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Over extended periods, nature's forces have sculpted and solidified unique cave formations. 

The scientific community's increasing interest in studying these karst caves has highlighted 

the significance of advanced detection methods. Sonar caving, a prevalent technique, still 

grapples with comprehensive detection within these intricate structures. This study delves 

into the amalgamation of target location and image fusion algorithms to bridge this gap. 

Target location elucidates an object's position, dimensions, and intrinsic characteristics 

within a designated temporal and spatial domain. Image fusion, a leading topic within image 

processing, leverages the consolidation of diverse data types and formats, thereby playing a 

pivotal role in image enhancement, compression, and recognition. From a deep learning 

perspective, neural network output values were calculated, facilitating an improvement in 

positioning accuracy. Further, through matrix decomposition and wavelet transforms, the 

fusion efficacy was scrutinized, aiming to broaden the sonar detection ambit. Comparative 

experimentation underscored the efficacy of integrating these two algorithms in sonar-based 

karst cave detection. It was observed that not only did the image clarity amplify, but there 

was also a notable 7.93% augmentation in positioning accuracy and a surge in detection 

speed. Cumulatively, a 7.64% boost in the overall efficiency of sonar detection in karst caves 

was achieved, underscoring the imperative nature of these technological advancements for 

cave surveillance.  
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1. INTRODUCTION

Sonar technology, having evolved over several centuries, 

was initially recognized for its military implications. As 

technological advancements progressed, its applications were 

expanded to include aviation, terrestrial, and marine domains, 

with reconnaissance operations becoming a standard 

procedure. In the realm of cave detection, an increasing 

emphasis has been placed on the proficient processing of 

acoustic inputs. However, traditional sonar instruments were 

observed to primarily capture sound characteristics from the 

cave's exterior within a limited range. In more intricate 

scenarios, the requirements for in-depth identification and 

localisation within caves were not met, leading to questions 

about optimizing sonar's role in cave exploration. 

With socio-economic progression and the rise of scientific 

prowess, the significance of sonar detection technology was 

underscored. A multitude of scholars embarked on exhaustive 

studies in this field. Zhong et al. [1] incorporated a minute 

detector signal into the sonar signal processor. Through 

quantitative evaluations of the collected data, it was used for 

the surveying of 14 karst caves in railway tunnels, thereby 

fostering the growth of the western region and accelerating the 

erection of high-speed railways. In a distinct study by Mallios 

et al. [2], data was collected in an unstructured underwater 

cave environment using an autonomous underwater vehicle, 

with the intention of site-specific validation of authentic 

ground points. This method was found to bolster the 

proficiency of underwater assessments and advance aquatic 

intervention mechanisms. Abu and Diamant [3], in their work, 

introduced an unsupervised, statistical-based algorithm 

tailored for the detection of submerged entities in synthetic 

aperture sonar imagery, ensuring a harmonious equilibrium 

between detection probability and false positive rates. A 

remarkable endeavour by Argotea et al. [4] integrated the ERT 

(Emergency Response Team) survey with sonar technology, 

unearthing compelling evidence of a cavern beneath the Moon 

Pyramid, which spurred dialogues regarding the pyramid's 

symbolic implications and the inception of the site's urban 

blueprint. Lu et al. [5] scrutinized background statistics 

derived from multiple nodes and, contingent on these statistics, 

ascertained suitable algorithms. It was discerned through 

computational simulations and evaluation of documented 

sonar data that centralized detection apparatuses exhibited 

heightened resilience in a plethora of diverse marine 

environments. Lastly, Yu et al. [6] harnessed seabed 

backscatter side-scan sonar to procure detailed seabed 

topographies, subsequently crafting high-definition seabed 

imagery by employing super-resolution techniques, ensuring 

the preciseness and efficacy of object identification. The 

gravitas of sonar, especially in cave exploration, cannot be 

understated, and rigorous scientific inquiry can form the 

cornerstone for ensuing endeavours in this sphere. 

Target localization and image fusion algorithms have 

emerged as prominent research foci in recent times. A surge of 

academic interest in these domains has been observed, with 
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numerous scholars advancing this frontier of knowledge. In 

the realm of spine surgery, target localization methodologies 

were employed by Manbachi et al. [7]. Through rigorous 

experimentation, it was confirmed that this technology could 

autonomously annotate vertebrae in intraoperative 

radiographs. Such innovations were found to diminish the 

error margins in machine-independent inspections and 

bolstered active assistance, leading to augmented confidence 

during surgical procedures. 

Mirzaei Hotkani et al. [8], in their work, harnessed 

broadband noise data from varied ship typologies to adeptly 

pinpoint underwater targets. The utilization of the MFP 

(Matched-Field Processing) algorithm, coupled with aquatic 

environmental model estimators, was observed to be pivotal in 

enhancing maritime navigational safety by optimizing the 

alignment between received signals. In a distinct investigation, 

Tomic et al. [9] reformulated the target localization dilemma 

into a generalized trust region subproblem framework. A novel 

robust estimator was subsequently introduced, circumventing 

the traditionally slow convergence rate challenges observed 

with legacy algorithms. As a result, the quandary of target 

localization in stringent indoor terrains, contingent on distance 

gauging, was addressed. 

A novel image fusion algorithm was put forth by Huang et 

al. [10], marrying the nonlinear approximations of the 

contourlet transform with image region features. This synergy, 

which drew inspiration from the merits and demerits of the 

contourlet transform and multimodal medical imagery, was 

determined to elevate the visual appeal and quality of medical 

image fusion. Concurrently, enhanced image denoising 

outcomes were documented. Sun et al. [11] introduced a 

Laplacian pyramid-rooted region stitching approach to 

amalgamate multifocal images secured through microscopy. It 

was discerned that this strategy retained a more substantial 

portion of the original data compared to pixel-level 

counterparts and minimized the color aberrations in the 

resultant fused images. Anandhi and Valli [12] articulated a 

fusion algorithm within the domain of the non-subsampled 

contourlet transform, premised on synthetic aperture radar and 

panchromatic visuals. The mechanism was recognized for its 

adeptness at offering malleable multi-scale, multi-directional 

image scaling, ensuring maximal retention of edge and texture 

data. 

While sonar holds an unparalleled position amongst 

acoustic detection modalities, advancements in knowledge 

and technological capabilities have rendered passive sonar 

detection less effective against contemporary silent 

submarines. Hence, refining sonar detection efficacy has 

become imperative. Addressing this lacuna, the present study 

endeavours to introduce a target localization algorithm in 

tandem with an image fusion procedure. The comprehensive 

processing of multi-sensor data is harnessed to amplify the 

precision of target discernment. 

 

 

2. SONAR-BASED TARGET LOCATION AND IMAGE 

FUSION ALGORITHMS IN KARST CAVE 

DETECTION 

 

(1) Underlying principles of karst cave detection via sonar 

Sonar detection has perennially stood as a focal point of 

research. Its employment in karst cave exploration is 

recognized as a standard method. This technique is 

predominantly anchored in the identification of entities within 

cavities. Sound data are transmuted directly into electrical 

signals or alternative communication forms, aiming to furnish 

more lucid outcomes for operators. While this mode of 

detection has been shown to effectively map the cave's interior 

milieu and geological layout, it is not devoid of specific 

inaccuracies. A rigorous evaluation of its precision is 

mandated [13]. The intricate principles of karst cave detection 

via sonar are delineated in Figure 1. 

As illustrated in Figure 1, sonar encompasses an array of 

acoustic sensors and mechanized instruments. Within this 

assembly, electrical signals, generated by the transmitter 

housed in the electronic cabinet, are relayed to the cavern post 

interfacing with the transducer. The strategic organization of 

these transducers constitutes the array, facilitating the mutual 

conversion of acoustic and electrical energies. When acoustic 

pulses navigate aquatic mediums, reflections arise upon target 

encounter. These reverberated sound waves are subsequently 

captured by the transducer, undergoing conversion into 

electrical impulses, which are then relayed to the electronic 

cabinet. Consequently, variations in echo waveforms and 

intensities across distinct frequency spectrums become visible 

on display panels. 

In the context of karst cave detection using sonar, 

underground regions might encompass an amalgam of gaseous, 

liquid, and solid phases. Cave walls, perforated with orifices 

of varied dimensions and morphologies, exert differential 

impacts on acoustic signals. Hence, accurate interpretations 

necessitate the consideration of myriad external conditions and 

inherent challenges. The potential strengths and limitations of 

this technology in exploration pursuits will be analyzed. 

Furthermore, emphasis will be placed on elucidating the 

contributions of target localization algorithms and image 

fusion methodologies to the sonar-mediated identification of 

karst formations. 

 

 
 

Figure 1. The principle of sonar detection in caves 

 

(2) Underpinnings of target localization techniques 

Target localization serves as a cornerstone within radar 

systems. This process entails the derivation of the discrepancy 

between measured and actual observed values through the 

formulation of a mathematical model. Among the myriad steps 

involved, identifying the optimal solution stands out as the 

most intricate. With the burgeoning advancements in modern 

electronic information technology coupled with satellite 

navigation, technical prowess in this domain is observed to be 

increasingly refined. Its utility, especially in multi-sensor 

information fusion and real-time tracking, has been 

underscored by promising prospects [14]. The algorithmic 

principles guiding target localization are depicted in Figure 2. 
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Figure 2. Algorithmic framework of target localization 

 

Object localization is recognized as an adaptive learning 

algorithm predicated on fuzzy logic principles. Initially, upon 

input target perception, its location is promptly estimated by 

the sensor network. Subsequent outputs are deduced based on 

the prevailing state, thereby refining the prospective target 

domain. In the ensuing phase, visual characteristics are 

extracted from the procured image and supplementary 

convolutional layer features are garnered. A training set is 

constructed leveraging these features, where filtered pertinent 

data undergoes utilization for category detection and 

locational discernment. Ultimately, through a combination of 

image segmentation and feature extraction, classification 

outcomes are assessed and the real-time status of the target is 

ascertained, ensuring precision in target tracking and 

recognition. Owing to its efficacy in enhancing identification 

accuracy, the target localization algorithm has been found to 

be of significant merit in practical applications. 

 

(3) Elucidation of the image fusion procedure 

The progression of computer technology and the 

proliferation of internet usage have spurred heightened 

expectations concerning visual perception capabilities. Image 

fusion encompasses the amalgamation of data derived from 

disparate sources, typically gathered via a range of sensors. 

Once relayed for computational processing via networks, a 

coherent, precise, and intuitive aggregate assessment is 

rendered [15]. Generally initiated at the source, image 

processing assimilates salient environmental information, 

potentially mutable along its pathway, capitalizing on the 

interrelation among multi-source images to actualize target 

identification or detection. This technique is acknowledged for 

its superior real-time responsiveness and voluminous 

information capture. The intricate steps underpinning image 

fusion are delineated in Figure 3. 

The fusion methodology can be segregated into four distinct 

stages. Initially, 'n' raw datasets or images are procured from 

external environments. Subsequent to this acquisition, 

unification and specialized treatment are conducted, aligning 

with data layer standards—a process colloquially termed as 

'image registration'. Predominantly reliant on a reference 

image, the auxiliary images undergo intricate processing to 

synchronize temporally and spatially with the entirety of the 

image collection. This is followed by image preprocessing, a 

phase marked by novel representation of object interrelations 

within the backdrop and encapsulation of their intrinsic 

content. Concluding the sequence, the processed images are 

amalgamated to produce comprehensive visuals, which are 

subsequently presented to end-users or diverse application 

frameworks. Grounded in multi-scale image recognition 

paradigms, image fusion methodologies have emerged as 

avant-garde avenues for data acquisition. Their recurrent 

incorporation within an array of intelligent systems 

underscores their adaptability and resilience in multifaceted 

environments. 

 

 
 

Figure 3. Schematic representation of the image fusion 

procedure 

 

2.1 Formulation of the target localization algorithm and 

image fusion algorithm 

 

1) Target Localization Algorithm 

Object localization has been established as a pivotal axis of 

research within deep learning algorithms. By fractionating 

intricate issues into several rudimentary sub-processes, this 

adaptive tracking technique, founded on the least squares 

principle, is manifested. It has been observed to surmount 

certain limitations inherent to conventional PID (Proportional 

Integral Derivative) control [16]. Furthermore, dynamic 

parameter adjustments, tailored to specific prerequisites, can 

be undertaken to achieve the anticipated outcome. 

 

1. Elucidation of the Least Squares Matrix Solution 

Let the matrix representation of the function f(n) be given 

as: 

 
Nafa =)n(  (1) 

 

Wherein N represents the matrix of dimension i×j, with i 

denoting the number of samples and j indicating the number 

of sample features. a is identified as the feature vector. 

Subsequently, the formulation of the loss function is 

represented as: 

 

）（ MNaMNaaC q −−= )(
2

1
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(2) 

 

On differentiating Eq. (2) concerning the eigenvector and 

equating to zero, the following is derived: 

 

0)()( =−=



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a
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(3) 

 

Upon sequential arrangement, the expression becomes: 

 
NqMNqNa=  (4) 

 

Multiplication on both sides by the inverse of (NqN) yields: 
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MNNqNa q1)( −=  (5) 

 

From Eq. (5), the vector a can be computed. It has been 

discerned that sonar detection systems, leveraging the least 

square method, exhibit proficiency in discerning diverse hole 

types, thus bolstering classification accuracy. 

 

2) Deep Neural Network 

At the heart of deep learning lies object localization. It is 

posited that deep learning serves as the essential component of 

the deep neural network, recognized for its robust spatial 

reasoning capabilities and elevated prediction accuracy. Such 

attributes enable it to facilitate swift analyses of intricate 

challenges or unstructured data sets [17]. 

Within the perceptron of a neural network, the input layer's 

neurons are harnessed for their learning capacities during 

training sessions. Conversely, artificial neural network 

algorithms are employed by the output layer for data 

processing. A linear association between the output and the 

input is observed: 

 

cqps
i

a

aa +=
=1  

(6) 

 

where, p stands as the coefficient delineating the linear 

relationship, while c ' acts as the bias coefficient. 

Given the activation function λ(s) and deeming the output 

value of both the hidden and output layers as e, the subsequent 

output from the hidden layer is defined as: 
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Furthermore, the output layer's value is represented by: 
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Upon analysis of Eqs. (7) and (8), a pervasive pattern is 

discerned: 
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When expressed in matrix notation, the nth layer's output is 

articulated as: 

 

)1()( cnAnensnen +−==   (10) 

 

where, A denotes a linear coefficient matrix. 

Through this methodology, the accurate identification of 

surface features is efficiently achieved. For enhancement of 

target localization precision, diverse variants of the Kalman 

filter are routinely utilized. 

 

3) Algorithm for image fusion 

The algorithm for image fusion draws its foundation from 

multi-scale image recognition technology. In intricate 

environments, this approach is proficient in distinguishing 

between varying targets and background data. The transition 

from 2D to 3D processing is facilitated with heightened 

efficiency and speed. Such enhancement not only elevates 

monitoring accuracy but also fortifies adaptability and 

resilience in multifaceted scenes [18]. 

 

a. Local Standard Deviation 

To some degree, the local standard deviation mirrors the 

relative stability of a region. This deviation is pivotal in 

gauging the trajectory of alterations in image contrast. 

Furthermore, the span of variation serves as a crucial yardstick 

in assessing the modulating patterns of gray values. 

For an observational window with dimensions a×a, the 

equations for its standard deviation are articulated as: 

 

)(
1

2
eede

a
ij −=

 
(11) 

 



−
+

−
−=

−
+

−
−=

=
2

1

2

1

2

1

2

1

a
n

a
nj

a
m

a
mi

de

 

(12) 

 

where, eij is indicative of the pixel value within the given 

vicinity, juxtaposed against the mean value derived from all 

neighboring pixels. 

 

b. Non-Negative Matrix Factorization 

Non-negative Matrix FactorizationIn recent times, the 

introduction of non-negative matrix factorization has been 

noted as a contemporary method. This technique has not only 

showcased its aptitude to address a multitude of challenges 

that elude traditional algorithms but also boasts attributes such 

as simplicity, efficacy, and ease of programming. The utility 

of this method in computing decoupling and stabilizing 

nonlinear systems has been extensively recognized [19]. 

Given a matrix C, composed entirely of non-negative 

components, it can be represented by the multiplication of two 

distinct matrices as: 

 

brraba BAC  =
 

(13) 

 

where, matrix C exhibits dimensions of a×b, while matrix A 

has dimensions of a×r, and B holds the dimensions r×b. The 

factor r delineates the dimensionality pertinent to the non-

negative matrix factorization. 

The range of R is constrained by: 

 

ba

ab
r

+


 
(14) 

 

At the instance when r = 0, the feature base matrix, A, 

becomes synonymous with all the image attributes. 

Eq. (14) can be depicted in the form of a vector product: 

 

mn

r

m

mn BAC 
=

=
1  

(15) 

 

where, Cn signifies the nth column of matrix C, while Am 

characterizes the mth column of matrix A. 

From the inference drawn from Eq. (15), each individual 

column of matrix C can be mirrored by the pertinent 

components found in matrices A and B. Consequently, matrix 

A is perceived as the foundational matrix, with matrix B taking 

on the role of the coefficient matrix. In scenarios where A 

embodies the intrinsic image characteristics, the following 

1596



 

relationship emerges: 
ABC   (16) 

 

c. Wavelet Transform 

The wavelet transform has been observed to effectively 

distil detailed information from images. Particularly in 

instances marked by substantial noise, wavelet decomposition 

proves superior in disentangling texture and colour attributes, 

consequently achieving an augmented compression ratio. 

Such capabilities underscore its pivotal role in image 

enhancement [20]. 

The continuous function characterizing the wavelet 

transform is delineated by: 

 

ce
i

je
eg

i
gjiG ji 







 −
== 



−  )(
1

,),( ,

 
(17) 

 

2, )(),(
1

)(
i

cicj
ejiG

D
eg ji





−=

 
(18) 

 

In this context, 𝜆𝑖,𝑗(𝑒) epitomizes the shift and dilation of 

the foundational basis. The factor i, acting as the dilation factor, 

prescribes the support length of the wavelet function, ensuring 

i remains greater than 0. On the other hand, 'b' stands as the 

shift factor, concurrently serving as the wavelet's temporal 

parameter. 

Upon setting constraints wherein i0 exceeds 1 and j0 is 

greater than 0, the expression for the discrete wavelet 

transform emerges as: 
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where, both x and y are integral in nature. 

In the realm of image processing, the unidimensional 

wavelet transform is extrapolated to a bidimensional 

transformation space: 
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Within this equation, m and n denote the translation of the 

image across their specific dimensions. 

Subsequently, the inverse operation associated with the 

two-dimensional wavelet transform is conceptualized as: 
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3. COMPARATIVE ANALYSIS OF TARGET 

LOCALIZATION AND IMAGE FUSION 

ALGORITHMS IN SONAR DETECTION WITHIN 

KARST CAVES 

 

3.1 Experimental procedure 

 

To assess the efficacy of the target localization and image 

fusion algorithms in sonar detection within karst caves, an 

experiment was designed involving 20 cave explorers. 

Participants were arbitrarily divided into two equal groups: 

Group A and Group B. For the detection task, Group A was 

furnished with the traditional sonar detection system, whereas 

Group B utilized a system augmented by the target localization 

and image fusion algorithms. Metrics of comparison included 

accuracy, detection speed, and clarity of the resultant images. 

Subsequently, participants were requested to evaluate the 

detection systems based on their experiences. Ratings were 

given on a scale ranging from 1 to 5, with 5 being the most 

favourable. Feedback was assimilated through questionnaires, 

the results of which were meticulously collated. Observations 

and recordings pertaining to the experimental data were 

meticulously documented. 

 

3.2 Analysis of experimental data 

 

1) Accuracy Assessment 

Upon the incorporation of the target positioning algorithm, 

a comparative analysis was undertaken with both groups, 

Group A and Group B, situated in an identical cave detection 

environment. The comparative results are illustrated in Figure 

4. 

 

      
a. Group A accuracy score                               b. Group B accuracy score 

 

Figure 4. Comparative analysis of accuracy scores for both groups 
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a. Group A image resolution size                 b. Group B image resolution size 

 

Figure 5. Resolution comparison between the two groups' systems 

 

In Figure 4a, the detection accuracy scores garnered by 

Group A are depicted. Conversely, Figure 4b delineates the 

precision ratings of Group B. An evident disparity in scores is 

observable with Group B exhibiting superior accuracy scores 

compared to Group A. Scores for Group A fluctuated 

significantly within a range of 2-3.5 points, placing them in a 

lower middle tier. Such marked variability in scores suggests 

a pronounced divergence in perceptions concerning the 

system's accuracy within this group. On the other hand, Group 

B scores manifested a slight yet consistent ascendancy, 

underpinned by minimal variations. This conveys a consensus 

among Group B participants, emphasizing their confidence in 

the enhanced accuracy of their detection technology. A 

juxtaposition of the data sets from the two groups infers that, 

under congruent environmental constraints, the incorporation 

of the target positioning algorithm potentially augments the 

accuracy of sonar detection within karst caves, culminating in 

a more precise localization of targets. 

 

2) Resolution and Clarity Assessment 

Five consecutive detection sessions were undertaken by 

both groups to procure detected imagery. It was established 

that the display screen size remained consistent across both 

groups. A comparison of the resolution between the original 

system and the imagery posts the image fusion algorithm 

implementation revealed results depicted in Figure 5. 

Figure 5a illustrates the resolution metrics of Group A's 

images after the five successive detections. In contrast, Figure 

5b delineates the resolution metrics for Group B's images. 

From the data, it was observed that the peak resolution 

achieved by Group A across the five detections stood at 720P, 

with the imagery quality being relatively high-definition and 

the lowest resolution recorded at 270P. Despite this, clarity 

remained in the images even at this reduced resolution. 

Conversely, the images detected by Group B exhibited a 

maximum resolution of 1080P, characterized by enhanced 

vibrancy and ultra-clear quality. Subsequent calculations 

established the average resolution for Group A at 528P, while 

Group B exhibited an average resolution of 624P. Given the 

fixed screen size, it can be inferred that higher resolutions 

result in enhanced image clarity, indicating that the sonar 

detection system, post the image fusion algorithm's integration, 

provides superior definition. 

 

3) Assessment of Detection Speed 

To evaluate the efficiency of each detection system, each 

participant was instructed to undertake a complete cave 

detection session, with the time duration from initiation to 

conclusion being recorded. Figure 6 offers a comparative 

visual representation of this data. 

 

    
a. Time required for Group A to complete a test experiment    b. Time required for Group B to complete a test experiment 

 

Figure 6. Detection speed comparison of the two groups of systems 
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Figure 6a provides a temporal account of Group A's 

detection duration, while Figure 6b delineates that of Group B. 

It was observed from the figure that the temporal data points 

for Group B generated a notably gentler curve, with an 

approximate uniform detection duration of 3 minutes for all 

members. Conversely, for Group A, time durations spanned 

between 2.5 to 4 minutes, exhibiting significant variations, 

indicative of disparities among the Group A participants. 

Based on the compiled data, it can be inferred that the sonar 

cave detection system, when integrated with the target 

positioning and image fusion algorithms, displayed enhanced 

detection speed and efficiency. 

The subsequent analytical procedure entailed a 

juxtaposition of the original sonar detection process for karst 

caves against the system post the application of the target 

positioning and image fusion algorithms. For clarity in 

representation, resolutions were normalized within a range of 

10, as represented in Table 1 and Figure 7. 

 

 
 

Figure 7. Comparative analysis of detection efficacies of 

both groups 

 

Table 1. Comparative evaluation of detection metrics 

 
 Group A Group B 

Accuracy 3.827 4.157 

Definition 5.28 6.24 

Speed 3.204 2.954 

 

From the data presented in Figure 7, it was discerned that 

Group A’s weighted average across accuracy, definition, and 

detection speed stood at 4.11, while that of Group B was found 

to be 4.45. It was noted that Group A operated with the original 

sonar detection system, whereas Group B utilized the 

enhanced system integrated with target localization and image 

fusion algorithms. Subsequent calculations revealed that the 

overall detection efficacy of Group B surpassed that of Group 

A by 7.64%. Additionally, improvements were seen in 

accuracy (by 7.93%) and detection speed (by 7.81%). A 

pronounced enhancement was also observed in image 

sharpness. 

Through this research, the application of the target 

localization algorithm in the realm of sonar detection was 

empirically validated. This algorithm, as deduced from the 

experiment, offers invaluable assistance to personnel, aiding 

in the accurate determination of underwater target positions 

and their movement trajectories, particularly in intricate 

environments. This not only enhances the precision in 

identifying cave depths and entrance orientations but also 

substantially reduces risks associated with blind cave 

exploration. Moreover, the image fusion technique, by 

augmenting image processing, substantially enhances image 

quality, a pivotal factor for increasing image retrieval 

efficiency. The integration of these computational tools 

ensures the sonar sensor achieves a more nuanced and accurate 

analysis of cave structures. 
 

3.3 Discussion 

 

From the accumulated data and the employed methods for 

sonar detection of karst caves, along with the specific findings 

of this study, several key observations and outcomes were 

deduced: 

(1) A comprehensive review of the extant literature was 

conducted, intertwining it with both contemporary empirical 

findings and theoretical studies. Through this analysis, the 

present developmental trajectory of sonar systems was 

discerned. Its pivotal significance, as well as the inherent 

challenges in the domain of karst engineering exploration, was 

illuminated. Notably, the implications of the target positioning 

algorithm and image fusion algorithm in the realm of sonar 

detection of karst caves were accentuated. 

(2) By pivoting on target positioning and image fusion, the 

feature vector was computed using the least square method, 

facilitating the differentiation of varied karst cave types. 

Viewing this through the lens of deep learning, a surge in 

positioning accuracy was perceived. The computation of the 

local standard deviation depicted the evolving trends in image 

contrast. Furthermore, wavelet transformation was employed 

to segregate features, which in turn, expedited the extraction 

of actionable information, thereby amplifying the image's 

overall efficacy. 

(3) For a more empirical understanding, 20 adept karst cave 

detectors were enlisted for an investigative study, wherein 

comparative experiments were orchestrated. From this 

initiative, it was observed that sonar detection, post the 

incorporation of the target positioning and image fusion 

algorithms, often yielded more streamlined results. Such 

detections were marked by heightened accuracy and reliability, 

leading to images that were both sharper in clarity and more 

intuitive in interpretation. 

 

 

4. CONCLUSION 

 

From the accumulated data and the employed methods for 

sonar detection of karst caves, along with the specific findings 

of this study, several key observations and outcomes were 

deduced: 

(1) A comprehensive review of the extant literature was 

conducted, intertwining it with both contemporary empirical 

findings and theoretical studies. Through this analysis, the 

present developmental trajectory of sonar systems was 

discerned. Its pivotal significance, as well as the inherent 

challenges in the domain of karst engineering exploration, was 

illuminated. Notably, the implications of the target positioning 

algorithm and image fusion algorithm in the realm of sonar 

detection of karst caves were accentuated. 

(2) By pivoting on target positioning and image fusion, the 

feature vector was computed using the least square method, 

facilitating the differentiation of varied karst cave types. 

Viewing this through the lens of deep learning, a surge in 

positioning accuracy was perceived. The computation of the 

local standard deviation depicted the evolving trends in image 

contrast. Furthermore, wavelet transformation was employed 

to segregate features, which in turn, expedited the extraction 

of actionable information, thereby amplifying the image's 
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overall efficacy. 

(3) For a more empirical understanding, 20 adept karst cave 

detectors were enlisted for an investigative study, wherein 

comparative experiments were orchestrated. From this 

initiative, it was observed that sonar detection, post the 

incorporation of the target positioning and image fusion 

algorithms, often yielded more streamlined results. Such 

detections were marked by heightened accuracy and reliability, 

leading to images that were both sharper in clarity and more 

intuitive in interpretation. 
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