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Parkinson’s disease is a brain condition that causes involuntary or uncontrolled 

movements, including tremors, rigidity, and problems with balance and coordination. 

People of various racial and cultural backgrounds are affected by Parkinson’s disease. 

Early diagnosis of Parkinson’s disease is essential to slow neurodegeneration, making the 

disease’s prognosis even more important. This paper explores the prediction of 

Parkinson’s disease utilizing various feature selection techniques and combinations of 

classifiers. Four distinct feature selection techniques: variance threshold, information gain, 

chi-square, and principal component analysis (PCA) are utilized in this research. We have 

adopted Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Decision Tree, 

Random Forest, Gaussian Naive Bayes, XGBoost, and AdaBoost classification techniques 

to predict Parkinson’s disease. For the experimental evaluation, we have used the UCI 

machine learning Parkinson’s speech recording signal dataset. The combination of PCA 

and KNN for correlation distance function provides 92.10% accuracy which is superior 

performance compared to other combinations of feature selection techniques and machine 

learning classifiers. In the future, if AI-based predictive models of Parkinson’s disease can 

be developed, healthcare professionals will benefit from reducing neurodegeneration. 
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1. INTRODUCTION

Parkinson’s disease is a neurological disorder. It affects 

millions of people worldwide and is chronic and progressive. 

According to the World Health Organization, Parkinson's 

disease is a degenerative condition of the brain that causes 

several non-motor symptoms in addition to motor ones [1]. In 

the substantia nigra region of the brain dopaminergic neurons 

degenerate in this disease, causing several motor and non-

motor symptoms [2]. Less than 1% of the world’s population, 

or around 10 million people, have been affected by this disease. 

The majority of those who develop Parkinson’s disease are 

over 60 years old, while one in 10 are under 50. Moreover, 

men are impacted slightly more than women [3]. In 1990, there 

were an estimated 2.5 million persons with Parkinson’s 

disease; by 2015, that figure had more than doubled to 6.2 

million [4]. Parkinson’s disease is expected to affect more than 

12 million individuals globally by the year 2040 [5]. There is 

currently no known treatment for this disease]. Even though 

there are several pharmaceutical treatments available, the 

disease still causes complications [6-8]. As a result, it is more 

challenging to identify and care for people who suffer as a 

result of Parkinson’s disease. 

In recent years, machine learning approaches have received 

increased focus as a possible tool for Parkinson's disease 

detection and diagnosis. Machine learning algorithms are 

capable of large-scale data analysis and identification of 

patterns that may be difficult for human therapists to see. 

Magnetic resonance imaging (MRI) and single-photon 

emission computed tomography (SPECT) data may be used to 

diagnose Parkinson’s disease using machine learning [9, 10]. 

Researchers and medical experts want to create trustworthy 

and effective methods for the early detection and monitoring 

of Parkinson’s disease by utilizing the power of machine 

learning. Machine learning is used to identify Parkinson’s 

disease by analyzing a variety of data types, including clinical 

evaluations, neuroimaging data, and MRI data [11]. These data 

sources allow for the development of prediction models that 

may precisely identify individuals at risk of developing 

Parkinson’s disease or those who have already been diagnosed, 

as well as important insights into the underlying causes of the 

disease.  

Since the number of Parkinson’s disease sufferers has been 

steadily growing. As a result, it is essential to diagnose it early. 

Nowadays, speech signals are usually used to identify 

Parkinson’s disease. However, the vast number of speech 

signal features is responsible for the long execution time. So, 

taking this into account, we proposed an approach that will 

assist us in minimizing this execution time by reducing the 

number of features. We anticipate that our findings may help 

to diagnose Parkinson’s disease early, increasing patients’ life 

expectancy. 

However, in this study, we have employed a dataset that 

includes high-dimensional features from a speech-recording 

signal. Using this dataset, our main objective is to predict 

Parkinson’s disease utilizing four distinct feature selection 

strategies and various fine-tuned machine-learning 

classification techniques. We have adopted PCA, variance 

threshold, information gain, and Chi-square as the feature 

selection techniques. PCA is a feature selection technique that 

reduces the dimensionality of the data matrix and extracts 

significant features to improve classification performance. 

Review of Computer Engineering Studies 
Vol. 10, No. 2, June, 2023, pp. 20-27 

Journal homepage: http://iieta.org/journals/rces 

20

https://orcid.org/0009-0006-6472-3365
https://orcid.org/0009-0000-5066-7602
https://orcid.org/0009-0001-5956-3313
https://orcid.org/0000-0002-0733-755X
https://orcid.org/0000-0003-4987-9493
https://crossmark.crossref.org/dialog/?doi=10.18280/rces.100201&domain=pdf


 

Variance thresholding is a simple feature selection algorithm 

that eliminates all low-variance features from unbalanced data 

for unsupervised learning. As the dataset contains categorical 

variables, we use information gain and Chi-square for feature 

selection to extract the features based on entropy and Chi-

square scores. Information gain minimizes entropy by 

transforming a dataset. Also, we calculate the Chi-square 

value for each variable in terms of the target variable and select 

the features with the best Chi-square scores. In the 

classification stage, we observe the performance of the KNN 

classifier. Generally, KNN is used with Euclidean distance 

metric for classification problems. Mukherjee et al. observed 

the performance of KNN with various distance functions for 

iris image classification where they found that the Euclidean 

distance did not perform well compared to other distance 

functions [12, 13]. Therefore, we have tried to evaluate the 

performance of KNN with several distance metrics to obtain 

optimized performance. 

The following parts reflect the remainder of the paper: 

related work is presented in Section II, and research 

methodology including data preprocessing, feature extraction 

techniques, classification models, classifier parameter settings, 

and accuracy measures- is presented in Section III. 

Experimental findings are described in section IV. Section V 

concludes with conclusions and future studies. 

 

 

2. RELATED WORK 

 

There have been many recent advancements in machine 

learning algorithms for the prediction of Parkinson’s disease. 

An overview of Parkinson’s disease prediction with relevant 

machine-learning techniques is reviewed in this section. 

In 2013, Chen et al. [14] developed a fuzzy-based KNN 

model to improve its detection of Parkinson’s disease. Their 

investigation demonstrated that the approach with 10-fold 

cross-validation achieved the highest accuracy. They have 

only used PCA as a feature selection method; additional 

methods for feature selection might be employed for improved 

outcomes. In 2014, Sharma and Giri [15] developed three 

different classifiers for Parkinson’s disease diagnosis based on 

KNN, SVM, and multilayer perceptron (MLP). The SVM 

classification with radial basis function (RBF) provided better 

results in their work. For the classification, they utilized three 

classification models; however, a few more classifiers might 

be added to get more accurate results. In 2019, Sakar et al. [16] 

employed SVM with RBF, SVM (linear) logistic regression, 

KNN, and Naive Bayes to distinguish between Parkinson’s 

disease patients and healthy patients. They employed two 

SVM kernels in their investigation. Other kernels, such as the 

Gaussian, Polynomial, and Sigmoid kernels, might be added 

to improve performance. 

On the dataset for voice classification of Parkinson’s 

disease patients, Khamparia et al. [17] employed a convolution 

neural network (CNN) classifier in 2019. For classification in 

their investigation, they constructed a custom neural network. 

However, several pre-trained CNN models, like GoogleNet, 

Resnet50, and VGG16, might be utilized to obtain more 

accurate results. Since they have previously been trained on a 

huge number of images. Gunduz [18] developed two CNN-

based approaches for Parkinson's disease classification 

employing sets of acoustic voice data in the same year. F1-

Score and Matthews Correlation Coefficient measures, 

together with accuracy, are employed in their study for 

evaluation. Precision, recall, and area under the curve (AUC) 

can also be incorporated to assess the performance and 

increase the reliability of the suggested technique. Wang et al. 

[19] used 12 machine learning models in a dataset of 401 

speech biomarkers to classify individuals as having 

Parkinson’s disease or not in 2020. They created a specialized 

Deep learning model with higher classification accuracy. 

However, the model was costly since it needed a lot of memory. 

Quantitative gait data and machine learning algorithms 

were used to distinguish between PD patients with and without 

Mild Cognitive Impairment (MCI) by Ricciardi et al in the 

same year [20]. They implemented three classifiers, but they 

could add more, and they could use different KNN distance 

functions that might help to improve the results. In 2020, Mei 

et al. [21] discussed the likelihood of machine learning 

techniques to differentiate Parkinson’s disease and non-

Parkinson’s disease patients. The significance of Machine 

learning in identifying Parkinson’s disease as motor and non-

motor symptoms that might be missed during a doctor’s 

subjective testing was also reviewed by Mei et al. [11] in the 

same year. In the reviewed studies, the authors have used a 

single feature selection method or they have used a few 

classifiers and no one has shown the performance evaluation 

for different distance functions of KNN. Considering that 

research gap, this paper aims to explore variance threshold, 

information gain, PCA, and Chi-square as feature selection 

techniques with some Machine learning classifiers to predict 

Parkinson’s disease. 

 

 

3. RESEARCH METHODOLOGY  
 

In this section, data pre-processing, feature selection 

techniques, classification models, and performance evaluation 

are discussed as the research methodology for the study which 

is also depicted as the systematic flowchart in Figure 1.  

 

3.1 Data pre-processing  

 

To improve the efficiency of our dataset, we applied a 

variety of pre-processing approaches at this stage. There might 

be some missing numbers or outliers in our dataset. The mean 

of each variable is used to fill in the missing data, and outliers 

are eliminated using the z-score approach.  

 

3.2 Feature selection techniques 

 

After the normalization of the features, we utilize four 

distinct feature selection techniques to extract effective 

features from the dataset, including variance threshold, 

information gain, Chi-Square, and PCA (Principal component 

analysis). The next sub-subsections explain these feature 

selection strategies.   

 

3.2.1 Variance threshold 

The variance threshold is a feature selector that excludes all 

low-variance features from the dataset that aren’t particularly 

useful for modeling. It may be used for unsupervised learning 

since it only considers the features (x), not the intended outputs 

(y). The threshold’s default value is 0. 

Remove constant features if Variance Threshold = 0. 

Remove Quasi-Constant Features if Variance Threshold>0. 

  

21



 

 
 

Figure 1. Systematic flowchart of the proposed methodology 

 

3.2.2 Information gain 

Information gain calculates the loss of entropy or surprise 

when a dataset is modified in any way. It is widely used to 

construct decision trees from training data by evaluating each 

variable’s information gain. It selects the one with the most 

information gain, the lowest entropy, and the best split of the 

dataset into classification groups. Information gain may also 

be used to choose features by contrasting the gains of each 

variable to the target variable. By utilizing a slightly different 

phraseology, the calculation is referred to as the mutual 

information between the two random variables. 

 

3.2.3 PCA (Principal component analysis) 

Using principal component analysis (PCA), the majority of 

the data from the bigger set is kept while a significant number 

of variables are condensed into a smaller set. Formally, PCA 

is a technique for decreasing the dimensionality of massive 

data sets. Reducing the number of variables automatically 

lowers the quality of data collection, but the goal of 

dimensionality reduction is to exchange some accuracy for 

simplicity. 

 

3.2.4 Chi-square  

The chi-square technique is used to assess categorical 

features in a dataset. The feature with the greatest Chi-square 

score is picked after analyzing the correlation between every 

feature and the desired result. The chi-square test in statistics 

is used to evaluate if two occurrences are independent. The 

Chi-Square formula is used to determine the difference 

between the predicted count E and the actual count O: 

  

𝜒𝑐
2 = ∑

(𝐾𝑖 − 𝑃𝑖)2

𝑃𝑖

 (1) 

 

where, c = Degree of freedom, K = Observed value(s) and P = 

Expected value(s). 

 

3.3 Classification models 

 

There are various machine learning classifiers for 

classification. However, we have adopted seven different 

classification techniques that are briefly discussed sequentially 

in this section. We have taken these classification models 

because each of the classification models has some benefits. 

SVM is more effective in high dimensional spaces and SVM 

is relatively memory efficient. The decision tree is another 

classifier we have used. It requires less code, analysis, and 

even dummy variables to model, hence they take less time. 

The Random Forest Algorithm prevents overfitting since the 

outcome is based on a majority vote or average and Naive 

Bayes doesn't require as much training data. When the dataset 

is small and the data points are close together, KNN performs 

well. XGBoost has been improved for speed as well as 

accuracy. Its great efficiency and ability to handle a wide range 

of data formats make it an excellent choice for firms seeking 

to swiftly extract insights from their data and AdaBoost is best 

used to boost the performance of decision trees on binary 

classification problems. 

 

3.3.1 K-Nearest Neighbor (KNN) 

K-Nearest Neighbors is one of the most basic supervised 

learning-based machine learning approaches. The KNN 

approach assigns the new instance to the category that is the 

most similar to the current categories. By assuming that the 

new instance and the prior cases are identical. The KNN 

algorithm collects all available information and organizes new 

input based on similarity. This suggests that by utilizing the 

KNN technique, new data may be consistently and quickly 

classified. 

 

3.3.2 Support Vector Machine (SVM) 

The support vector machine (SVM) is one of the most used 

techniques for supervised learning in machine learning. The 

SVM method seeks to construct the optimal line or decision 

boundary that can split n-dimensional space into classes to 

quickly categorize new data points in the future. This 

boundary of optimal choice is known as a hyperplane. To 

assist in creating the hyperplane, SVM selects the extreme 

vectors and points. Support vectors, which are used to 

represent these extreme circumstances, are the basis of the 

SVM approach. 

 

3.3.3 Naive Bayes classifier 

The Naive Bayes classifier algorithm is a supervised 

learning strategy for classification problems. It is mostly used 

for text classification and contains a large training set. It 

encourages the rapid advancement of machine learning models 

that can make accurate predictions. It projected the possibility 

that an object will occur as a probabilistic classifier. 

 

3.3.4 Decision tree 

A decision tree is a flowchart that starts with one 

fundamental idea and grows based on the outcomes of your 

actions. The model is characterized as a "decision tree" 

because it frequently resembles a tree with branches. In ML, a 

decision tree, a supervised learning technique, may tackle 

regression and classification problems. However, it is 

frequently employed when attempting to solve classification 

problems. It is a classifier with a tree-like internal structure in 

which nodes reflect dataset characteristics. A decision tree has 

two nodes: the Decision Node and the Leaf Node. 

 

3.3.5 Random Forest  

The well-known machine learning algorithm Random 

Forest is included in the supervised learning technique. It may 

be applied to ML problems that need both regression and 
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classification. It is based on ensemble learning. It is a 

technique for merging several classifiers to tackle challenging 

problems and enhance model performance. A forest is 

composed of trees, and a forest with more trees is a more stable 

forest. Similarly, the Random Forest technique constructs 

decision trees from data samples, derives predictions from 

each, and then votes to determine which answer is the best. 

The expanding number of trees in the forest prevents 

overfitting. 

 

3.3.6 XGBoost 

The supervised machine learning technique known as 

XGBoost is used by the Train Using AutoML application for 

classification and regression. XGBoost is a shortened name for 

extreme gradient boosting. The decision tree-based technique 

outperforms methods like gradient boost and Random Forest.  

It is efficient for large and complicated datasets because of 

a variety of optimization strategies. Large dataset performance, 

usability, and speed are all goals of XGBoost’s design. 

 

3.3.7 AdaBoost 

Adaboost is the name of a supervised machine-learning 

algorithm. Both problem statements involving classification 

and regression may be handled by this technique. It fits under 

the boosting ensemble method category. This method builds a 

model by giving each piece of data an equal weight. The points 

with inaccurate classifications are thus given additional weight 

by it. In the new model, all points with higher weights are 

given more weight. If a lower error is not achieved, it will 

continue to train models. 

 

3.4 Performance evaluation 

 

For the evaluation of the classification models, we have 

considered accuracy, precision, recall, F1-score, and area 

under the curve (AUC) as the performance criteria which are 

explained briefly in this subsection.  

 

3.4.1 Accuracy measure 

A crucial factor for assessing classification models is 

accuracy. It is calculated by dividing the number of correct 

guesses by the total number of predictions. Formally, accuracy 

is measured by the following mathematical formula:  

 

 Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
 (2) 

 

In this formula, TP stands for “True Positive”, TN for “True 

Negative”, FP for “False Positive”, and FN for “False 

Negative”. 

 

3.4.2 Precision  

Precision is the percentage of data samples from the positive 

class that a machine learning model correctly detects out of all 

the samples that are predicted to fall into that class. 

 

 precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

 

Making one single positive prediction and ensuring it is 

right is a trial technique to get ideal accuracy. However, this 

would be ineffective since the classifier would discard all 

except one good occurrence. Therefore, precision is frequently 

combined with another statistic called recall, also known as 

sensitivity or the true positive rate (TPR). 

 

3.4.3 Recall 

The true positive rate (TPR), also known as recall, is the 

proportion of data samples correctly identified by a machine 

learning model as belonging to a class of interest- the “positive 

class” out of the total samples for that class. 

 

 recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4) 

 

3.4.4 F1 score 

Precision and Recall are combined into a single number in 

the F1 score measure. The F1 score is the harmonic mean of 

recall and accuracy. A high F1 score for a classifier requires 

both good precision and recall. The formula for measuring the 

F1 score is given below: 

 

𝐹1 score =
2 ∗  precision ∗  recall 

 precision +  recall 
 (5) 

 

3.4.5 Area Under the Curve (AUC) 

The area under the ROC curve is known as the AUC. It 

computes the whole area under the two-dimensional ROC 

curve. The AUC is the probability that the model assesses a 

randomly picked positive example higher than a randomly 

selected negative example. 

 

 

4. EXPERIMENTAL RESULTS  

 

The dataset for our investigation is made up of signal 

features from Parkinson’s disease patients’ voice recordings. 

The data were from the UCI Machine Learning Respiratory 

[22]. The Department of Neurology at Istanbul University’s 

Cerrahpaa Faculty of Medicine collected data from 188 

individuals with Parkinson’s disease (107 men and 81 women) 

ranging in age from 33 to 87. The control group included 64 

healthy people ranging in age from 41 to 82, including 23 men 

and 41 women. The dataset has 755 variables and 756 distinct 

observations. A binary factor class variable is our goal variable. 

 

Table 1. Parameter settings for tuning 

 
Classifiers Finetuning Parameters 

SVM 

C = 0.1, 1, 10 

Kernel = linear, RBF, poly 

Gamma = scale, auto 

RF 

n_estimators = 100, 200, 300 

criterion = gini, entropy 

max_depth = None, 5, 10 

KNN 

n_neighbors = 3, 5, 7 

weights = uniform, distance; p = 1, 2 

metric = [‘Euclidean’] 

GNB 
Priors = None, [0.1, 0.9], [0.3, 0.7], [0.5, 0.5], [0.7, 

0.3], [0.9, 0.1] 

DT 
Criterion = gini, entropy 

max_depth = None, 5, 10 

XGBoost 

learning_rate = 0.1, 0.01 

max_depth = 3, 5, 7 

n_estimators = 100, 200, 300 

AdaBoost 
n_estimators = 50, 100, 200 

learning_rate = 0.1, 1, 10 

 

23



The study is to predict the target variable within two 

categories: 

0: The persons who don’t have Parkinson’s disease are 

assigned as 0. 

1: The persons who are affected by Parkinson’s disease are 

assigned as 1. 

For analysis, four distinct feature selection methods were 

used for our dataset, and seven machine learning classifiers 

were integrated with these feature selection methods. We have 

taken different parameters for different classifiers to achieve 

the best performance metric. The parameters are given in 

Table 1. 

The accuracy of various feature selection methods and 

classifier combinations is shown in Table 2. According to 

Table 2, the variance threshold feature selection approach has 

the highest accuracy when paired with SVM (91.43%), while 

the information gain method has the best accuracy when 

combined with XGBoost (90.13%). Once more, the Chi-

square approach yields 86.18% accuracy with SVM and 91.44% 

accuracy is obtained by KNN with the PCA feature selection 

method. The PCA and KNN combination has the greatest 

accuracy in comparison to other feature selection methods and 

classifier combinations. We have found the precision, recall, 

AUC, and F1 scores for each feature extractor and classifier. 

Table 2. Accuracy of classifiers with four different feature 

selection methods 

Classifiers 

Accuracy 

Feature Selection Method 

Variance 

Threshold 

Information 

Gain 

Chi-

square 
PCA 

Support 

Vector 

Machine 

(SVM) 

0.9143 0.8618 0.8618 0.9210 

Random 

Forest (RF) 
0.8618 0.8684 0.875 0.875 

K-Nearest

Neighbor

(KNN)

0.8684 0.8421 0.8223 0.9144 

Gaussian

Nave Bayes

(GNB) 

0.7894 0.6776 0.8289 0.8092 

Decision 

Tree (DT) 
0.7631 0.8157 0.7960 0.7894 

XGBoost 0.8618 0.9013 0.8289 0.8815 

AdaBoost 0.8092 0.8289 0.8421 0.8486 

Variance threshold feature selection with various 

classifications-based precision, recall, F1 score, and AUC 

values are depicted in Figure 2. 

Figure 2 illustrates the values of precision, recall, F1 score, 

and AUC for seven different classifiers with the variance 

threshold feature selection method. The variance threshold 

method obtained the highest precision (92.43%), F1 measure 

(94.42%), and AUC (85.4%) with the classifiers SVM and RF 

and the highest recall (97.36%) with RF. 

By using the variance threshold method, we found the 

average precision, recall, F1 score, and AUC of seven 

classifiers. The average precision is obtained at 87.42%, the 

average recall is 91.72%, the average F1 score is 89.41%, and 

the average AUC is obtained at 75.93%. 

The information gain feature selection approach produced 

the greatest precision (91.59%) and maximum F1 measure 

(96.49%) with the classifier XGBoost. The highest recall 

(95.61%) is obtained with XGBoost and SVM, and the highest 

AUC (93.56%) is obtained with XGBoost (84.64%), 

according to Figure 3. The average F1 score is 88.48%, the 

average recall is 89.47%, the average AUC is 76.12%, and the 

average precision is 87.73% on average. 

Figure 2. Precision, recall, F1-measure, and AUC for 

different classifiers with variance threshold feature selection 

method 

Figure 3. Precision, recall, F1 score, and AUC for different 

classifiers with information gain feature selection method 

Figure 4. Precision, recall, F1 score, and AUC for different 

classifiers with Chi-square feature selection method 

The precision, recall, F1 measure, and AUC values for the 

combinations of different classifiers and Chi-square feature 

selection are presented in Figure 4. The chi-square method 

obtained the best precision (87.67%) and AUC (87.13%) with 

GNB and the best recall (97.36%) and F1 measure (77.63%) 

with RF. The average precision, recall, F1 score, and AUC of 

seven different classifiers are 85.72%, 93.85%, 89.58%, and 

73.42% respectively. 
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Figure 5 illustrates the precision, recall, F1 score, and AUC 

values for the combinations of the PCA feature selection 

method and classifiers. The best precision (93.22%) and AUC 

(87.71%) are achieved by SVM. The best recall (96.49%) is 

obtained from RF and the highest F1 measure (95.31%) is 

found by KNN. The average precision, recall, F1 score, and 

AUC of seven different classifiers are 87.95%, 94.73%, 

91.19%, and 77.81% respectively. 

Figure 5. Precision, recall, F1score, and AUC for different 

classifiers with PCA feature selection method 

We can observe from Figure 6 that the KNN has 92.43% 

precision for the Euclidean distance function which is the 

highest precision among all distance functions. For both 

Correlation distance and Euclidean distance function KNN 

achieved 96.49% recall. KNN achieves a 94.82% F1 score for 

the correlation distance function and AUC 87.71 is obtained 

by correlation distance. 

Since KNN obtained the most accurate result, we are 

curious to see how KNN performs for various distance 

functions while utilizing the PCA feature selection approach. 

The classification accuracies for various distance functions 

with PCA features are shown in Table 3. 

Figure 6. Precision, recall, F1score, and AUC for different 

distance functions of KNN with PCA 

Table 3 demonstrates that the KNN achieved the maximum 

accuracy for the correlation distance, which is 92.10%. It also 

achieved positive outcomes for other distance functions. For 

the Euclidean distance function, Cosine distance, Manhattan 

distance, and Minkowski distance, KNN obtained 91.44%, 

90.78%, 88.81%, and 88.81% accuracy respectively. 

We have also analyzed the results using a confusion matrix. 

Figure 7 depicts the confusion matrix which is made by the 

combination of PCA (Correlation distance will be placed after 

KNN) providing a better result. It is provided TP=110 which 

indicates 110 observations are predicted positively and are 

positive; TN=29 indicates that 29 observations are predicted 

negatively and are truly negative. FP=9 signifies that 9 

observations are predicted positive but are negative, while 

FN=4 suggests that 4 observations are projected negative but 

are positive, which means, the total number of wrong 

predictions is 13. 

Table 3. Accuracy of KNN for different distance functions 

by using PCA features 

Distance Function Accuracy 

Euclidean Distance 0.9144 

Manhattan Distance 0.8881 

Chebyshev Distance 0.7828 

Minkowski Distance 0.8881 

Cosine Distance 0.9078 

Hamming Distance 0.7302 

Correlation Distance 0.9210 

Figure 7. Confusion matrix of KNN (Correlation distance) 

with PCA 

The AUC values between 0.7 and 0.8 are seen to be good, 

values between 0.8 and 0.9 are thought to be exceptional, and 

values beyond 0.9 are thought to be noteworthy [23]. The 

AUC of 0.5 frequently implies no distinction. From Figure 8, 

it can be observed the value of AUC is 0.88 for the proposed 

PCA features selection-based classification approach. It can 

also be reported that the proposed method provides a 

significant result. 

Figure 8. ROC curve for best combination PCA (Correlation 

distance) with KNN 
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The proposed approach is compared with other state-of-the-

art methods which are presented in tabular form as Table 4. 

Table 4 shows the comparison of our proposed method with 

previous work. We have obtained 92.10% by using KNN 

(correlation distance) with the PCA feature selection method. 

Avuçlu and Elen [24], Sheibani et al. [25], and Grover et al. 

[26] obtained the highest accuracy 70.20%, 90.60%, and 81.66% 

respectively. By comparing the proposed method with the 

previous studies, we can say that our result is satisfactory. 

 

Table 4. Comparison with state-of-the-art methods 

 

Authors Algorithms 
Accuracy 

(%) 

Avuçlu and Elen [24] Naive Bayes 70.26 

Sheibani et al. [25] Ensemble learning 90.60 

Grover et al. [26] 
Customized Deep 

neural network 
81.66 

Proposed work 
KNN (Correlation 

distance) with PCA 
92.10 

 

 

5. CONCLUSIONS  

 

The burden associated with Parkinson’s disease has more 

than doubled over the last generation and it is currently one of 

the fastest-developing neurological illnesses globally. There 

are now 4% of sufferers globally who are under 50 years old; 

the likelihood of having this condition increases with age. 

With millions of victims, of Alzheimer’s disease, it is the 

world’s second most prevalent neurodegenerative disorder. 

Since this is most likely to be a dangerous disease, earlier 

detection is required. In this work, we have proposed a strategy 

for predicting Parkinson’s disease, which may help in 

detecting the condition early. Professionals may benefit from 

the proposed methods for early detection. The proposed 

technique will aid in the accurate detection of Parkinson’s 

disease.  

We have used four distinct feature selection techniques to 

go through a huge number of features and identify the most 

important features. The disease is then predicted using seven 

different classifiers, and the PCA feature selection approach 

and KNN (correlation distance) classifier combination had the 

highest accuracy score (92.10%). When the dataset is small 

and the data points are close together, KNN performs well. 

Since our dataset is small, KNN (correlation distance) 

performs well when features are fed from the PCA feature 

selection method.  

A few more feature selection techniques and classifier 

combinations provide significant results; these combinations 

have an accuracy score of 91.44% for variance threshold and 

SVM, 90.13% for information gain and XGB, and 86.18% for 

chi-square and SVM. In addition, a few deep learning models 

are becoming more and more well-liked due to their 

effectiveness and efficiency in classification modeling.  

The Gini index favors larger partitions and is easy to 

implement. Gini Impurity is better for selecting the best 

features. Besides the Gini index, sequential feature selection is 

another feature selection technique. The key benefit of forward 

sequential feature selection is that it is a simple and rapid way 

of improving the algorithm’s performance. The algorithm adds 

one feature at a time, starting with the feature that improves 

the model’s performance the most. In the future, we may 

employ more effective feature selection techniques such as the 

Gini index, and sequential forward selection (SFS) approaches. 

We anticipate using these methods in our future work to 

improve results. 
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