%20Communication%20Engineering/Chapter1-Introduction.pdf
http://dx.doi.org/10.1016/j.scico.2014.07.004
http://dx.doi.org/10.1016/j.scico.2014.07.004
http://dx.doi.org/10.13111/2066-8201.2021.13.S.9
http://dx.doi.org/10.13111/2066-8201.2021.13.S.9
http://dx.doi.org/10.1109/IDT52577.2021.9497583
http://dx.doi.org/10.1109/IDT52577.2021.9497583
http://dx.doi.org/10.1016/j.hcc.2021.100045
http://dx.doi.org/10.1016/j.hcc.2021.100045

order mode oscillation trasducers. In 2012 22nd

International Crimean Conference" Microwave &

Telecommunication Technology", Sevastopol, Ukraine,

pp. 565-567.

[25] Uddin, I., Poss, R., Jesshope, C. (2014). Cache-based

high-level simulation of microthreaded many-core

architectures. Journal of Systems Architecture, 60(7):

529-552. https://doi.org/10.1016/j.sysarc.2014.05.003

[26] Mittal, S., Verma, G., Kaushik, B., Khanday, F.A. (2021).

A survey of SRAM-based in-memory computing

techniques and applications. Journal of Systems

Architecture, 119: 102276.

https://doi.org/10.1016/j.sysarc.2014.05.003

[27] Stepanchuk, O., Bieliatynskyi, A., Pylypenko, O. (2019).

Modelling the bottlenecks interconnection on the city

street network. In International Scientific Siberian

Transport Forum, Novosibirsk, Russia, pp. 889-898.

https://doi.org/10.1007/978-3-030-37919-3_88

[28] He, S., Meng, H., Zhou, Z., Liu, Y., Huang, K., Chen, G.

(2021). An efficient GPU-accelerated inference engine

for binary neural network on mobile phones. Journal of

Systems Architecture, 117: 102156.

https://doi.org/10.1016/j.sysarc.2021.102156

[29] Castello, A., Barrachina, S., Dolz, M.F., Quintana-Orti,

E.S., Juan, P.S., Tomas, A.E. (2022). High performance

and energy efficient inference for deep learning on

multicore ARM processors using general optimization

techniques and BLIS. Science of Computer

Programming, 125: 102459.

https://doi.org/10.1016/j.sysarc.2022.102459

[30] Bondarenko, I.N., Lavrinovich, A.A. (2007).

Investigation of the thin-film high-temperature

superconductivity coplanar line. Telecommunications

and Radio Engineering (English translation of

Elektrosvyaz and Radiotekhnika), 66(7): 597-605.

https://doi.org/10.1615/TelecomRadEng.v66.i7.30

[31] Ungurean, I., Gaitan, N.C. (2020). A software

architecture for the industrial internet of things-A

conceptual model. Sensors (Switzerland), 20(19): 5603.

https://doi.org/10.3390/s20195603

[32] Aviv, I., Barger, A., Kofman, A., Weisfeld, R. (2023).

Reference Architecture for Blockchain-Native

Distributed Information System. IEEE Access, 11: 4838-

4851. https://doi.org/10.1109/ACCESS.2023.3235838

[33] Crookes, D. (1999). Architectures for high performance

image processing: The future. Journal of Systems

Architecture, 45(10): 739-748.

https://doi.org/10.1016/S1383-7621(98)00035-6

[34] Aviv, I., Gafni, R., Sherman, S., Aviv, B., Sterkin, A.,

Bega, E. (2023). Infrastructure From Code: The Next

Generation of Cloud Lifecycle Automation. IEEE

Software, 40(1): 42-49.

https://doi.org/10.1109/MS.2022.3209958

958

http://dx.doi.org/10.1016/j.sysarc.2014.05.003
http://dx.doi.org/10.1016/j.sysarc.2014.05.003
http://dx.doi.org/10.1016/j.sysarc.2022.102459
http://dx.doi.org/10.1016/j.sysarc.2022.102459
http://dx.doi.org/10.1615/TelecomRadEng.v66.i7.30
http://dx.doi.org/10.1615/TelecomRadEng.v66.i7.30
http://dx.doi.org/10.1109/ACCESS.2023.3235838
http://dx.doi.org/10.1016/S1383-7621(98)00035-6
http://dx.doi.org/10.1016/S1383-7621(98)00035-6
http://dx.doi.org/10.1109/MS.2022.3209958
http://dx.doi.org/10.1109/MS.2022.3209958

