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As image segmentation tasks become increasingly intricate within high-dimensional data 

flow environments, conventional segmentation techniques are challenged in delivering both 

efficiency and precision. In this context, the problem of image segmentation under high-

dimensional data flux was examined. Depth skip connections, inspired by the U-Net 

architecture, were introduced, harnessing the superior feature extraction capabilities of deep 

encoders and enabling the formulation of a lightweight model structure. Furthermore, an 

equilibrium between Binary Cross-Entropy (BCE) loss and Dice loss was established, 

targeting enhanced accuracy in small object segmentation tasks within such data-intensive 

settings. These innovations not only augment algorithmic accuracy and resilience but also 

provide pivotal contributions to ongoing research in the image segmentation realm. The 

methodologies delineated herein present a refined approach to image segmentation, 

revealing significant potential for application in pivotal sectors, including medical image 

analysis and autonomous vehicular navigation. 
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1. INTRODUCTION

With society's burgeoning reliance on image information, 

image segmentation has emerged as a pivotal task in the realm 

of computer vision and is now extensively utilized across 

myriad sectors [1]. In realms such as medical imaging, 

autonomous driving, and industrial inspection, the 

significance of image segmentation technology in information 

extraction and analysis has been well-established [2-7]. 

However, conventional image segmentation approaches, in the 

face of escalating data volumes and dimensionality, have 

shown shortcomings in efficiency and accuracy, especially in 

high-dimensional data flow environments [8, 9]. It is observed 

that as these traditional methods grapple with expansive high-

dimensional data, there is an exponential increase in 

computational resource and time consumption. 

The examination of the design and optimization of deep 

learning image segmentation algorithms under high-

dimensional data flow is perceived as essential for advancing 

the field of image segmentation [10-14]. Undertaking this task 

in such intricate data environments introduces multifaceted 

challenges, encompassing concerns like computational 

efficiency, model intricacy, and segmentation precision [15, 

16]. By the application of specialized optimizations and 

innovations, it has been indicated that not only can 

segmentation accuracy be elevated, but also processing 

velocities can be accelerated, making them suitable for real-

time or nearly real-time operational contexts [17-19]. Such 

advancements, in turn, have potential implications in sectors 

such as medical image analysis and autonomous driving, thus 

supporting more accurate and dependable decision-making 

processes. 

While contemporary image segmentation techniques have 

garnered commendable success in multiple facets, deficiencies 

are observed when these methods are subjected to high-

dimensional data flows. For instance, the conventional U-Net 

architecture, despite its prowess in numerous applications, 

shows potential areas of improvement, particularly in 

efficiency and precision for small object segmentation tasks 

[20]. Additionally, traditional network frameworks are often 

susceptible to overfitting in the presence of intricate high-

dimensional data, potentially leading to an elongated 

optimization process and subsequently compromising the 

model's adaptability and generalization potential [21]. Such 

observations underscore the avenues available for refinement 

within the existing image segmentation methodologies. 

This research is categorized into two primary facets. 

Initially, based on the U-Net architecture, modifications 

aiming for a lightweight design were introduced, with depth 

skip connections supplanting the traditional skip connections, 

underscoring the feature extraction capabilities of deep 

encoders. Such an evolution is deemed crucial for the model's 

performance in high-dimensional data scenarios, mitigating 

computational requirements while simultaneously enhancing 

accuracy. Subsequently, an equilibrium between BCE loss and 

Dice loss was instituted, aiming to adeptly address small 

object segmentation tasks in data-intensive settings. Such loss 

function architectures are designed to prioritize essential 

segments during the training phase, thus optimizing the 

identification and localization capacities for diminutive 

objects. Collectively, the methodologies detailed in this 

examination not only advance the technological frontier in 

image segmentation but also promise enhanced efficiency and 

dependability across sectors, highlighting substantial 

application potential and real-world value. 
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2. ENCODER DESIGN AND PARAMETER ANALYSIS 

FOR LIGHTWEIGHT IMAGE SEGMENTATION 

 

In light of the computational resource demands posed by 

high-dimensional data streams, an imperative for lightweight 

image segmentation models based on the foundational U-Net 

network has been identified. The challenge lies in achieving a 

design optimized for minimal resource consumption, yet 

capable of extracting intricate coarse-grained semantic 

features, thereby ensuring precision in semantic segmentation. 

Within this context, a lightweight image segmentation 

model tailored for high-dimensional data streams was 

developed. Grounded in the U-Net framework, this design 

sought efficiency in lightweight optimization. Incorporating 

both an encoder and a decoder, the interlink between these 

components was altered from the originally conceived flat skip 

connection to a more intricate deep skip connection. Through 

the introduction of these deep skip connections, it was 

observed that a synergy of the corresponding encoder layer's 

flat skip connections and skip connections from all subsequent 

deeper encoder layers, excluding the final layer, could be 

established. Within this framework, feature maps stemming 

from all underlying encoder layers, with the exception of the 

last, underwent convolution processes prior to their relay to the 

decoder layer. While features were transmitted downwards by 

the encoder via a downsampling mechanism, the decoder 

correspondingly relayed them upwards through upsampling, 

ensuring robust feature extraction and integral information 

reconstruction. The inclusion of these deep skip connections 

proved instrumental in encompassing a wider spectrum of 

coarse-grained semantic features, thus enabling refined 

semantic segmentation. By integrating convolution operations 

within the deep skip connections, gradient back-propagation 

was effectively facilitated, bolstering the stability during the 

model's training phase. The design's lightweight character was 

deemed instrumental in optimizing efficiency within high-

dimensional data stream settings, fulfilling the criteria for 

instantaneous or near-immediate analyses, all while 

preserving exemplary segmentation precision. A depiction of 

this innovatively architected model is presented in Figure 1. 

 

 
 

Figure 1. Proposed model architecture 

 

In the quest for designing a lightweight image segmentation 

model tailored for high-dimensional data streams, appropriate 

parameter configurations have been identified as pivotal for 

achieving optimal performance. Within the encoder, multiple 

layers serve to extract distinguishing features from the initial 

image. This total layer count is denoted by B. 

Characteristically, each layer within the encoder undergoes a 

downsampling operation, aimed at both image dimension 

reduction and coarser feature extraction. Such downsampling 

levels are represented as u. A specific encoder layer, i, is 

symbolized as Zu
Rb, and encompasses operations such as 

convolution, activation, and downsampling. These operations 

are crucial for distilling higher semantic features either 

directly from the input or from the preceding layer, (i-1). On 

the contrary, the decoder's ith layer, expressed as Zu
Fr, typically 

integrates upsampling, convolution, and activation. A 

schematic representation delineating the model's construction 

principles is provided in Figure 2. 

Assuming a feature aggregation mechanism consisting of 

two convolutions, batch normalization, and ReLU activation 

function is represented by Φ(·), convolution operations are 

represented by Π(·). Upsampling operations are indicated by 

I(·), while fusion operations are represented by [·]. The 

expression for Zu
Fr is given as: 
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Figure 2. Schematic representation of model construction 
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Within this design, if an encoder is composed of five layers, 

the feature map corresponding to the decoder's second layer is 

designated as Z2
Fr, while encoder feature maps for layers two, 

three, and four are represented by [Z2
Rb,Z3

Rb,Z4
Rb]. The third 

decoder layer's feature map is described as Z3
Fr. Notably, as 

one traverses through each layer, there is a discernible 

decrease in the image's spatial dimension, while the feature 

dimension experiences a proportional increase. As a result, 

Z2
Fr is an amalgamation of [Z2

Rb,Z3
Rb,Z4

Rb] and Z3
Fr. 

It has been observed that the tailored lightweight image 

segmentation model for high-dimensional data flows offers 

distinct advantages in terms of model efficiency. Through the 

introduction of depth skip connections, the model can more 

effectively harness feature extraction capabilities intrinsic to 

deep encoder layers. This approach circumvents the need for 

handling intricate operations arising from full-scale feature 

maps of both shallow encoders and deep decoders, 

subsequently curtailing computational demands. By 

methodically applying downsampling and upsampling 

operations across encoder and decoder layers, it is possible to 

concurrently diminish spatial feature dimensions while 

augmenting their depth, achieving a balance between feature 

compression and essential information extraction. Such 

refinements not only curtail computational resource 

requirements but also amplify the model's generalization 

potential. Typically, lightweight designs correspond to a 

reduction in parameters and computational intricacies. By 

astutely configuring parameters like convolution kernel size 

and stride, substantial reductions in both model scale and 

computational overhead can be realized.  

 

 
 

Figure 3. Composition principle of the aggregated feature 

map in the developed model 

 

Figure 3 illustrates the composition principle of the 

aggregated feature map of the constructed model. Within the 

tailored lightweight image segmentation framework optimized 

for high-dimensional data flow, both Zu
Rb and Zu

Fr were 

identified to contain 2u-1b channels. In the model's decoder, 

specifically at the uth layer, B-u+3 convolutional operations 

were integrated. At any given ith layer of the decoder, features 

were discernibly sourced not only from the immediate decoder 

layer but also from deeper encoder and decoder strata. 

Furthermore, in this decoder layer, convolution operations 

were deployed for an array of functions: extraction of features 

from the superior decoder layer, amalgamation with the 

analogously positioned encoder layer, adjustments in the 

channel count, and resolution alignment. A meticulous 

procedure was followed: each decoder layer was brought to 

align with the resolution and channel count of its predecessor 

using convolution operations. This was followed by an 

integration with features from the matched encoder layer, and 

subsequently, the channel number was adjusted again via 

convolutional methods. Such a procedural design ensured the 

intricate transfer and fusion of information within the decoder 

layer-by-layer. 

Beyond the realm of convolutional operations, the 

significance of upsampling in the context of feature fusion was 

emphasized. It was through this mechanism that features 

derived from variegated layers could be amalgamated at a 

unified resolution. By leveraging channel accumulation, 

features from diverse origins were effectively integrated 

within the decoder. The subsequent convolutional process 

seamlessly blended these features, altering the channel count 

to fit the needs of the ensuing layers. It was observed that these 

convolutional procedures within the decoder bore an intrinsic 

connection to feature extraction processes within the encoder, 

culminating in a holistic bidirectional flow of data. 

Given a scenario where the convolution kernel's size is 

denoted by jr and the node's channel count is symbolized by 

f(·), the parameter count, Ou, for the encoder's uth layer in the 

model can be deduced using a prescribed formula. 
 

( )

( )( ) ( ) ( )

1
1

2

2

1
2 2 2 2

1

2 4 2

B
j u u

Rb FrX Fr
u

j i
r

i u u

Fr Fr Fr

B
j u u

r

j u

f Z X f Z
O j

f B u Zu f Z f Z

B u b j

−
+

=

−
− −

=

  
+  

=   
 
+ − + +  

 
= + − + 
 





 (2) 

 

For a more nuanced exploitation of segmentation 

capabilities within the lightweight image segmentation model 

tailored for high-dimensional data streams, the encoder's 

structure was derived from the foundations of both Vgg16 and 

ResNet34. Assuming the input channel number is denoted by 

b0, and the output class number, which corresponds to 

segmentation outcomes, is symbolized by bv, the parameter 

count, Oc, relevant to the Vgg16-based model, can be 

articulated as: 
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Within the ResNet framework, the count of Basicblock 

units in the uth layer was hypothesized to be qu. Thus, the 

parameter count, oE, pertinent to the model resting upon 

ResNet34, can be deciphered through the ensuing equation: 
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In the formulation of the lightweight image segmentation 

model for high-dimensional data streams, the determination of 

the initial encoder layer's output channel number emerged as a 

cornerstone. This choice delicately balanced the objectives of 

truncating computational intricacy and the volume of 

parameters against preserving a potent feature extraction 

capability. An optimal channel count is inherently reliant upon 

the intricacy of the input image coupled with the nature of 

features sought for extraction. For instances where targets are 

imbued with a plethora of textures and minutiae, an amplified 

channel count may be requisite to ensnare such data. It was 

discerned that a gradual amplification of the channel count, 

coinciding with the encoder's depth augmentation, affords the 

model the versatility to assimilate various feature hierarchies 

across its layers. By opting for fewer channels in the inaugural 

layer, the acquisition of more overarching features was 

facilitated, thereby curtailing computational requisites. 

Reverence was given to lithe neural network architectures like 

MobileNet, which have vindicated their mettle across a myriad 

of applications. Drawing insights from their preliminary 

encoder layer's channel count, it was aligned at 8, and 

concurrently, the convolution kernel size was ascertained to be 

3. 

 

 

3. DESIGN OF LOSS FUNCTIONS FOR HIGH-

DIMENSIONAL TARGET SEGMENTATION 

 

In the domains of computer vision and image processing, 

the significance of segmentation for minute targets within 

high-dimensional data streams has been recognized as a 

cornerstone technology. This form of segmentation is 

indispensable for discerning and identifying diminutive and 

nuanced entities within images. A gamut of applications, 

spanning medical image diagnostics, military reconnaissance, 

and precision agriculture, underscore its profound 

implications. With the amplification of data dimensions, an 

upsurge in the quantum of information within these high-

dimensional data streams is concurrently observed. For 

gleaning invaluable insights and data facets, it becomes 

imperative that small targets within such data-rich images are 

segmented with precision, laying the groundwork for more 

sophisticated and nuanced data interpretations. 

Yet, these high-dimensional data streams are often imbued 

with complex configurations and a profusion of information. 

The onus of extracting and processing such multitudinous 

features rests on exacting models and adept algorithms, 

thereby heralding challenges in computational and storage 

aspects. Furthermore, the heterogeneity in these high-

dimensional streams-manifested in variegated scales and 

modalities-warrants state-of-the-art fusion methodologies and 

malleable model constructs. A confluence of exigencies arises 

when, for specific utilities such as autonomous navigation and 

drone reconnaissance, there's an imperative to achieve small 

target segmentation either in real-time or with minimal latency. 

Navigating this labyrinth within the confines of high-

dimensional data streams emerges as a Herculean task. 

To navigate the complexities inherent in segmentation 

exercises within these voluminous data streams, an 

amalgamation of BCE and Dice losses was adopted to penalize 

the network. Conventional loss functions were discerned to be 

suboptimal for diminutive target segmentation tasks. Whereas 

BCE loss is tailored to bolster pixel-level classification fidelity, 

Dice loss gravitates towards the holistic segmentation 

consequence. The synergy of both is perceived to fortify the 

loss function's robustness, capacitating the model to adapt and 

excel across a spectrum of scenarios. Concurrently, the 

confluence of BCE and Dice losses affords a judicious 

equilibrium between positive and negative samples, adeptly 

circumventing pitfalls associated with class disproportionality. 

BCE, predominantly tailored for binary classification 

paradigms, has been harnessed for pixel-level image 

segmentation endeavours, categorizing each discrete pixel. By 

quantifying the variance between the likelihood of each pixel 

affiliating with the target class and its actual label—and then 

endeavouring to curtail this disparity—the nuanced 

recognition of segmentation targets is realized. Especially in 

the milieu of minuscule target segmentation within such data-

rich streams, BCE facilitates a nuanced calibration between the 

weightages of positive and negative classes, steering the 

model's focus towards the less prevalent, yet pivotal, 

diminutive target categories. Assuming the sample count is 

articulated by B, the softmax output and groundtruth labels for 

class v are symbolized by log(ou,v)[0,1] and tu, v respectively. 

With image taxonomies represented by V and the weighting 

metric denoted by αy, the intricacies of the BCE loss function 

are elaborated in the subsequent formulation: 
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For the calculation of the weightage factor, αy, the following 

formula is proposed: 
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Originating from the Dice coefficient, Dice loss functions 

as an instrumental metric, probing the resemblance between 

two sample sets. Within the scope of image segmentation tasks, 

the Dice loss is employed to measure the congruence of spatial 

overlap between the predicted segmented regions and their 

true counterparts. By optimising the Dice coefficient-

essentially minimizing the Dice loss-it has been observed that 

the segmentation boundaries inferred by the model closely 

mirror the authentic boundaries. Particularly for circumstances 

grappling with class imbalances, Dice loss has demonstrated 

pronounced efficacy, proving instrumental for lightweight 

small target segmentations within high-dimensional data flows. 

Its focus on spatial overlap of segmented regions attenuates 

the ramifications of disparities between positive and negative 

sample distributions, fortifying the model's adeptness at 

pinpointing diminutive targets. If the weight attributed to class 

v is delineated as Qv, the intricacies of the Dice loss function 

can be unravelled in the following equation: 
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An amalgamation of BCE and Dice losses has been chosen 

for this endeavour. While the former predominantly targets 

classification accuracy, the latter underscores the spatial 

uniformity within segmented territories. Together, they 

bestow the model with a harmonized blend of target 
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identification prowess and boundary delineation precision. 

Challenges such as class imbalances and intricate feature 

constructs, which persistently plague small target 

segmentation within high-dimensional data conduits, are aptly 

addressed by the tandem of BCE and Dice losses. Their 

symbiotic relationship ensures both a heightened sensitivity to 

small target identification and an unparalleled spatial acuity 

within segmented realms, leading to impeccable segmentation 

outcomes. By calibrating the relative emphases of these losses 

in the overarching objective function, and by making requisite 

adjustments contingent upon the unique nature of tasks and 

dataset attributes, an enhanced optimization of segmentation 

outcomes is anticipated. The loss function tailored for the 

devised model, where β symbolizes the proportionality 

coefficient, is elaborated upon in the succeeding equation: 

 

SE BCE DiceLOSS LOSS LOSS=  +  (8) 

 

 

4. EXPERIMENTAL FINDINGS AND 

INTERPRETATION 

 

Ablation studies are conventionally employed as pivotal 

experimental paradigms, facilitating nuanced insights into the 

influence of individual elements on overarching model 

efficacy. By executing systematic removal or substitution of 

these constituents, their specific contributions can be 

discerned. Pertaining to the lightweight image segmentation 

model tailored for high-dimensional data streams discussed in 

this investigation, several comparative network architectures 

were devised: 

(1) A foundational model harnessing the core U-Net 

framework, devoid of any lightweight adaptations. 

(2) A modified U-Net structure incorporating solely the 

deep skip connections, with the BCE and Dice losses being 

conspicuously absent. 

(3) A U-Net derivative, where only the BCE and Dice losses 

were integrated, eschewing the employment of deep skip 

connections. 

(4) A holistic model amalgamating all the aforestated 

modifications, notably the synchronous integration of deep 

skip connections alongside the BCE and Dice losses. 

For the segmentation endeavours within this high-

dimensional lightweight image schema, the following objects 

of interest were delineated: 

(1) Microbiological entities, encompassing bacteria and 

viral agents. 

(2) Inconspicuous metallic denominations or diminutive 

artifacts juxtaposed against multifaceted backdrops. 

(3) Subtle oncological or pathological demarcations 

discerned within medical imaging spectra. 

(4) Miniscule aquatic entities or artefacts, discernible within 

deep marine imagery. 

(5) Elusive pedestrian figures or compact vehicular entities 

embedded within convoluted urban terrains. 

 

Table 1. Detailed empirical outcomes derived from the ablation assessment across the spectrum of formulated models 

 

Network Model Microorganisms Coins 
Minute 

Pathological Areas 
Pedestrians Cars 

Underwater 

Objects 

MloU PA F1 Time 

(%) (%) (%) (%) 

Baseline Model (U-Net) 65.24 52.36 64.21 24.36 52.11 41.22 51.23 66.39 66.33 0.18 

Lightweight U-Net 

(Depthwise Skip 

Connections Only) 

78.26 65.44 72.16 38.99 51.23 47.26 57.99 74.16 72.13 0.24 

Lightweight U-Net (Only 

BCE and Dice Loss) 
75.36 65.39 75.36 55.21 65.88 42.99 63.21 83.58 78.99 0.25 

Complete Model 82.66 72.36 81.22 63.25 70.13 58.13 70.13 82.03 82.15 0.27 

 

 
 

Figure 4. Mean IoU values of propounded models against validation set across diverse categories 
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Table 2. An analytical comparison of experimental outcomes across diverse model architectures 

 

Network Model Microorganisms Coins 

Minute 

Pathological 

Areas 

Pedestrians Cars 
Underwater 

Objects 

MloU 
Parameter  

Volume 
Time 

(%) (M) (s) 

FCN 82.31 64.88 76.31 53.26 34.58 42.03 58.62 6.32M 0.99 

Mask R-CNN 75.23 63.99 74.26 61.44 57.69 36.25 62.02 3.15M 0.45 

H-DenseUNet 74.28 67.81 78.36 55.36 71.02 47.26 65.32 8.26M 1.23 

PSPNet 82.66 81.23 78.12 43.26 56.32 66.23 68.92 1.89M 1.36 

The model of this study 81.36 72.15 81.55 63.25 72.15 58.91 72.13 1.32M 0.29 

 

Table 3. A quantitative evaluation: Precision, recall, and F-

score across network models 

 
Network Model P (%) R (%) F1 (%) 

FCN 81.26 61.03 71.26 

Mask R-CNN 73.25 73.21 73.20 

H-DenseUNet 76.13 74.56 74.27 

PSPNet 83.25 85.26 81.02 

The model of this study 88.16 88.95 90.55 

 

In Table 1, a thorough quantitative elucidation of the 

ablation study's outcomes for the array of developed models is 

delineated. An analysis of these outcomes suggests that the 

baseline model, rooted in the U-Net architecture, manifested 

moderate performance metrics across all experimental tasks, 

culminating in a diminished overall efficiency. Through the 

integration of deep skip connections, a tangible improvement 

in the performance metrics of the lightweight U-Net was 

observed, with pronounced elevation noted particularly within 

microorganism, coin, and small pathological area 

segmentations. A distinct model variant of the lightweight U-

Net, solely capitalizing on the BCE and Dice loss functions, 

showcased augmented efficiency. This enhancement was 

conspicuously evident in minute pathological detection and 

pedestrian categorizations. Consistent superior performance 

metrics across all investigative tasks were exhibited by the 

comprehensive model, integrating both deep skip connections 

and the combined BCE and Dice loss methodologies. It was 

inferred that the introduction of deep skip connections boosted 

the lightweight U-Net's efficacy, a trend particularly 

discernible within the realm of microorganism and petite 

pathological segmentation. Additionally, the concomitant 

implementation of BCE and Dice losses augmented the 

capability matrix for small target segmentation tasks. Notable 

prowess in this context was exhibited within minute 

pathological and pedestrian detection parameters. Despite its 

augmented performance metrics, it must be noted that the 

refined model introduced in this research, which amalgamates 

both deep skip connections and loss functions, did register a 

marginal uptick in computational overhead. 

Figure 4 delineates the average Intersection over Union 

(IoU) metrics of the formulated models across varied 

diminutive object categories subjected to high-dimensional 

data flows. An analytical interpretation of this data posits the 

baseline U-Net model as a rudimentary benchmark with 

general performance metrics. Enhanced outcomes, 

particularly for microorganisms, coins, and aquatic entities, 

were registered for the Lightweight U-Net augmented with 

depthwise skip connections. However, a perceptible dip was 

noted within the vehicular domain. Meanwhile, the 

Lightweight U-Net variant, relying exclusively on BCE and 

Dice loss functions, manifested remarkable prowess within the 

realms of petite lesion areas and pedestrian categorizations. 

Such results corroborate the hypothesis that tailored loss 

functions enhance model performance for specific tasks. The 

comprehensive model, with its all-encompassing architecture, 

achieved near-optimal or optimal metrics across all delineated 

categories, underscoring its robust and versatile nature. These 

empirical findings accentuate the merit of integrating 

depthwise skip connections and tailored loss functions within 

the comprehensive model. This model exhibited exemplary 

performance attributes across all testing categories, 

underscoring the proposed methodology's reliability and 

efficacy in lightweight image segmentation tasks for 

diminutive entities within high-dimensional data contexts. 

In Table 2, a comparative evaluation is conducted across 

five distinct network models. Metrics such as average 

Intersection over Union (IoU), parameter volume, and 

computational time were meticulously assessed across six 

lightweight image small-object categories. It was observed 

that FCN and Mask R-CNN, despite showcasing 

commendable average IoU values, were encumbered by 

substantial parameter volumes. Moreover, FCN was 

particularly characterized by an extended computational 

duration. In the automobile category, H-DenseUNet's 

performance was notably superior, yet when assessing overall 

average IoU and parameter volume, its distinctions remained 

unremarkable. While PSPNet demonstrated appreciable 

results for coins and underwater objects, a lapse in efficacy 

was detected in the pedestrian category. Conversely, the model 

introduced in the present study emerged as an archetype of 

comprehensive performance. It was found to be endowed with 

superior average IoU scores and boasted notable advantages in 

terms of lightweight architecture and computational 

expediency. The ability to simultaneously maintain 

heightened accuracy and ensure computational efficiency is 

essential, especially when considering the demands of 

lightweight image segmentation for petite entities under high-

dimensional data environments. 

When delving into Table 3, the precision (P), recall (R), and 

F-score metrics were meticulously examined for five disparate 

network models. From this analysis, it was deduced that the 

model articulated in the current study consistently outstripped 

its counterparts concerning precision, recall, and the F1 score. 

Such elevated metrics emphasize the heightened accuracy and 

reliability inherent in this model for lightweight image 

segmentation challenges presented by high-dimensional data 

streams. Although PSPNet's metrics were laudable, they were 

overshadowed by the superior scores of the model described 

herein. FCN's performance, especially concerning recall, was 

found lacking. The unparalleled efficacy of the model 

delineated in this study can potentially be traced back to its 

architectural decisions, including but not limited to its choice 

of loss functions and feature fusion strategy. Across all 

evaluated metrics, the model consistently showcased 

exemplary results, thereby reiterating its profound efficacy 

and dominance in the realm of lightweight image 
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segmentation tasks, particularly those involving minuscule 

entities under high-dimensional data landscapes. 

 

 
(a) Evolution of the loss value 

 
(b) Trajectory of the Dice coefficient 

 
(c) Progression of Intersection over Union (IoU) 

 

Figure 5. Training and validation metrics for the lightweight 

image segmentation model 

 

Within Figure 5a, the encountered training loss (train_loss) 

and validation loss (valid_loss) throughout the training epoch 

of the lightweight image segmentation model are depicted. 

From this representation, it is observed that a consistent 

decrease in loss values is manifested over the training phase, 

indicating a stable training process. Notably, no significant 

overfitting was detected. An alignment in the decline of 

validation loss with that of the training loss was recorded, 

which can be interpreted as an attestation of the model's robust 

generalization capabilities. Such stable convergence behavior, 

observed during both training and validation stages, suggests 

the potential adoption of an optimal training strategy and 

hyperparameter configurations. 

The Dice Coefficient, a pivotal metric in the realm of image 

segmentation tasks, typically oscillates between 0 (indicating 

absolute mismatch) and 1 (representing flawless alignment). 

As depicted in Figure 5b, the training Dice coefficient 

(train_Dice) and its validation counterpart (valid_Dice) were 

evaluated throughout the model's training trajectory. Superior 

learning capabilities were exhibited by the lightweight image 

segmentation model, as evidenced by a consistent ascent in 

both training and validation Dice coefficients with the 

progression of epochs. Despite occasional oscillations in the 

validation Dice coefficient, the predominant trajectory was 

upwards, bolstering confidence in the model's adeptness at 

predicting on unobserved data. 

In Figure 5c, an insightful portrayal of the training IoU 

(train_iou) juxtaposed against the validation IoU (valid_iou) is 

presented. Both metrics were found to surge progressively as 

the epochs unfolded, underscoring the model's commendable 

learning dynamics during the training regimen. Parallels in 

performance were detected between training and validation 

datasets, hinting at a well-balanced generalization capability 

devoid of conspicuous overfitting phenomena. While sporadic 

fluctuations in the validation IoU were noted, the overarching 

pattern remained ascendant, reinforcing the model's 

competence in handling novel datasets. 

 

 

5. CONCLUSION 

 

In the realm of this research, a focus was placed on the 

design and meticulous evaluation of a lightweight image 

segmentation model, with aspirations to yield an efficient and 

precise segmentation methodology suitable for a gamut of 

tasks. Prevalent image segmentation networks such as FCN, 

Mask R-CNN, H-DenseUNet, PSPNet, among others, were 

subjected to comprehensive analysis. From this scrutiny, a 

novel lightweight image segmentation model was devised. It 

was observed that the proposed model outperformed 

contemporaneous models in terms of Precision, Recall, and F1 

scores, all while maintaining impressive efficiency. 

Fluctuations in metrics such as loss values, Dice coefficients, 

and IoU offered insights into the model's learning trajectory. 

Consistency was discerned in training and validation 

dynamics, with notable convergence and an absence of 

overfitting phenomena. Further experimental evidence 

suggested that the model, as introduced, necessitates fewer 

parameters and operates with reduced runtime, emphasizing 

its inherent lightweight attributes. 

Taking into account the collective experimental findings, 

the proposed lightweight image segmentation model revealed 

exceptional proficiency in an array of image segmentation 

challenges. In comparison with the prevailing image 

segmentation paradigms, the model did not solely stand out in 

accuracy metrics but also in terms of reduced computational 

footprint and enhanced operational efficiency. A marked 

stability in the training process, coupled with formidable 

generalization capabilities, underscores its potential merit in 

real-world applications. Such results bolster the contention 

that embracing lightweight designs in image segmentation 

does not necessitate a compromise in performance, suggesting 

that even with scaled-down model complexity and 

computational demands, results akin to, or even surpassing, 

more intricate models are attainable. 
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To encapsulate, the contributions of this research extend a 

novel, efficient, and streamlined solution to the discipline of 

image segmentation. Its implications appear to be most 

pronounced in environments with limited computational 

resources, emphasizing its potential as an instrumental tool in 

advancing the broader field. 
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