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This study presents a novel methodology for robust classification of image quality, a critical 

task in the domain of computer vision. The ability to accurately and promptly classify an 

image as being of inferior quality, due to factors such as lighting, focus, encoding, and 

compression, is crucial for a wide range of applications, including autonomous vehicles, 

web search technologies, smartphones, and digital cameras. Moreover, this capability holds 

significant potential for numerous industrial applications, particularly in the realm of quality 

assurance in manufacturing processes or outgoing inspections. In response to this 

requirement, a novel automated system is proposed herein, employing an optimization 

algorithm to categorize images into six distinct classes: motion blur, white noise, Gaussian 

blur, poor illumination, JPEG 2000, and high-quality reference images. The proposed 

framework is evaluated against existing methodologies using a selection of publicly 

available datasets. Both subjective and objective assessment results will be presented to 

demonstrate the efficacy of the proposed framework. This work underscores the potential of 

leveraging optimized deep learning techniques for robust and automatic image quality 

classification, thereby paving the way for improved quality assurance across diverse 

industries. 
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1. INTRODUCTION

High-quality images are indispensable in both professional 

and personal spheres of life. Unfortunately, during the 

processes of image acquisition, transmission, and processing, 

images can become susceptible to distortion from 

environmental factors such as poor lighting conditions, device 

noise, and compression damage. These factors can lead to 

significant information loss and a consequent reduction in 

image quality. Images of suboptimal quality not only fail to 

satisfy human visual requirements but also pose challenges to 

computer processing and analysis. Consequently, a pressing 

need exists for the restoration of essential content and details 

from degraded images [1]. 

Throughout the stages of image acquisition, processing, 

compression, transmission, and reproduction, both images and 

videos can experience a myriad of distortions. Although 

deteriorations in visual quality are easily discernible to the 

human eye, objective evaluation of perceived image quality is 

challenging. For instance, consider a mobile application where 

customers upload "before" and "after" photos of an insurance 

event. If the photos are of poor quality, the system should be 

capable of highlighting these low-quality images and, if 

necessary, prompt the user to recapture the object [2]. 

Over the past decade, an increased interest has been 

observed in objective image quality assessment methodologies. 

Such methodologies can optimize a wide range of image and 

video processing techniques, in addition to monitoring image 

quality deterioration and benchmarking image processing 

systems. 

In recent years, various types of classification networks 

have emerged, achieving high classification accuracy. More 

sophisticated models, such as deep convolutional neural 

networks (DCNNs), have been employed to tackle this 

challenge. However, real-time image capture under varying 

conditions such as weather, noise, and motion can result in 

low-quality images, leading to a significant drop in network 

accuracy. This is primarily because image degradation 

obstructs the structural statistical properties of pixels in the 

neighborhood [3]. 

In the realm of computer vision, the categorization of low-

quality images holds substantial importance. Automated 

identification of such images can enable numerous practical 

applications. For instance, search engines can discard low-

quality images, digital and phone cameras can alert users of 

poor-quality shots, and autonomous driving technology can 

avoid using poorly captured frames, thereby reducing the 

likelihood of errors. The issues that may arise in an image can 

stem from a broad range of problems, such as inadequate 

lighting or blur due to improper photography techniques, or 

even encoding issues. 

Approaches to address this problem vary. One solution 
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involves enhancing the visibility of the image before 

performing classification. However, such methods often 

demonstrate low accuracy and poor robustness. Another 

potential solution involves transforming the problem into a 

domain adaptation problem. However, most existing domain 

adaptation approaches require either complex architectures or 

continuous target domains. 

In this study, our focus is on the design of a novel SimpleNet 

for robust image quality classification. It is demonstrated that 

a specific classification task can be accomplished with high 

accuracy simply by calibrating the model for the task using 

transfer learning. 

 

 

2. RELATED WORK 

 

Due to its utility in a wide range of applications, including 

assessing picture capture pipelines, storage methods, and 

sharing media, automatically learned quality evaluation for 

photos has lately become a hot issue. 

Kang et al. [1] demonstrate that actual blind quality 

assessment performance may be achieved by extracting high-

level characteristics using CNNs. The fundamental benefit of 

utilizing CNNs for pixel-level quality assessment tasks seems 

to be that end-to-end feature learning systems replace hand-

crafted features [2]. Bosse et al. [2] use a deep CNN with 12 

layers to improve image quality forecasting. Both techniques 

need score aggregation throughout the entire image because of 

the small input size. Bianco et al. [3] propose a deep-quality 

predictor based on Krizhevsky et al. [4]. Multiple CNN 

features are retrieved from pictures and then regressed to the 

human scores. The Blind/Referenceless Image Spatial Quality 

Evaluator (BRISQUE) [5] is used by "BRISQUE" to compute 

the no-reference image quality score for a picture. A support 

vector regression (SVR) model trained on an image database 

and matching differential mean opinion score (DMOS) values 

are used to compute the BRISQUE score. Photos with known 

distortions such as compression artifacts, blurring, and noise 

are included in the database, as are clean copies of the afflicted 

photographs. The image to be assessed must contain at least 

one of the distortions for which the model was trained. Talebi 

and Milanfar [6] proposed a network that may be utilized to 

help with the adaption and optimization of picture 

editing/enhancement algorithms in a photographic pipeline in 

addition to scoring photos consistently and with good 

correlation to human perception. All of this may be done 

without the requirement for a "golden" reference picture, 

making it possible to judge quality using a single image that is 

both semantically and perceptually aware.  

For low-quality picture classification, Wang et al. [7] 

provide a unique deep degradation prior that may be utilized 

to lessen feature mismatches between clear photos and 

variously degraded ones. The developed feature de-drifting 

module is resilient and efficient even when trained on a tiny 

dataset, such as 10 photos from CUB-C. Feature de-drifting 

modules may easily be "plugged in" to already-existing 

classification networks. 

Past research has primarily concentrated on conducting a 

binary classification for one image quality issue at a time. 

Nevertheless, the approach presented in this study can identify 

motion blur, Gaussian blur, inadequate lighting, white-noise, 

and JPEG-2000 compression errors in an image. As far as our 

knowledge goes, there are no current studies that undertake a 

comprehensive classification of images based on the category 

of image quality problems. 

Recently, great advances [8-14] have been made to improve 

the quality of images based on different techniques. Non-

learning-based methods for detecting blurry images have been 

in use for numerous years. Although these methods yield 

satisfactory outcomes in identifying blurriness, they lack the 

ability to classify an image into various categories of poor 

image quality or identify other quality issues such as white 

noise or compression artifacts. Nonetheless, we have 

incorporated the previous work that employs these non-

learning-based methods for the sake of comprehensiveness.  

 

 

3. METHODOLOGY 

 

Based on the SimpleNet and InceptionResNetV2 models, 

we describe the suggested framework for undesirable picture 

categorization (bad lighting, fastfading, gblur, jp2k, jpeg, 

refimgs, and wn). The suggested CNN-based classifiers 

framework was constructed using "Google-Colab". 

 

3.1 Dataset (Unwanted image) 

 

In this study, a primary dataset containing 1,165 poor 

quality images as shown in Table 1, we have focused on seven 

categories (bad_lighting, fastfading, gblur, jp2k, jpeg, refimgs 

and wn) as shown in Figure 1 (a, b, c, d, e, f and g) one example 

for each class. 

 

Table 1. Details of photo quality dataset 

 
No. of Class Name of Class No. of Image 

1 bad_lighting 22 

2 fastfading 174 

3 gblur 207 

4 jp2k 227 

5 jpeg 233 

6 refimgs 128 

7 wn 174 

 

 
 

Figure 1. Example for each class of photo quality 

 

There are several reasons why an image may be regarded to 

be of low quality [15-19]. In the following, we explain all 

types of poor images: 

• Bad Lighting (bad lighting) Images that were 

captured without enough light for the camera's 

timing and aperture. This might make photos 

appear drab or dark. 

• Fast fading (fastfading) is the effect of constructive 

and destructive interference patterns which are 

caused due to multipath in channels of the image. 
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• An out-of-focus camera causes Gaussian Blur 

(gblur). This form of blur might be caused by a 

camera's malfunctioning auto-focus system, a 

poorly designed lens, or a picture focused on the 

wrong topic. 

• JPEG-2K In the year 2000, the JPEG-2K picture 

format was released. While this picture 

compression format has numerous advantages, one 

downside is that it is significantly less content 

adaptable than the earlier JPEG format, which 

means that image quality might vary greatly given 

the same bit rate for different materials. 

• Reference Image (refimgs) is used to refer to any 

visual resource such as a diagram, graph, 

illustration, design, photograph, or video. They 

may be found in books, journals, reports, web 

pages, online videos, DVDs and other kinds of 

media. 

• White Noise (wn) is the appearance of random 

white grains in a picture. This noise is frequently 

created by film grain, different sensors and circuits 

such as CCDs in digital cameras and detectors in 

scanners, or by the communications channel or 

signal quantization. 

 

3.2 Deep convolutional neural networks 

 

Deep artificial neural networks (DANNs) or deep 

convolutional neural networks (CNNs) are used to classify 

images, group similar images together, and identify objects in 

scenes [20]. CNN is made up of convolutional and 

subsampling layers, which are then followed by one or more 

fully linked layers. CNN's architecture is intended to capitalize 

on the 2D structures of input pictures. Moreover, CNNs have 

fewer parameters and are simpler to train than fully connected 

networks. In order to train and evaluate the CNN model, each 

input image is routed through a series of convolution layers 

and pooling for feature learning. Additionally, an activation 

function like Softmax, Sigmoid, or ReLU is employed to 

classify an item. In the area of computer vision, CNNs and 

other cutting-edge machine learning algorithms have become 

crucial. We create and train a CNN with three convolutional 

layers to categorize pictures into six predetermined categories 

in our method. We demonstrate that our technique can achieve 

reasonably high accuracy when compared to a very 

sophisticated model (ResNet) with only a small number of 

parameters. 

 

3.2.1 Our Model (SimpelNet) 

The network consists of seven blocks. Each block is made 

up of a fully connected layer with a Sigmoid activation 

function, followed by a convolutional layer with a Relu 

activation function. There are also six node output layers with 

sigmoid activation functions that output the six required 

classes. The first convolutional layer takes a 256 256 3 image 

array and applies 32 filters to create 256 256 3 feature maps. 

We begin with the bigger filter size since it delivers the best 

results for picture classification tasks in the higher layers [20]. 

The feature maps are then normalized, the Relu activation 

function is used, and a 2 2 Max Pooling is conducted to create 

separate image domains for each block, beginning with the 

second Conv2D and ending with the last Conv2D.  

In addition, we started from 20% Dropout from the second 

Conv2D to the third Conv2D and a 30% Dropout from the 

fourth Conv2D to the fifth Conv2D. Then a 40% Dropout from 

the sixth Conv2D to the seventh Conv2D.  

The goal of this significant dropout is to keep the network 

from overtraining on the training set and aid in greater 

generalization when used with other types of images. The 

output layer, which has six nodes and is connected to every 

node from the layer before it, has sigmoid activation functions. 

A total of 1,425,606 parameters makes up the networks. The 

architecture of our CNN is depicted in Figure 2, and Table 2 

lists the layers and parameters for each layer. 

 

Table 2. Model SimpelNet 

 
# Of Layer Layer (Type) Output Shape # Of Param 

Input Layer img_input (Input Layer) [(None, 256, 256, 3)]  0  

Block-1 l1 (Conv2D) (None, 256, 256, 32) 896  

Block -2 

l2 (Conv2D) (None, 256, 256, 64) 18496 

l3 (MaxPooling2D) (None, 128, 128, 64) 0 

dropout_43 (Dropout) (None, 128, 128, 64) 0 

Block -3 

l4 (Conv2D) (None, 128, 128, 64)    36928    

l5 (MaxPooling2D) (None, 64, 64, 64) 0 

dropout_44 (Dropout) (None, 64, 64, 64)  0  

Block -4 

l6 (Conv2D) (None, 64, 64, 128) 73856    

l7 (MaxPooling2D)  (None, 32, 32, 128) 0 

dropout_45 (Dropout)  (None, 32, 32, 128)  0 

Block -5 

l8 (Conv2D) (None, 32, 32, 128)  147584   

l9 (MaxPooling2D) (None, 16, 16, 128) 0 

dropout_46 (Dropout)  (None, 16, 16, 256)  295168   

Block -6 

l10 (Conv2D) (None, 16, 16, 128)  0 

l11 (MaxPooling2D)  (None, 8, 8, 256) 0 

dropout_47 (Dropout) (None, 8, 8, 256) 0 

Block -7 

l12 (Conv2D) (None, 8, 8, 256)  590080   

l13 (MaxPooling2D) (None, 4, 4, 256)  0 

dropout_48 (Dropout)  (None, 4, 4, 256) 0 

 fc1 (Flatten) (None, 4096) 0 

 l14 (Dense) (None, 64) 262208   

 dropout_49 (Dropout)  (None, 64) 0 

 predictions (Dense) (None, 6) 390 

Total params: 1,425,606, Trainable params: 1,425,606 
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Figure 2. The architecture of our CNN SimpelNet 

 

 
 

Figure 3. Basic block diagram of InceptionResNetV2 model 

 

3.2.2 InceptionResNetV2  

Inception ResNetV2 is a hybrid of the Inception and ResNet 

families, with 164 layers for picture object identification and 

feature extraction [21-23]. Only the last layer is applied to 

examine the results. To train the InceptionResNetV2 CNN 

model, we explicitly replicate resolution inconsistency in 

affine face wrappings during video editing. Using a trained 

model reduces the size and difficulty of training. 

InceptionResNetV2 is one of famous pre-trained networks.  

When there are a limited number of training samples 

available, tuning a pre-trained network is the best option. In 

this example, the top layers of a pre-trained network's 

parameters are fine-tuned, but the initial layers, which 

represent generic characteristics, are frozen. When weights for 

a layer or group of layers are not changed during the training 

stage, this is referred to as freezing. Importantly, this method 

uses the parameters learnt from a network that has already 

been trained on a certain dataset and then modifies the 

parameters for the dataset of interest. As a result, fine-tuning 

modifies the parameters of the repeated model, making it more 

relevant to the dataset under consideration. The top layers of a 

pre-trained network can be fine-tuned or all layers; 

nevertheless, the latter technique is favoured [24].  

This is due to the fact that the earliest levels of a structure 

encode general, reusable properties, and the later layers 

encode highly specialized traits. As a result, fine-tuning those 

individual traits is more efficient. Furthermore, because of the 

enormous number of parameters that must be established 

during this procedure, fine-tuning all layers produces 

overfitting. As a result, only the top three levels of pre-existing 

convents were fine-tuned in this study. These might be the 

completely linked layers alone, as in InceptionResNetV2. 

Figure 3 depicts the architecture of the InceptionResNetV2 

model's fundamental block diagram. 

 

 

4. EXPERIMENTS AND PERFORMANCE ANALYSIS 

 

This section discusses the training results of our DCNN 

models. This study used datasets [15]. There are 1,165 low-

quality photos retrieved from the training dataset in the 

proposed classifier, with various numbers of images derived 

for each class. These photos were analyzed during the CNN 

model training stage. The CNN model employs 50-300 epochs. 

The performance details of the results for InceptionResNetV2 

and our model SimpleNet models respectively are shown in 

Table 3. 

 

Table 3. Comparison between the results for our CNN 

models 

 

Models 
Ac-

Train 

Ac-

Test 

Time 

(min) 

# Of 

Epoch 

SimpleNet 82 75 12.5 50-300 

InceptionResNetV2 80 71 13.28 50-300 

 

The accuracy and loss are observed during the training 

process for the InceptionResNetV2 and SimpleNet models, as 

illustrated in Figure 4 and Figure 5, respectively. As the period 

lengthens, the accuracy grows until it reaches a saturated level, 

when an error is minimal and varies at a specific level [25]. It 

is deteriorating, although the loss diminishes with decreasing 

epochs until it reaches a saturation level. In other words, 

accuracy indicates how excellent a model is, whereas loss 
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determines how terrible a model is. A wonderful model will 

often have high accuracy and little loss. 

The proposed classifier contains 233 photos for two classes 

in the validation or testing dataset, where each class has 

distinct images. A confusion matrix demonstrates how well the 

model predicts the class used in supervised learning. The 

suggested model predicts the corresponding classes of the two 

classes in the validation test. The number of predictions for 

each class is shown in each column of the matrix, whereas the 

number of cases in the real class is represented in each row. 

The outputs of each process are recorded in the confusion 

matrix as shown in Figure 6 (a and b) for 50-epoch and Figure 

7 (a and b) for 300-epoch SimpleNet and InceptionResNetV2 

models respectively. 

More specific details of each class are presented for this 

study as shown in Table 4. 

 

 
 

Figure 4. Accuracy and loss of training for SimpelNet model 

 

 
 

Figure 5. Accuracy and loss of training for InceptionResNetV2 
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Figure 6. (a) SimpelNet model 50-epoch 

 

Figure 6. (b) SimpelNet model 300-epoch 

 

  
 

Figure 7. (a) InceptionResNetV2 model 50-epoch 

 

Figure 7. (b) InceptionResNetV2 300-epoch 

 

Table 4. Comparison between results for our CNN models 

 

Class 
SimpleNet InceptionResNetV2 

Sensitivity Specificity Sensitivity Specificity 

bad_lighting 1 1 1 1 

fastfading 0.38 0.90 0.33 0.90 

gblur 0.70 0.93 0.7 0.93 

jp2k 0.91 0.79 0.86 0.9 

jpeg 0.62 1 0.75 0.91 

refimgs 0.76 1 0.84 1 

 

 

5. CONCLUSION 

 

Machine learning algorithms must be able to recognize 

when the outcomes of activity are undesirable given the rapid 

improvement of machine learning and the expanding use of 

autonomous technologies. The findings of this study 

demonstrate that our suggested CNN can accurately identify 

low-quality photos. Finally, the generated model's application 

was evaluated to find photos that would not be appropriate for 

the sign categorization task needed by autonomous cars. We 

demonstrated that it is possible to attain extremely high 

accuracy for the given classification job by merely calibrating 

the model for the task using transfer learning. This study was 

focused on designing a novel SimpleNet and comparing it with 

the InceptionResNetV2 model which is considered a highly 

complex model to detect poor-quality images. Moreover, we 

perform sensitivity and specificity analysis to determine how 

differences in camera hardware affect the accuracy of the 

model. 
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