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In peer-to-peer distributed systems, the selection of a reliable coordinator is a pivotal 

process, often vulnerable to node failure and communication link failure. Herein, we present 

an innovative Fault-Tolerant Coordinator Election Algorithm (FTCEA) designed to address 

these issues, specifically crafted to withstand node failures in peer-to-peer distributed 

systems. Our algorithm distinguishes itself by capitalizing on a unique preference-based 

method, which incorporates significant nodal attributes into the election process. This 

integration of nodal attributes contributes to the election of a durable and reliable 

coordinator, significantly enhancing the robustness of the system. A comprehensive 

analysis was conducted to measure FTCEA's communication complexity, execution time, 

and space complexity using a peer-to-peer distributed application. The results demonstrated 

that FTCEA successfully identifies a coordinator node with a communication cost of O(n) 

messages and a space complexity linear to the number of attributes, represented as O(n.m). 

Remarkably, FTCEA demonstrated an approximately 50.10% improvement in 

communication cost compared to the enhanced Bully algorithm, a widely utilized method 

in this domain. Moreover, FTCEA can maintain a linear storage cost of O(n), thereby 

significantly improving the computation cost. In summary, FTCEA offers a scalable and 

efficient solution for coordinator election in distributed systems, showing promising 

potential for practical applications in the field. The algorithm's unique design, robustness, 

and efficiency make it a valuable contribution to the advancement of peer-to-peer 

distributed systems. 
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1. INTRODUCTION

In the contemporary digital landscape, a growing number of 

applications are developed with a distributed design, primarily 

driven by the necessity to mitigate losses associated with the 

failure of a single, central entity inherent in centralized 

systems [1, 2]. Communication between entities, or nodes, in 

such distributed systems is facilitated through the application 

of message-passing techniques. At the heart of these systems 

lies a coordinator entity, a node elected via an election 

algorithm, which assumes a pivotal role in tasks such as 

process synchronization, group key distribution, and load 

balancing [3, 4]. Consequently, the election of a reliable 

coordinator emerges as a significant challenge within the 

distributed systems paradigm [5]. 

Coordinator election methodologies can be broadly 

classified into extrema-finding and preference-based methods. 

The former approach elects an entity possessing an extreme 

value of identity, while the latter considers the performance 

attributes of a node, electing it based on these attributes [2]. 

However, the reliability of communication channels used in 

message passing, a key feature of distributed systems, often 

stands compromised, making them susceptible to faults and 

failures [6, 7]. Communication channels employed in message 

passing, a characteristic feature of distributed systems, have 

been observed to lack reliability, thus raising their 

susceptibility to various faults and failures [8, 9]. Similarly, 

nodes within these systems are vulnerable to security attacks 

and failures [10, 11]. 

Despite the known vulnerabilities, prevailing coordinator 

election algorithms largely presuppose the reliability of 

entities, which leads to notable challenges [12, 13]. Faults and 

failures within the election algorithm can significantly impact 

both communication and computation costs [14, 15]. Classical 

election algorithms, typically utilizing the extrema-finding 

method, do not consider any nodal attributes representing the 

node's credibility [16, 17]. Yet, the consideration of such nodal 

attributes, such as battery percentage in mobile ad hoc 

networks, is critical, highlighting the necessity for their 

integration into the election process [18, 19]. 

The efficacy of a coordinator election algorithm within a 

distributed system depends heavily on the underlying network 

topology, which can take various forms: ring, bus, tree, mesh, 

torus, and complete network. This study focuses on a peer-to-

peer network, where the number of links in the complete 

network is given by (n2-n)/2, with 'n' being the total number of 

nodes in the system. 

The following sections delve into the details of the study. 

Section 2 provides an overview of existing fault-tolerant 

coordinator election algorithms and a comparative analysis of 

their strengths and vulnerabilities. Section 3 introduces the 

novel Fault-Tolerant Coordinator Election Algorithm 

(FTCEA). Performance analysis of FTCEA is detailed in 

Section 4, while Section 5 concludes the study. 
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2. RELATED WORK  

 

Features of coordinator election algorithms have been 

extensively surveyed, revealing a noticeable lack of focus on 

security and fault tolerance among researchers. It is paramount 

to facilitate secure coordinator election with inbuilt fault 

tolerance due to the inherent vulnerabilities and threats present 

in coordinator election algorithms [4, 20]. These algorithms 

play a crucial role in decision-making, synchronization, and 

task distribution within distributed systems. Existing 

algorithms generally assume reliability of the nodes in the 

system; however, in practical terms, these nodes are often 

susceptible to faults and failures [21, 22]. 

The reliability, or lack thereof, of the communication 

channels used for message passing in distributed systems can 

lead to failures of the links that connect nodes. Consequently, 

coordinator election algorithms remain vulnerable to faults, 

failures, and potential non-termination of the algorithm, 

compromising properties such as safety, liveness, and 

availability [20]. 

Coordinator election algorithm vulnerabilities can be 

classified into two categories: security vulnerabilities and 

failure vulnerabilities [20]. Security vulnerabilities, which 

may be accidentally triggered or intentionally exploited, can 

be exacerbated by the use of weak or incorrect cryptographic 

algorithms for system communication. This can give rise to 

attacks and system failures. Impersonation and voting log 

deletion attacks become feasible if standard cryptographic 

algorithms are not employed [23]. 

Security vulnerabilities have been addressed in previous 

work, where a Secure and Reliable Coordinator Election 

Algorithm (SRCEA) was proposed for secure coordinator 

node election [24]. SRCEA utilizes a preference-based 

coordinator election method and standard cryptographic 

algorithms with a stateful initialization vector for encryption 

and decryption. SRCEA aims to prevent impersonation, deny 

voting attacks, and ensure integrity via authenticated 

encryption. 

Failure vulnerabilities may lead to non-termination of the 

election algorithm, necessitating the design of an election 

algorithm capable of tolerating or masking system failures 

during algorithm execution. The fault tolerance feature of the 

election algorithm ensures the safety, liveness, and robustness 

of the election algorithm. 

Several researchers have proposed coordinator election 

algorithms that address the aforementioned issues. Murshed 

and Allen [2] proposed a coordinator election algorithm that 

tolerates node failures. Their enhanced Bully algorithm 

divides set nodes into two categories: candidate set and 

ordinary set. In the event of failure of the majority of the nodes, 

fault tolerance is ensured by adding election rounds. 

Chang and Roberts [21] proposed a coordinator election 

algorithm for asynchronous systems using the extrema-finding 

method. A benchmark Bully election algorithm for 

asynchronous systems was also proposed by Garcia-Molina 

[1]. Neither of these algorithms tolerate faults that occur 

during the election process nor offer security features. 

Furthermore, they do not ensure the reliability of the elected 

coordinator. 

Gallager et al. [3] and Bodlaender [22] also proposed 

coordinator election algorithms for asynchronous systems 

using the extrema-finding method. Gallager et al. use a 

spanning tree for coordinator node election, electing the root 

node of the spanning tree storing the group view as a 

coordinator when an existing coordinator fails. On the other 

hand, Bodlaender proposed an algorithm to elect the highest 

identity (ID) node as a coordinator. These algorithms also do 

not guarantee security or fault tolerance. 

Vasudevan et al. [23] proposed a Secure Extrema-Finding 

Algorithm (SEFA) and a Secure Preference-Based Leader 

Election Algorithm (SPLEA). These algorithms are designed 

with encryption and hashing security mechanisms and 

implement confidentiality and integrity using public key 

infrastructure (PKI) and Message Digest 5 (MD5) algorithms, 

respectively. 

The existing body of literature on coordinator election 

algorithms for distributed systems presents a spectrum of 

strategies, each with distinct features and inherent limitations. 

The core algorithmic complexity in these methods varies from 

quadratic in the worst-case to linear in the best-case scenarios. 

Notably, they provide some degree of protection against 

impersonation and modification attacks. 

For instance, Basu [25] introduced an algorithm utilizing 

the extrema-finding method for asynchronous systems with 

ring topology. Though armed with a linear communication 

cost, it lacked any security features or fault tolerance measures. 

In a deviation from this approach, Sandipan proposed an 

innovative method where, in the best case, the election process 

is bypassed altogether. Here, the node with the next highest ID 

of the recently failed coordinator automatically assumes the 

coordinator role. Nevertheless, in the worst-case scenario, 

linear messages are required to complete the process. This 

method, however, overlooks nodal attributes or preferences 

during the election. 

Jackson [26] proposed an election algorithm able to 

withstand omission failures and impersonation attacks. 

Despite these advantages, it still employs the extrema-finding 

method. Similarly, the algorithm proposed by Stephen has a 

linear communication cost with ensured safety properties. 

Daymude et al. [27] proposed an election algorithm for 

asynchronous networks with a linear communication cost, yet 

it did not address fault tolerance and security issues. 

Rafailescu [6] introduced an algorithm with fault tolerance 

using a random roulette wheel selection method. This method 

elects the node that generates a random number in the 

minimum time as coordinator. Sidik et al. [28] proposed a 

coordinator election algorithm for ad-hoc networks ensuring 

termination, uniqueness, and agreement properties. However, 

Byrenheid et al. [29] proposed a leader election algorithm 

designed to resist attacks, specifically impersonation attacks. 

Ritzkal et. al. [30] discussed the security vulnerability 

analysis for cloud server. The vulnerability analysis using two 

prominent security tools, Nmap and Nessus is executed and 

presented by authors. Secure key management in cloud 

environment using quantum cryptography is presented by 

Kranthi and Sanyasi [31]. The proposed technique enhances 

the execution of the encryption/decoding procedure, and 

bolsters a more anchored information transmission process 

utilizing less computational time. 

In our prior work, an algorithm was proposed to elect a 

reliable coordinator, considering nodal attributes in the 

election voting process [24]. The Secure Reliable Coordinator 

Election Algorithm (SRCEA) is designed with confidentiality 

and integrity features and can tolerate node crash failures for 

less than the majority of nodes. 

Amit et al. proposed the Fault-Resistant Leader Election 

(FRLLE) algorithm, which elects a reliable node that can 

effectively manage leadership roles [17]. This algorithm 
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satisfies safety, liveness, and termination properties, while 

also offering lower computation and communication costs. 

To summarize, existing election algorithms aim to improve 

communication and computation costs. However, they 

typically assume the reliability of nodes and communication 

channels, which is not always the case in practical scenarios. 

Failures during the election process can drastically increase 

communication costs. Therefore, a fault-tolerant coordinator 

election algorithm is needed in distributed systems. This study 

proposes a novel Fault-Tolerant Coordinator Election 

Algorithm (FTCEA) that considers important nodal attributes 

for the candidate selection process, leading to the election of a 

reliable node as a coordinator (Table 1). 

 

Table 1. Comparison of existing algorithms 

 
Sr. No. Coordinator Election Algorithm Topology System Type Election Method Communication Cost 

1. Change and Robert [21] Unidirectional ring Asynchronous  Extrema finding  O(n2) 

2. Garcia-Molina [1] Ring Asynchronous  Extrema finding  O(n2) 

3. Gallager et. al. [3] Spanning tree Asynchronous Extrema finding O(5Nlog2N+ 2E) 

4. Bodlaender [22] Unidirectional ring Asynchronous Extrema finding O(N logN) 

5. Vasudevan et al. [23] Wireless ad-hoc Partially synchronous  Preference-based  O(n) 

6. Basu [25] Ring  Asynchronous Extrema finding O(n) 

7. Jackson [26] Star Asynchronous  Extrema finding  O(n) 

8. Daymude et al. [27] Programmable matter Asynchronous Extrema finding O(n) 

9. Rafailescu [6] Wireless ad-hoc Partially synchronous Extrema finding O(n) 

10. Sidik et al. [28] Ad-hoc Asynchronous Extrema finding O(n) 

11. Byrenheid et al. [29] Peer to peer Synchronous  Extrema finding  O(n) 

12. Biswas et al. [17] Bidirectional ring Synchronous  Extrema finding O(n2) 

13. FTCEA (Proposed algorithm) Peer to peer Partially synchronous  Preference-based O(n) 

 
Sr. 

No. 

Coordinator Election 

Algorithm 
Fault Tolerated  Coordinator Reliability Properties Satisfied  

Fault Tolerance During 

the Election Process 

1. 
Change and Robert 

[21] 
None  None  None  None 

2. Garcia-Molina [1] None  None  None  None 

3. Gallager et. al. [3] None  None  None  None 

4. Bodlaender [22] None  None  None  None 

5. Vasudevan et al. [23] None  None  
Uniqueness  

Liveness  
None 

6. Basu [25] None  None  None None 

7. Jackson [26] Omission failure None Safety None 

8. Daymude et al. [27] None None Termination None 

9. Rafailescu [6] Node crash None None None 

10. Sidik et al. [28] None None 
Termination Uniqueness 

Agreement 
None  

11. Byrenheid et al. [29] 
Failures due to an 

impersonation attack  
None None None  

12. Biswas et al. [17] Node crash recovery 
A leader is elected based on the 

node’s performance coefficient 

Safety Liveness 

Termination  
None 

13. 
FTCEA (Proposed 

algorithm) 

Node crash and omission 

failure  

The coordinator is chosen based 

on nodal attributes  

Safety Liveness 

Termination  

Yes  

(Time redundancy) 

 

 
3. METHODOLOGY 

 

In peer-to-peer distributed systems, each node is given a 

unique identifier (ID). Extrema-finding methods determine the 

coordinator node based on the minimum or maximum ID value, 

as explained in Section 2. On the other hand, preference-based 

methods rely on nodal attributes to assign preferences to nodes. 

However, algorithms do not consider nodal attributes in their 

election process. In this work, three nodal attributes are used 

for the election process. Practical implications of this work can 

be in applications such as mobile ad-hoc networks and peer-

to-peer group communication applications. There is a need for 

a reliable entity election process in group key agreement 

protocols. FTCEA stores nodal attributes maintained by group 

view Gv including {P1, P2, P3, …, Pn}. 
 

3.1 Candidate selection 

 

FTCEA utilizes nodal attributes maintained by group view 

Gv including {P1, P2, P3, …, Pn} in the system to select 

candidates, as demonstrated by Algorithm 1, 

Candidate_Selection, presented below [32]. The selection 

criteria for candidate nodes are to have the minimum values 

for all these attributes. To meet this condition, min-heap trees 

are used for nodal attribute storage. 

Set Pjts, Pd, and Pfc store the nodal attributes are updated 

when a node joins or leaves Gv. At any given time, the node 

with the minimum attribute value can be accessed by 

retrieving the root of the corresponding min-heap tree. 

 
Algorithm 1. Candidate_Selection (Pd, Pjts, Pfc) 

C=Null 

Pidmin=root (Pd) 

Pijtsmin=root (Pjts) 

Pifcmin=root (Pfc) 

C={Pidmin, Pijtsmin, Pifcmin} 

End 

 

Eq. (1) is employed to derive candidate set C  
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𝐶 = ∃ 𝑖, 𝑗, 𝑘 (𝑃𝑖, 𝑃𝑗, 𝑃𝑘)|(𝑃𝑖, 𝑃𝑗, 𝑃𝑘 ∈  𝑃) & (𝑃𝑖 = 𝑃𝑑𝑚𝑖𝑛 & 𝑃𝑗
= 𝑃𝑗𝑡𝑠𝑚𝑖𝑛 & 𝑃𝑘 = 𝑃𝑓𝑐𝑚𝑖𝑛) (1) 

 

When a single entity is eligible for elected as a coordinator 

then the voting process is not carried out. The node in set C 

declares itself a coordinator by sending a message IAC (I Am 

Coordinator). On receiving the IAC message, all member 

nodes verify the coordinator node and send Mv message.   

 

3.2 Fault-tolerant coordinator election algorithm (FTCEA) 

 

The coordinator election algorithm is executed using the 

message-passing protocol in the distributed system. Message 

passing protocol works with unreliable nodes communicating 

using an unreliable communication channel. Hence the nodes 

are vulnerable to failure. The hardware and software failures 

are inevitable. Hence there is a need of tolerating the faults 

during the election process. Some of the faults that occurred 

during the election process are omission faults, node crashes, 

or communication link failures. FTCEA is designed to tolerate 

node failures. FTCEA selects eligible candidates before 

starting the voting and election process. It uses the preference-

based method for the election process. Nodal attributes joining 

timestamp, failure count, and distance are considered for the 

candidate selection process. The preferences of the vote are 

assigned to the candidate nodes. For example, the candidate 

set derived is C={P2, P34, P15}. All nodes in the system send 

preferenced votes to these nodes now. The preferenced vote 

message sent by node P3 is Mvote =P3_timestamp_2_1_3. On 

receiving the vote messages, all candidates calculate the 

weighted votes. And the candidate receiving the maximum 

votes declares itself as a coordinator by sending an I Am 

Coordinator (IAC) message to all member nodes.  

 

Algorithm 2. Vote (Candidate_Set C) 

If (|C|=1) then 

If (MyIDϵC) then  

          Miac←Pc||IAC||timestamp 

          i←1 

          While (i≤n) Send Miac to Pi 

          MyID.CoordinatorStatus ← true 

Else 

          Wait for δ time to receive a Miac message from Pc 

          If (Miac is not received in δ) then 

     C=Candidate_Selection (Pd, Pjts, Pfc) 

     Vote (C) 

          Else 

         Pc.CoordinatorStatus ← true 

          Endif  

Endif 

Else  

Mvote ← Psid || Pi1 || Pi2 || [Pi3] || timestamp 

i ← 1 

While (i≤|C|) Send Mvote to Pi 

 Coordinator (C)          

Endif 

End 

 

Algorithm 2 Vote is executed if the |C|>1 that is the number 

of candidates selected is two or three candidates. If there is a 

single node in set C then the voting messages are not sent and 

the candidate selected as a coordinator sends an IAC message 

to the rest of the nodes in the system. The node creates a vote 

message Mvote and sends to the candidate nodes. In case the 

non-candidate node do not receive a Miac message within time 

then it can be inferred that the candidate node is not available 

or failed. In this case, the Vote algorithm is executed again 

with a new set of candidate nodes derived using the 

Candidate_Selection algorithm. Algorithm 3 is designed for 

finalizing the coordinator node by counting votes received. 

This algorithm is to be executed by the candidate nodes only. 

In case the nodes failed during the election process is more 

than the majority that is more than n/2 then the algorithm 

round for candidate selection and voting process is to be 

repeated. Hence, FTCEA tolerates the faults that occurred 

during the election process by adding additional rounds. 

Figure 1 shows case-I where the coordinator election process 

is executed with no failures. All member nodes are 

synchronized during the election process. The maximum 

network propagation delay is used for completing the 

individual step of the election process. During the very first 

step, a set C is derived from existing member nodes. In the 

second step, the member nodes send preference votes to 

candidate nodes. The candidate node calculates the weighted 

sum of votes in the third step. In the fourth step, a candidate 

receiving maximum votes declares itself a coordinator by 

sending an IAC message. Other candidate nodes verify the 

coordinator node votes count and reply with the Mv messages 

to the coordinator node indicating it is successfully elected as 

a coordinator. The verification of the coordinator is the last 

step in the election algorithm. On receiving the verified 

message, the coordinator starts sending the IAA message 

periodically. The communication cost for the election process 

when there are no node failures during the election process is 

given by Eq. (2).  

 

Algorithm 3. Coordinator (C) 

If (MyID ϵ C) then 

 If (Votes received≥n/2) then  

  While (i≤|C|) 

Cwvci ←Σj=1to3j ∗ VCj 

MaxVote ←Max (Cwvc1, Cwvc2, Cwvc3) 

   Else  

  Vote (C) 

Coordinator (C) 

 Endif  

Else  

 Wait to receive Miac 

 If (Miac not received) then 

  Candidate_Selection (Pd, Pjts, Pfc)  

Vote (C) 

Coordinator (C) 

Endif  

Endif  

End  

 

An important factor affecting the cost of the election process 

is the number of nodal attributes considered. Eq. (2) depicts 

the communication cost is linear in the nodal attributes 

considered. The communication cost with only one nodal 

attribute is shown in Eq. (3).  

 

Communication cost (Case-I)=m.n+(n-1) (2) 

 

Communication cost (Case-I)=n-1 where, m=1 (3) 

 

Figure 2 shows case II where f` nodes may fail during the 

election process when the failed nodes f` ≤ n/2 and none of the 

candidate nodes failed. The election process is carried out and 
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completed in this case without any additional election cost. 

The communication cost for case II is given by Eq. (4). The 

received votes are accepted and the coordinator node is elected 

based on majority votes.  

 

Communication cost (Case II)=(n–f`).m+((n–f`)-1) (4) 

 
 

Figure 1. Case I: The coordinator election process with no failures 

 

 
 

Figure 2. Case II: The coordinator election with f`≤ n/2 and C is not included in f` 

 

 
 

Figure 3. Case III: The coordinator election with failures less than the majority and candidates is included in f` 
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Figure 4. Case IV: The coordinator election with failures more than the majority 

 

Figure 3 shows case III of the election process when less 

than the majority of the nodes failed and candidate node(s) 

failed. In case of candidate nodes failure, the election process 

starting from candidate selection is to executed again. This 

adds to the communication cost. The communication cost for 

case III, when candidate nodes are not failed, is given by Eq. 

(5) below. It shows that the communication cost is still linear 

if the nodes failed including the candidate nodes. In case III 

additional communication cost for updating the group, view is 

involved.  

 

Communication cost (Case III)=2.m.n+4.n–4(f`-1) (5) 

 

Figure 4 shows the election process with more than the 

majority of the nodes failed that is nodes failed f`>n/2. In this 

case, the majority vote cannot be calculated. Hence there is a 

need for a re-election process. The reelection is carried out by 

updating the group view for identifying the live nodes in the 

system and then conducting the voting process. As per the 

updated group view, the majority votes are calculated and a 

coordinator is elected in the system. The communication cost 

for case IV is given in Eq. (6) below.  

 

Communication cost (Case IV)=2.m(n–f`)+3n-3f-1 (6) 

 

The communication for case IV which is O(n) is also given 

by Eq. (6) as there is a need of updating the group view at first. 

This process of updating the group view includes sending (n-

f`) messages and receiving the reply message from (n-f`) live 

nodes. 

 

 

4. RESULTS AND DISCUSSION 

 

The performance measures FTCEA and enhanced Bully 

algorithm [2] are analyzed. The crucial parameters analyzed 

are message complexity, time complexity, and space 

complexity. Communication cost in the election algorithm is 

the messages exchanged to execute the algorithm to 

completion. Communication cost has a significant impact on 

the election algorithm time as there is a delay involved in 

sending and receiving the messages. Similarly, the 

computation cost is the time to terminate to completion. The 

enhanced Bully algorithm is designed to tolerate the node's 

failure under similar system configurations. The majority of 

the research on fault-tolerant algorithms handles node failures 

by re-executing the election algorithms. Whereas, FTCEA is 

designed to perform the selected round for tolerating the faults. 

Storage cost represents the memory space required for 

executing the algorithm to completion. The storage space 

required for FTCEA is directly proportional to the number of 

attributes considered for selecting the eligible candidates.  

 

4.1 Computation cost 

 

As shown in Table 2, the computation cost of FTCEA is 

significantly less than the enhanced Bully algorithm [2]. A 

computation cost comparison for the best case and worst case 

is given here. The computation cost is analyzed for the system 

size of 20. That is the nodes in the system is 20. The 

communication delay in the system is analyzed to be 200 μsec. 

The best case of FTCEA includes the time to select a candidate 

set. The candidate set is created by retrieving the root node of 

min-heap storing the nodal attribute. In the best case, only one 

nodal attribute is considered for selecting a candidate for the 

election process. The worst-case scenario is where more than 

the majority of nodes fail and election rounds need to be 

repeated.  

 

Table 2. Comparison of computation cost in the best case 

and worst case for n=20 

 
Algorithm Computation Cost 

Enhanced Bully (Best case) 3800 μsec 

Enhanced Bully (Worst case) 12204 μsec 

FTCEA (Best case) 7 μsec 

FTCEA (Worst case) 1728 μsec 

 

4.2 Storage cost 

 

The storage cost for FTCEA is compared with the Bully 

algorithm and enhanced Bully algorithm [2]. Table 3 shows 

that the storage cost is quadratic for the Bully algorithm and 

for FTCEA it is linear. The storage cost of FTCEA is 

proportional to the number of attributes. Three nodal attributes 

are considered during candidate selection in FTCEA. The 
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storage space for FTCEA is 3n words. In case the nodal 

attributes are more than n then the storage cost of FTCEA 

becomes quadratic. As it is infeasible to consider more than 3 

to 4 nodal attributes, the storage cost of FTCEA is linear.  

 

Table 3. Comparison of storage cost 

 
Algorithm Computation Cost 

Enhanced Bully O(n) 

FTCEA  O(n) 

 

4.3 Communication cost 

 

As shown in Figure 5 (a) the optimum number of nodal 

attributes found is two or three if the number of nodal 

attributes increases linearly the communication cost for the 

election process also increases. The communication cost is less 

than 2n if the nodal attributes considered are less than or equal 

to 3. Figure 5 (a) compares the number of messages for the 

size of the system varying from n=50 to n=300 and a number 

of nodal attributes ranging from two to 12. It is observed that 

the computation cost is affected by the number of nodes and 

the nodal attributes.  

Figure 5 (b) shows the communication cost for the nodal 

attributes and the nodes that failed during the execution of 

FTCEA. The figure shows the messages exchanged for the 

nodes failed in the system with n=100 and failed nodes does 

not include the candidate nodes. The number of nodes 

assumed to be failed is chosen randomly and ranges from 8 to 

48 nodes. It is observed that with a smaller number of nodal 

attributes and nodes failing, the communication cost is less. It 

increases linearly with additional attributes.  
 

 
(a) Case-I: Different numbers of nodal attributes 

 
(b) Case-II: f`<n/2 and C ∉ f`and no failures  

 

Figure 5. Comparison of election communication cost in 

cases I and II  

 
(a) Case III: f`<n/2 and C ϵ f` 

 

 
(b) Case IV: f`>n/2 

 

Figure 6. A comparison of communication costs in Case III 

and Case IV 

 

 
 

Figure 7. Comparison of FTCEA communication cost in the 

best case with enhanced Bully algorithm [2] 

 

Figures 6 (a) and (b) show cases III and IV respectively. 

Case III shows the communication cost for different numbers 

of nodal attributes, n=100 and failed nodes include the 

candidate nodes. In this case, if candidate nodes are failed then 

there is a need to select the candidate nodes again. The 

Candidate_Selection algorithm is to be executed and then the 

algorithm for Vote and Coordinator is to be executed. Thus, 

the communication cost of case III increases linearly 

concerning the number of nodes that failed. Case IV shows the 

communication cost for the election algorithm when the nodes 

failed is more than the majority of nodes. In this case, all of 

the algorithms need to be executed in the second round as there 

is a need to identify live nodes, derive a new candidate set, and 
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conduct an election also. Figure 7 shows the comparison of 

communication cost for FTCEA and enhanced Bully 

algorithm in the best case. The communication cost of the 

enhanced Bully algorithm and FTCEA in the best case is O(n). 

The communication cost expression is derived for both of 

these algorithms and it is observed that the communication 

cost of the enhanced Bully algorithm and FTCEA is 2n-1 and 

n-1 respectively. Hence the communication cost for FTCEA is 

improved by 50.10% on average.  

 

 

5. CONCLUSION 

 

A reliable election algorithm for a synchronous system is 

designed. FTCEA is designed using a preference-based 

election method. Crucial nodal attributes are used for the 

election voting process. The communication cost 

improvement of around 50.10% compared to the enhanced 

Bully algorithm is observed in the proposed algorithm. There 

is a significant improvement in the computation cost of 

FTCEA compared to the enhanced Bully Algorithm. It is 

ensuring the safety and liveness of properties. FTCEA is a 

scalable and efficient solution for coordinator election in 

distributed system applications like peer-to-peer group 

agreements and mobile ad hoc networks. FTCEA finds the 

most eligible entity with O(n) messages. The FTCEA is 

designed for a synchronous system with a known 

communication delay. In future work, it can be incorporated 

for asynchronous systems with no bounds on communication 

delay.  
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NOMENCLATURE 

 

FTCEA Fault Tolerant Coordinator Election Algorithm 

C Set of candidate nodes i.e., C={Pidmin, Pijtsmin, 

Pifcmin} 

Gv Current group view (set of member nodes) 

IAA I Am Alive 

IAC I Am a Coordinator 

n Number of nodes 

m Number of nodal attributes  

f’ Number of failed nodes  

P Set of member nodes {P1, P2, …, Pn} 

Pd Set of distance attribute {P1d, P2d, P3d, …, Pnd} 

for Gv 

Pfc Set of failure count {P1fc, P2fc, P3fc, …, Pnfc} for 

Gv 

Pjts Set of joining time stamp attribute {P1jts, P2jts, 

P3jts, …, Pnjts} for Gv 

Pi ID of ith node 

Pid Distance of node to the center of network 

Pidmin ID of the node with minimum distance from the 

center of network among Gv 

Pifc Failure count of Pi 

Pifcmin ID of the node with minimum number of failures 

among Gv 

Pijts Joining time stamp of Pi 

Pijtsmin ID of the node joined the network at the earliest 

among Gv 
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