
  

  

A Deep Reinforcement Learning Approach for Efficient Image Processing Task Offloading 

in Edge-Cloud Collaborative Environments 

 

 

Ming Sun1,2* , Tie Bao1 , Dan Xie1 , Hengyi Lv2 , Guoliang Si2  

 

 

1 College of Computer Science and Technology, Jilin University, Changchun 130012, China 
2 Changchun Institute of Optics, Precision Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China  

 

Corresponding Author Email: sunm19@mails.jlu.edu.cn 

 

https://doi.org/10.18280/ts.400403 

  

ABSTRACT 

   

Received: 8 March 2023 

Revised: 12 June 2023 

Accepted: 18 June 2023 

Available online: 31 August 2023 

 In the wake of the burgeoning Internet of Things (IoT) era and the increasing prevalence of 

image-based applications on mobile platforms, a significant demand for computing 

resources has been witnessed. While traditional cloud computing has been limited by 

substantial transmission distances and notable response delays, mobile edge computing, 

where communication, computation, and storage resources are situated on edge devices, has 

emerged as a superior alternative. In this context, the challenge of offloading image 

processing tasks for multiple users, especially considering the collaboration of edge servers 

under computational and communication resource constraints, is investigated. A primary 

objective is to strike a balance between energy consumption and task delays, thereby aiming 

to curtail the total associated costs. The novel framework introduced, termed as Image 

Collaborative Task Offloading System using Deep Reinforcement Learning (I-CTOS-

DRL), is specifically designed for image processing tasks in edge-cloud collaborative 

scenarios. Through the integration of a set updating mechanism, complications arising from 

interactions with neighboring edge servers are effectively diminished. Simultaneously, a 

heuristic algorithm was constructed to identify the most viable servers for task offloading 

purposes. Building on this foundation, a pioneering methodology for image processing task 

offloading was devised, leveraging fully connected neural network training. Evaluations 

conducted extensively indicate that the proposed strategy outperforms established 

benchmarks in terms of efficiency. 
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1. INTRODUCTION 

 

In the current digital era, remarkable developments in 

image-based applications have been observed. As the 

proliferation of smartphones, intelligent devices, and IoT 

gadgets has been documented, a heightened intricacy in real-

time image processing has emerged [1, 2]. Often, traditional 

cloud computing architectures were identified as insufficient 

to address the evolving needs of these complex image 

processing tasks, faced with challenges such as increased 

latency and limited computational capacity. 

The impetus for the present research was derived from the 

pressing need to facilitate real-time image processing across 

various sectors, spanning healthcare, entertainment, 

autonomous vehicles, and industrial automation. A mounting 

urgency has been discerned for the formulation of an adept 

system proficient in offloading extensive image processing 

tasks for myriad users spread across diverse geographic 

terrains. 

 

1.1 Problem definition and contextualization 

 

At the heart of the study lies the investigation of task 

offloading within the framework of edge-cloud collaboration. 

Interactions between edge devices, the central cloud data 

center, and neighboring edge devices were examined, focusing 

on enhancing image processing efficiency. The intricacy of 

this paradigm can be exemplified in a multi-user environment, 

characterized by concurrent image processing tasks (e.g., 

multiple colored users in various regions as illustrated in 

Figure 1). If tasks were processed locally, notable delays could 

be experienced, attributable to the limited computational 

capacities of individual devices. Although offloading to an 

edge node or cloud data center might reduce processing time, 

subsequent challenges, including transmission delay and 

queuing time, could be encountered. 
 

 
 

Figure 1. A motivation example 
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1.2 Proposed framework: I-CTOS-DRL 

In response to these challenges, the I-CTOS-DRL 

framework has been proposed. The salient contributions of this 

study include: 

• A keen understanding of image processing requirements,

with the offloading problem articulated to optimize total costs, 

encompassing delays and energy expenditure. Collaboration 

among edge servers was underscored to facilitate efficient 

real-time image processing. 

• The introduction of the I-CTOS-DRL framework, an

innovative method utilizing DRL and a heuristic algorithm to 

reduce inherent complexities. An innovative task updating 

mechanism for image processing was incorporated, promoting 

fluid collaboration among edge servers. 

• A tailored simulator was devised to rigorously appraise

the I-CTOS-DRL methodology. Evaluations corroborated its 

prowess in managing real-time image processing tasks across 

distinct sectors. 

1.3 Applications and future directions 

The I-CTOS-DRL exhibits considerable potential for 

applications in domains like augmented/virtual reality, digital 

medical intervention, autonomous driving, and advanced 

industrial control. A shift in the understanding and application 

of image processing within the realm of contemporary digital 

technology is anticipated. 

This study augments the existing body of literature by 

offering a robust solution to the challenges posed by real-time 

image processing via edge computing. Fresh perspectives in 

the image processing domain have been unearthed, paving the 

way for future innovations. 

1.4 Conclusion 

This research illuminates a significant stride in image 

processing via edge computing, thereby enhancing the 

technological panorama. By delineating and addressing the 

intrinsic challenges of real-time image processing, a 

prospective era where digital interactions become more 

intuitive, prompt, and significant is envisioned. 

2. RELATED WORK

2.1 Edge computing and task offloading: A focus on image 

processing 

Edge computing has been documented as a pivotal shift, 

channeling computational resources to the network's periphery. 

This shift has enabled a multitude of applications, spanning 

from the IoT to autonomous vehicles, and importantly, image 

processing. At the heart of this evolution, task offloading has 

been observed, where the relocation of computationally 

intensive tasks to edge servers was optimized, yielding a 

marked reduction in latency [3]. 

(a) Image Processing within the Edge Computing Paradigm

Emerging task offloading techniques have been linked to

the ascension of image processing capabilities in edge 

computing. Significant advancements in this domain are 

evidenced by: 

• Medical Imaging: Task offloading in ultra-dense networks,

as studied by Chen and Hao [4], was found to minimize delays 

in medical image processing. Concurrently, battery 

conservation was achieved through software-defined networks. 

• Video Analytics: Through their research, Xia et al. [5]

established both exact solutions and approximation algorithms, 

facilitating the offloading of real-time video processing tasks 

within multi-cell mobile edge computing environments. 

(b) Integration of Machine Learning in Image Processing

The incorporation of machine learning has been

acknowledged as a transformative step in the domain of 

intelligent image processing. Key developments include: 

• Machine Learning in Task Offloading: A decision tree-

based design for image classification was presented by Guo et 

al. [6]. 

• Disease Recognition: Enhanced recognition capabilities

for early-stage brown spot disease in paddy leaves were 

attained through a CNN-based model, as documented by 

Upadhyay and Kumar [7]. 

• Alzheimer's Classification: It was reported by

Thayumanasamy and Ramamurthy [8] that the DenseNet-169 

model exhibited superior performance in Alzheimer's disease 

classification using brain MRI scans. 

• Underwater Image Enhancement: A deep underwater

image enhancement network utilizing a convolutional neural 

network algorithm was put forward by El Rejal et al. [9], 

showcasing enhancements in visibility, contrast, and the 

overall quality of deep-sea images. 

(c) Efficiency-Driven Strategies in Image Processing

Prioritizing efficiency has remained a cornerstone of edge

computing strategies tailored for image processing. 

Noteworthy strategies encompass: 

• Power and Delay Reduction: Efforts to minimize system

power consumption and delays during image execution were 

pursued by Keshavarznejad et al. [10], utilizing meta-heuristic 

techniques. 

• Tomato Seedling Recognition: Zhang [11] introduced an

information acquisition method leveraging the Cycle-

Consistent Adversarial Network. This method was 

demonstrated to achieve a recognition accuracy ranging 

between 91% to 97%, bolstering the automation capabilities of 

tomato transplanters. 

2.2 Evolution of task offloading within edge-cloud 

interfaces 

The rapid proliferation of mobile devices has been 

perceived to amplify the demands on edge networks. In 

response to these increasing pressures, several innovative 

solutions have been proposed, as outlined below: 

(a) Blockchain-Integrated Architectures for Image Data

Processing 

• A blockchain-facilitated edge-cloud computing 

architecture was put forward by Wu et al. [12]. This 

framework aimed to bridge the gap between mobile cloud 

computing and mobile edge computing, seeking to streamline 

the efficiency of image data processing. 

(b) Defensive Measures Against Distributed Denial of

Service Attacks 

• In an effort to counteract volumetric-based Distributed

Denial of Service attacks targeting cloud and edge computing 

networks, Yudhana et al. [13] integrated the Packet Filtering 

Firewall and Circuit Level Gateway Firewall. It was observed 

that these measures led to a substantial decline in both traffic 

and server resource usage, with reductions ranging between 

64%-98.88% and reaching up to 96% respectively. 
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(c) Advanced Techniques for Image Edge Detection 

• Moussa and Douik [14] ventured into refining edge 

detection methodologies for image processing. By leveraging 

information theory combined with metaheuristic and 

intelligent algorithms, a considerable improvement in 

execution time was achieved when compared to conventional 

operators. 

(d) 3D Visual Image Recognition in Athletic Training 

• An innovative 3D visual image recognition technique 

based on contourlet domain edge detection was elucidated by 

Wang [15]. This method, specifically tailored for recognizing 

and rectifying athletes' improper motions during training, 

showcased noticeable advancements in the accuracy of motion 

evaluations. 

(e) Profit-Centric Offloading in Mobile Edge Computing 

Servers 

• Tunga et al. [16] unveiled a strategy aimed at maximizing 

intrinsic profit when offloading tasks to Mobile Edge 

Computing servers. Given the constraints of fixed memory 

capacities and the necessity for low latency, the Ant Colony 

Optimization model was adeptly employed, demonstrating its 

efficacy in real-time applications. 
 

2.3 Reinforcement learning's role in edge-based image 

processing 
 

The incorporation of reinforcement learning into image 

processing at the edge has been increasingly examined. A 

notable instance includes the work by: 

• Qu et al. [17-19], wherein a deep meta-reinforcement 

learning-based offloading algorithm was developed. This 

algorithm, tailored for intricate image processing decisions, 

harnessed the capabilities of several parallel deep neural 

networks. 
 

2.4 Opportunities and challenges ahead 
 

Despite the significant strides observed in amalgamating 

edge computing, task offloading, and image processing, 

persistent challenges remain. These primarily relate to the 

optimization of action and state spaces. Such challenges hint 

at a vast scope for deeper exploration, suggesting that a 

synthesis of reinforcement learning, task offloading, and 

image processing in the paradigm of edge-cloud cooperation 

might offer promising avenues of investigation. 

 

2.5 Envisaging the evolution of task offloading in image 

processing in edge-cloud interfaces 
 

Efforts have been directed toward enhancing task offloading 

methodologies grounded in Deep Reinforcement Learning 

(DRL), especially for applications in image processing. The 

predominant goal here revolves around reducing both latency 

and energy expenditure within the ambit of edge-cloud 

collaborative computing. This endeavor is perceived to be a 

pivotal stride in refining edge computing frameworks and task 

offloading mechanisms specifically for image processing 

applications. 
 

 

3. MODELS AND PROBLEM FORMULATION 
 

3.1 The edge-cloud system architecture 
 

In this research, an overarching topology of the edge-cloud 

framework, with an emphasis on image processing tasks, is 

delineated by the notation 𝑮 = {𝑪, 𝑴, 𝑼}. 

• Cloud Data Center (C): Situated distally from the user 

group and acting as the pinnacle of the system's hierarchy, the 

cloud data center, designated by C, is recognized as the central 

hub for expansive image processing undertakings. 

• Edge Nodes and Base Stations: It is observed that the user 

cluster interacts with edge nodes via wireless channels and 

base stations. These edge layer entities, with their 

heterogeneous and autonomous stances, span across diverse 

regions. The notational representation, 𝑴 = {𝑚𝑘}, has been 

adopted to capture the spread of edge nodes facilitated by 

various operators. Every individual edge node, given by 𝑚𝑘, 

is noted to be connected to its respective base station with a 

predetermined computing potential reserved for image data 

tasks. The computing capacity of each 𝑚𝑘  is subsequently 

denoted by 𝑓𝑘. 

• Adjacent Edge Servers: These are depicted by 𝑨(𝑚𝑘). It 

is inferred that the selection of neighboring edge servers for 

cooperation can substantially enhance the effectiveness of 

image processing and dissemination. 

• User Layer: Within this structure, the set of users 

interfacing with the edge node 𝑚𝑘  is represented as 𝑼𝑚𝑘 =

{𝑢𝑖
𝑘}. Users are found to establish connections with the closest 

edge node, which in turn augments the system's capability to 

swiftly address image processing demands. 

• End Devices: Such devices, embodying users within this 

schema, range from computers and smartphones to smart 

wristbands. A continuous stream of atomic tasks is generated 

by these entities. These tasks, ranging from image recognition 

to filtering and enhancement, are intrinsic to image processing. 

The computational capacity of 𝑢𝑖
𝑘 , enveloping the 

essentialities of image processing, is indicated by 𝑙𝑖
𝑘. 

For a comprehensive understanding, Table 1 has been 

curated to enlist pivotal notations, with a special focus on those 

crafted to elucidate the specifics of image processing tasks. 
 

Table 1. Symbol definition 
 

Symbols Definitions 

𝑮 Topology of edge-cloud architecture, 𝑮 = {𝑪, 𝑴, 𝑼} 

𝑴 Set of edge nodes in 𝑮, where 𝑴 = {𝑚𝑘} 

𝑚𝑘 The 𝑘𝑡ℎ edge node in 𝑴 

𝑓𝑘 The computing capacity of edge node 𝑚𝑘 

𝑼𝑚𝑘  Set of users located in the area of 𝑚𝑘, where 𝑼𝑚𝑘 =

{𝑢𝑖
𝑘} 

𝑢𝑖
𝑘 The 𝑖𝑡ℎ user located in the area of 𝑚𝑘, where 𝑢𝑖

𝑘 ∈
𝑼𝑘 

𝑙𝑖
𝑘 The computing capacity of 𝑢𝑖

𝑘 

𝜒𝑖
𝑘 Set of tasks, including image processing tasks, where 

𝜒𝑖
𝑘 = {𝑤𝑖

𝑘 , 𝑑𝑖
𝑘 , 𝛿𝑖

𝑘 , 𝜏𝑖
𝑘} 

𝑤𝑖
𝑘 Task workload produced by user 𝑢𝑖

𝑘, including image 

processing workload 

𝑑𝑖
𝑘 Data size of user 𝑢𝑖

𝑘, specifically related to image 

data size 

𝛿𝑖 Ratio of output to input data volume user 𝑢𝑖, for 

image transformation tasks 

𝜏𝑖 The maximum tolerant delay of user 𝑢𝑖, for image 

processing 

𝑨(𝑚𝑘) The set of adjacent edge nodes of 𝑚𝑘 

ℤ(𝑚𝑘) The feasible collaborative set of 𝑚𝑘 

𝑫(𝑢𝑖
𝑘) The total delay of user 𝑢𝑖

𝑘 

𝑬(𝑢𝑖
𝑘) The total energy consumption of user 𝑢𝑖

𝑘 

𝛹(𝑢𝑖
𝑘) The total cost of user 𝑢𝑖

𝑘 

𝜙(𝑠𝑡) The updating function of state 𝑠𝑡 
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3.2 Transmission model for image processing tasks 

 

In this segment, a specialized transmission model has been 

formulated, concentrating predominantly on the intricacies of 

managing image processing tasks. Emphasis is placed on the 

offloading of tasks by users to edge servers. The pronounced 

need for extensive bandwidth and dependable transmission 

arises from the nature of high-resolution image data. Under 

this framework, the collaborative essence of edge nodes is 

highlighted, ascertaining proficient offloading to either a 

directly connected edge node or its collaborative counterpart. 

Based on the Rayleigh fading channel model [20], the 

transmission rate 𝑟
𝑢𝑖

𝑘,𝑚𝑘
 between user 𝑢𝑖

𝑘  and the associated 

edge node 𝑚𝑘 is articulated as: 

 

𝑟
𝑢𝑖

𝑘,𝑚𝑘
= 𝑏𝑖,𝑘 ⋅ log2 (1 +

𝛾𝑖,𝑘ℎ𝑖,𝑘

𝑝(𝑢𝑖
𝑘, 𝑚𝑘)𝜔𝑖𝑁𝑖

) (1) 

 

where, 𝑏𝑖,𝑘 and  ℎ𝑖,𝑘 are established to signify the channel gain 

and transmission bandwidth between user 𝑢𝑖
𝑘  and 𝑚𝑘 , 

respectively. Given the data-heavy constitution of images, 

these parameters become central to the process. Concurrently, 

𝑝(𝑢𝑖
𝑘 , 𝑚𝑘)  defines the spatial relation between 𝑢𝑖

𝑘  to 𝑚𝑘 , 

while 𝛾𝑖,𝑘  represents the transmission power. Parameters like 

Gaussian noise and path loss exponent, represented by 𝑁𝑖  and 

𝜔𝑖 respectively, are identified as cardinal for maintaining 

transmitted image data's authenticity. 

In parallel, the transmission rate 𝑟𝑚𝑘,𝑚ℎ
between edge nodes 

𝑚𝑘 and 𝑚ℎ is framed as: 

 

𝑟𝑚𝑘,𝑚ℎ
= 𝐵𝑘,ℎ ⋅ log2 (1 +

Υ𝑘,ℎ𝐻𝑘,ℎ

𝑝(𝑚𝑘, 𝑚ℎ)𝜔𝑖𝑁𝑖

) (2) 

 

The above Eq. (2) elucidates the channel gain 𝐵𝑘,ℎ and 

transmission bandwidth 𝐻𝑘,ℎ between the said edge nodes. By 

facilitating collaborations in image processing, an uptick in 

efficiency and a dip in latency are witnessed. The spatial 

dynamics between 𝑚𝑘  and 𝑚ℎ  are mapped by 𝑝(𝑚𝑘 , 𝑚ℎ) , 

and Υ𝑘,ℎ  documents the transmission power. The Gaussian 

noise and path loss exponent for the edge node 𝑚𝑘 are 

symbolized by 𝑁𝑘 and 𝜔𝑘, respectively. 

In the presented model, meticulous considerations are made 

to cater to the unique transmission requirements of images. 

Factors such as bandwidth, channel gain, and inter-node 

collaboration are seamlessly integrated to form a 

comprehensive framework. This model, thus, offers insights 

tailored to fortify reliable image processing tasks, cognizant of 

the nuanced challenges that high-fidelity image data 

transmission incurs. 

 

3.3 Execution model for image processing 

 

The concept of task offloading, particularly for image 

processing tasks, is examined within a three-tier edge-cloud 

framework. Image processing tasks possess unique attributes 

like high computational requirements and significant data 

volume, necessitating a distinct approach when considering 

offloading. Potential offloading locations for these tasks could 

encompass the local device, the directly connected edge node, 

collaboratively connected edge nodes, or the cloud. Various 

scenarios have been identified and the execution models are 

outlined as follows: 

(1) Execution on Local Device 

The offloading issue is initially envisioned for multiple 

users choosing to conduct image processing tasks locally. 

These tasks could encompass image enhancement, filtering, or 

object detection, all of which demand considerable 

computational resources. The execution delay for a user, 

denoted by 𝐷𝑙(𝑢𝑖
𝑘), is formulated as follows: 

 

𝐷𝑙(𝑢𝑖
𝑘) =

𝑤𝑖
𝑘

𝑙𝑖
𝑘  (3) 

 

In this context, 𝑤𝑖
𝑘  represents the workload, and 𝑙𝑖

𝑘 signifies 

the CPU frequency of the user 𝑢𝑖
𝑘. The energy consumption 

for task 𝜒𝑖
𝑘 of 𝑢𝑖

𝑘 is then defined: 

 

𝐸𝑙(𝑢𝑖
𝑘) = 𝜅𝑖

𝑘 ⋅ 𝑤𝑖
𝑘 ⋅ (𝑙𝑖

𝑘)
2
 (4) 

 

where, 𝜅𝑖
𝑘 is the coefficient factor of chip architecture for user 

𝑢𝑖
𝑘 , reflecting the specific requirements of image-related 

computations. 

(2) Execution on Connected Edge Node 

Subsequently, the scenario is studied wherein the image 

processing tasks are executed on the directly connected edge 

node. This strategy proves to be advantageous for real-time 

image analytics. The transmission delay and the execution 

delay between 𝑢𝑖
𝑘 and 𝑚𝑘 are respectively defined as follows: 

 

𝐷𝑚
𝑡 (𝑢𝑖

𝑘) =
𝑑𝑖

𝑘

𝑟𝑢𝑖
𝑘,𝑚𝑘

 (5) 

 

where, 𝑑𝑖
𝑘  is the data size of 𝑢𝑖

𝑘, reflecting significant volume 

of image data. The execution delay on edge node 𝑚𝑘 is 

 

𝐷𝑚
𝑒 (𝑢𝑖

𝑘) =
𝑤𝑖

𝑘

𝑓𝑘

 (6) 

 

Thus, the total delay for image processing on the connected 

edge node is expressed as: 

 

𝐷𝑚(𝑢𝑖
𝑘) = 𝐷𝑚

𝑡 (𝑢𝑖
𝑘) + 𝐷𝑚

𝑒 (𝑢𝑖
𝑘) (7) 

 

And the energy consumption is given by: 

 

𝐸𝑚(𝑢𝑖
𝑘) = 𝛾𝑖,𝑘 ⋅ 𝐷𝑚

𝑡 (𝑢𝑖
𝑘) (8) 

 

where, 𝛾𝑖,𝑘 is the transmission power from user 𝑢𝑖
𝑘 to 𝑚𝑘. 

(3) Execution on Collaborative Edge Node 

For more intricate image processing tasks, an analysis is 

conducted where execution on the collaborative edge node is 

contemplated. The transmission delay in this case is composed 

of two parts: 

 

𝐷𝑧
𝑡(𝑢𝑖

𝑘) =
𝑑𝑖

𝑘

𝑟𝑢𝑖
𝑘,𝑚𝑘

+
𝑑𝑖

𝑘

𝑟𝑚𝑘,𝑚ℎ

 (9) 

 

where, 
𝑑𝑖

𝑘

𝑟
𝑢𝑖

𝑘,𝑚𝑘

 is the transmission delay from user 𝑢𝑖
𝑘  to edge 

node 𝑚𝑘. 
𝑑𝑖

𝑘

𝑟𝑚𝑘,𝑚ℎ

 is the transmission delay from edge nodes 𝑚𝑘 

to 𝑚ℎ.  
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Since the task produced by user 𝑢𝑖
𝑘 processes on edge node 

𝑚ℎ, the execution delay 𝐷𝑧
𝑒(𝑢𝑖

𝑘) is defined as: 

 

𝐷𝑧
𝑒(𝑢𝑖

𝑘) =
𝑤𝑖

𝑘

𝑓ℎ

 (10) 

 

where, 𝑓ℎ is the computing capacity of 𝑚ℎ. So the total delay 

for executing image tasks on the collaborative edge node is: 

 

𝐷𝑧(𝑢𝑖
𝑘) = 𝐷𝑧

𝑡(𝑢𝑖
𝑘) + 𝐷𝑧

𝑒(𝑢𝑖
𝑘) (11) 

 

which is the sum of the transmission delay and the execution 

delay. Similar to the scenario of execution on the connected 

edge node, the energy consumption of execution on the 

collaborative edge node is defined as: 

 

𝐸𝑧(𝑢𝑖
𝑘) = 𝛾𝑖,𝑘 ⋅

𝑑𝑖
𝑘

𝑟𝑢𝑖
𝑘,𝑚𝑘

+ Υ𝑘,ℎ ⋅
𝑑𝑖

𝑘

𝑟𝑚𝑘,𝑚ℎ

 (12) 

 

where, Υ𝑘,ℎ is the transmission power from 𝑚𝑘 to 𝑚ℎ. 

(4) Execution on Cloud 

Lastly, the prospect of executing image processing tasks on 

the cloud is scrutinized, particularly for tasks that necessitate 

significant computational resources. The transmission delay 

and energy consumption in this case are defined as follows: 

 

𝐷𝑐
𝑡(𝑢𝑖

𝑘) =
𝑑𝑖

𝑘

𝑟𝑢𝑖
𝑘,𝐂

 (13) 

 

where, 𝑟
𝑢𝑖

𝑘,𝑪
 is the transmission rate between user 𝑢𝑖

𝑘 and the 

cloud 𝑪. Based on that, the energy consumption of execution 

on the cloud is defined as: 

 

𝐸𝑐(𝑢𝑖
𝑘) = 𝛾𝑖,𝑘 ⋅

𝑑𝑖
𝑘

𝑟𝑢𝑖
𝑘,𝐂

 (14) 

 

This section has conducted a thorough exploration of 

diverse execution models within an edge-cloud framework, 

with a specific focus on image processing tasks. Explicit 

expressions for delays and energy consumption across 

different scenarios have been provided, incorporating the 

unique attributes of image processing into a cohesive 

framework. This investigation aids in understanding the 

specific requirements and potential advantages of different 

offloading strategies, ensuring the efficient use of 

computational resources and effective management of the 

unique aspects of image data. The models proposed here can 

further guide the design and optimization of edge-cloud 

architectures for real-time image analytics. 

 

 

4. PROBLEM FORMULATION 

 

4.1 Representation of image processing tasks 

 

In the rapidly evolving landscape of image processing tasks, 

which includes activities such as object detection, image 

classification, filtering, enhancement, and other complex 

computational tasks, a critical need has arisen to optimize both 

energy consumption and delay in multi-user scenarios. 

Numerous users are engaged in a variety of image processing 

tasks, and decisions related to offloading need to be carefully 

crafted to meet the unique requirements of each task. 

 

4.2 User delay and energy consumption 

 

The unique characteristics of tasks generated by users, 

particularly those related to image processing, demand a 

simultaneous optimization of the overall energy consumption 

and delay experienced by multiple users. The total delay for a 

specific user, denoted by 𝑢𝑖
𝑘, is articulated as follows: 

 

𝑫(𝑢𝑖
𝑘) = 𝛼𝑙 ⋅ 𝐷𝑙(𝑢𝑖

𝑘) 

+𝛼𝑚 ⋅ 𝐷𝑚(𝑢𝑖
𝑘) 

+𝛼𝑧 ⋅ 𝐷𝑧(𝑢𝑖
𝑘) + 𝛼𝑐 ⋅ 𝐷𝑐(𝑢𝑖

𝑘) 

(15) 

 

The Boolean variables 𝛼𝑙, 𝛼𝑚, 𝛼𝑧, 𝛼𝑐 are defined, with the 

constraints: 

 

𝛼𝑙 + 𝛼𝑚 + 𝛼𝑧 + 𝛼𝑐 = {0,1} (16) 

 

The overall energy consumption of use 𝑢𝑖
𝑘 is denoted as 

𝑬(𝑢𝑖
𝑘), and is formulated as: 

 

𝑬(𝑢𝑖
𝑘) = 𝛽𝑙 ⋅ 𝐸𝑙(𝑢𝑖

𝑘) 

+𝛽𝑚 ⋅ 𝐸𝑚(𝑢𝑖
𝑘) 

+𝛽𝑧 ⋅ 𝐸𝑧(𝑢𝑖
𝑘) + 𝛽𝑐 ⋅ 𝐸𝑐(𝑢𝑖

𝑘) 

(17) 

 

The constraints on the Boolean variables 𝛽𝑙, 𝛽𝑚, 𝛽𝑧 and 𝛽𝑐 

are defined: 

 

𝛽𝑙 + 𝛽𝑚 + 𝛽𝑧 + 𝛽𝑐 = {0,1} (18) 

 

Subsequently, the total cost for user 𝑢𝑖
𝑘 is defined as:  

 

𝛹(𝑢𝑖
𝑘) = 𝛼 ⋅ 𝑫(𝑢𝑖

𝑘) + 𝛽 ⋅ 𝑬(𝑢𝑖
𝑘) (19) 

 

4.3 Objective function 

 

The main goal of this formulation is to identify an effective 

framework that minimizes the aggregate cost of image 

processing and associated tasks. This includes various 

challenges inherent to image processing, such as handling 

high-resolution images, complex image analysis computations, 

and requirements for real-time responses. The formulation is 

outlined as follows: 

 

minimize ∑𝑘=0
|𝑴|

 ∑𝑖=1

|𝑼𝑚𝑘|
 𝛹(𝑢𝑖

𝑘) (20) 

 

subject to: 

 

𝑫(𝑢𝑖
𝑘) ≤ 𝜏𝑖

𝑘 (21) 

 

𝛼, 𝛽 ∈ [0,1],0 ≤ 𝛼 + 𝛽 ≤ 1 (22) 

 

∀𝑢𝑖
𝑘 ∈ 𝑼𝑚𝑘 , ∀𝑚𝑘 ∈ 𝑴 (23) 

 

4.4 Complexity of image processing offloading 

 

The challenge of task offloading, given capacity constraints 

while optimizing overall energy consumption and delay for 

multiple users, is identified as NP-hard. The inherent 

complexity of image processing tasks introduces an additional 
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layer of intricacy to this optimization puzzle. 

 

4.5 Special considerations for image processing 

 

Within the sphere of image processing, certain 

considerations are crucial, including the need for powerful 

computational capabilities, sensitivity to delay, and a focus on 

energy efficiency. Unique algorithms may require specific 

offloading strategies. The above formulation thoroughly 

encompasses these aspects, thereby providing a solid 

foundation for the analysis and application of image 

processing tasks. 

 

 

5. DRL-BASED COLLABORATIVE IMAGE 

PROCESSING AND TASK OFFLOADING 

FRAMEWORK (CTOS-DRL-IP) 

 

This section introduces a DRL-based Collaborative Task 

Offloading and Image Processing Framework (CTOS-DRL-

IP). This framework extends the CTOS-DRL, with a focused 

objective of optimizing image processing in edge network 

environments. The key goal of CTOS-DRL-IP is the efficient 

management of image processing tasks by crafting a practical 

collaborative set during the decision-making process. This is 

accomplished using deep Q-learning. The subsequent sections 

provide an in-depth discussion of the components and 

functions of the CTOS-DRL-IP. 

 

5.1 DRL formulation for image processing 

 

In this subsection, the CTOS-DRL-IP framework, inspired 

by deep Q-learning and specifically tailored for image 

processing applications, is introduced. This includes the 

representation of the total cost and the agent's knowledge of 

image processing applications within the state space to 

accurately model the edge network environment. 

Definition 1 (State): 

The state, denoted as 𝑠𝑡, is defined as a vector consisting of 

𝑠𝑡 = [𝑇𝑖
𝑘, 𝑈𝑖/�̂�𝑖 , 𝐼𝑖

𝑝
]

𝑡
. Here 𝑼𝑖/|�̂�𝑖|  represents the task 

generated by users that requires processing. 𝑻𝑖
𝑘 =

∑𝑘=1

|�̂�𝑖|
 𝑇𝑖

𝑘 signifies the cumulative cost of the scheduled 

completed tasks �̂�𝑖 , while the last part of the vector 

symbolizes the attributes of the image processing task, such as 

resolution, type, and processing requirements. 

Definition 2 (Action): 

The action space 𝑎𝑡 , embodying the adjusting action, is 

represented by the vector [𝜁𝑖
𝑙 , 𝜁𝑖

𝑐 , 𝜁𝑖]𝑡
. Within this, 𝜁𝑖

𝑙  or 𝜁𝑖
𝑐  

indicates whether the destination location of the adjustment 

resides on a local device or in the cloud. The vector 𝜁𝑖 , 

denoting the set of feasible edge nodes 𝕄𝑖  is characterized by 

𝜁𝑖 = (𝜁𝑖
𝑚(𝑘)|𝑚𝑘∈𝕄𝑖

) . Additionally, depicts the processing 

action specific to the image task, such as filtering, sharpening, 

or scaling. 

Definition 3 (Reward): 

The immediate reward is expressed by 𝑅(𝑠𝑡 , 𝑎𝑡) = (�̄�𝑖 −
𝐸)/�̄� − 𝛼 ⋅ 𝑄𝑖

𝑝
 , where �̅�𝑖  is the aggregate cost of multiple 

tasks for users, �̅� is a fundamental cost that is being selectively 

offloaded, and 𝛼 ⋅ 𝑄𝑖
𝑝

 is a quality factor pertinent to image 

processing. This factor ensures a balance between cost 

efficiency and quality of image processing. 

In this context, the agent is prepared by selecting a 

destination for various users and defining particular image 

processing tasks. Training the agent, as a result, is anticipated 

to facilitate the simultaneous accomplishment of offloading 

and image processing tasks. The action 𝑎𝑡 is designed for each 

time slot t, and the agent is rewarded 𝑅(𝑠𝑡 , 𝑎𝑡) in a given state 

𝑠𝑡. Efforts are made to minimize the total cost, comprised of 

energy consumption and delay, without undermining the 

quality of image processing. This aligns with the 

reinforcement learning objective of maximizing long-term 

reward. 

In conclusion, the CTOS-DRL-IP framework presents an 

innovative method for collaborative image processing and task 

offloading in edge networks, utilizing DRL. Through the 

provision of tailored state, action, and reward definitions, the 

framework provides a robust solution for managing complex 

image processing tasks. This results in the achievement of 

optimal energy efficiency and a reduction in delay without a 

compromise in image quality. The insights and findings from 

this study extend the current understanding of the field, 

opening new avenues for exploration and application in real-

world scenarios. 

 

5.2 Feasible collaborative set construction with image 

processing consideration (FCSC-IP) 

 

The goal of the agent operating within the CTOS-DRL-IP 

framework is to achieve effective task offloading for multiple 

users, aiming to minimize the overall cost, with special 

attention given to image processing requirements. The nature 

of these decisions depends on the observation of the 

environment and the overall architecture, which, given the 

constraint of edge server capacities, influences the number of 

tasks that can be offloaded to individual regions. When an 

edge node reaches its capacity, collaboration with neighboring 

nodes becomes necessary, particularly when managing 

complex image processing tasks that require stringent 

adherence to processing, quality, and time parameters. The 

complexity and high dimensionality of this collaborative set 

construction process are addressed through the introduction of 

the FCSC-IP method. 

 

5.2.1 Image processing integration into collaborative decisions 

In an edge network comprising seven interconnected edge 

nodes, where each node has the ability to choose collaboration 

partners for task completion, decisions are not made solely 

based on proximity and availability. A novel method, FCSC-

IP, is proposed, taking into account specific image processing 

capabilities such as resolution handling, filtering, and 

transformation. Users serving at edge nodes 𝑚1 that connect 

with 𝑚2  to 𝑚5  will have collaboration options, with 

consideration given to the complexity introduced by the 

adjacency matrix. 

Definition 4 (Collaborative Influence Factor with Image 

Processing Consideration): 

The collaborative influence factor with image processing 

consideration, denoted as 𝜑(𝑚𝑘), is formulated to assess the 

collaborative capacity of edge node 𝑚𝑘 ∈ 𝐀(𝑚𝑘) for user 𝑚𝑘, 

reflecting the image processing requirements:  

 

𝜙(𝑚𝑘) =
𝑓ℎ

(𝑝(𝑚𝑘 , 𝑚ℎ) ⋅ |𝑈(𝑚𝑘)|)
× 𝛽(𝐼𝑖

𝑝
) 

 

where, 𝛽(𝐼𝑖
𝑝

) serves as a weight parameter, factoring in image 

processing attributes such as type, resolution, and complexity. 

1334



 

Definition 5 (Feasible Collaborative Set with Image 

Processing Consideration): 

The feasible collaborative set with image processing 

consideration, denoted as ℤ(𝑚𝑘) = {𝑚ℎ}, is derived from the 

edge nodes in set 𝑨(𝑚𝑘) , with the collaborative influence 

factor under the boundary parameter Γ𝑚𝑘
, such that 𝜑(𝑚ℎ) ≤

Γ𝑚𝑘
. 

 

5.2.2 Algorithm for FCSC-IP 

 
Algorithm 1. Feasible Collaborative Set Construction, FCSC 
Input: The topology G of the edge-cloud architecture; 
Output: The feasible collaborative set ℤ of each edge node in 𝐌; 

1: for each edge node 𝑚𝑘 in 𝐌 do  

2: Initialize the set 𝐔𝑗 in the area of edge node 𝑚𝑘;   

3: Calculate the boundary parameter Γ𝑚𝑘
 according to the 

maximum tolerant delay of users in set 𝐔𝑗 , where Γ𝑚𝑘
=

arg min𝑢𝑖
𝑘∈𝐔𝑚𝑘  {𝜏𝑖

𝑘};   

4: Initialize the set 𝐀(𝑚𝑘) of adjacent edge nodes of 𝑚𝑘;  

5: for each adjacent edge node 𝑚ℎ in 𝐀(𝑚𝑘) do  

6: Calculate the collaborative influence factor  𝜑(𝑚ℎ) =
𝑓ℎ

𝑝(𝑚ℎ,𝑚𝑘)⋅|𝐔ℎ|
;  

7: if 𝜑(𝑚ℎ) ≤ Γ𝑚𝑘
 then 

8: Adding edge node 𝑚ℎ into set ℤ;  

9: Update 𝐀(𝑚𝑘) = 𝐀(𝑚𝑘)/𝑚ℎ;  
10: end if 

11: end for 

12: end for 

13: return the feasible collaborative set ℤ;  

 

The procedure for feasible collaborative set construction is 

outlined in Algorithm 1, with explicit attention to the 

requirements of image processing. The FCSC-IP algorithm 

focuses on image processing needs, aiming to reduce 

complexity while improving efficiency in the formation of a 

feasible collaborative set. The time complexity of FCSC-IP is 

𝑂(|𝑴| ⋅ |𝑼ℎ|) , taking into account the attributes of image 

processing. 

In conclusion, the FCSC-IP presents an innovative method 

that enables edge nodes to participate in collaborative 

decisions in task offloading, specifically reflecting the 

complexity inherent in image processing tasks. By integrating 

image processing prerequisites into both collaborative 

influence factors and feasible set construction, FCSC-IP offers 

a balanced and efficient solution, harmonizing cost, efficiency, 

and quality in managing complex image processing tasks 

within edge networks. This method not only enhances existing 

offloading strategies but also provides a nuanced 

understanding of the interaction between task distribution and 

image processing, making a significant contribution to the 

field. 

 

5.3 CTOS-DRL for image processing tasks 
 

In this subsection, a task offloading algorithm specifically 

designed to meet the demands of image processing tasks is 

introduced, grounded in DRL. The fundamental principle of 

CTOS-DRL, summarized in Algorithm 2, involves using a 

DRL agent to facilitate dynamic offloading of image 

processing tasks from multiple users, with the goal of 

minimizing the total cost. 

The set of image processing tasks, denoted by χ, comes from 

various users in set U and forms the input. The output, denoted 

as the offloading strategy X, might include numerous image 

manipulations such as filtering, object detection, segmentation, 

and enhancements that require substantial computational 

resources. 

The approach is summarized as follows: 
 

Algorithm 2 CTOS-DRL 

Input: The tasks 𝜒 generated by users in set 𝐔;   

Output: Offloading strategy 𝕏; 

1: Initialize Θ to 𝑁, 𝑄 with random weights 𝜃, and �̂� with weights 

�̅�: = 𝜃; 

2: for episode from 1 to 𝜅 do     

3: Initialize sequence 𝑠 for multiple users;  

4: Construct the feasible set ℤ based on Algorithm 1; 

5: for 𝑡 from 1 to 𝑇 𝐝𝐨 

6: Select a random action 𝑎𝑡 with probability 𝜀 under the feasible 

set ℤ; 

7: Otherwise select 𝑎𝑡 = argmax𝑎  𝑄(𝜙(𝑆𝑡), 𝑎; 𝜃); 

8: Set 𝑠𝑡+1 = 𝑠𝑡 , 𝑎𝑡 , 𝑥𝑡+1,and preprocess 𝜙𝑡+1 = 𝜙(𝑠𝑡+1); 

9: Store transition (𝜙𝑡 , 𝑎𝑡, 𝑟𝑡, 𝜙𝑡+1) in Θ; 

10: Sample random minibatch of transitions(𝜙𝑗 , 𝑎𝑗 , 𝑟𝑗 , 𝜙𝑗+1) from 

Θ; 

11: if episode terminates at step 𝑗 + 1 then 

12: Set 𝑦𝑗 = 𝑟𝑗; 

13: else 

14: Set 𝑦𝑗 = 𝑟𝑗 + 𝛾max𝑎′  �̂�(𝜙𝑗+1, 𝑎′; 𝜃−); 

15: Perform a gradient descent step on (𝑦 − 𝑄(𝜙𝑗 , 𝑎𝑗 ; 𝜃))
2

with 

respect to the network parameters 𝜃; 

16: Reset �̂� = 𝑄 every 𝐶 steps; 

17: end if 

18: end for 

19: end for 

20: return Offloading strategy 𝕏 for multiple users 
 

(1) Initialization: Basic settings are initialized (Line 1), 

including the capacity N of replay memory Θ, the target 

action-value function �̂� with weights �̅�: = 𝜃, and the random 

weights 𝜃 of action-value function Q. 

(2) Environment Familiarization: Over a series of kappa 

episodes, the agent becomes familiar with the environment, 

tailored to the complex nature of image processing tasks 

(Lines 2 to 19). 

(3) Sequence Initialization: The sequence for multiple users 

is initialized (Line 3), considering the unique characteristics 

inherent to image processing tasks. 

(4) Collaborative Set Construction: A feasible collaborative 

set Z is constructed (Line 4) based on Algorithm 1, with 

specific attention to the constraints and requirements of image 

processing. 

(5) Training Process: Spanning lines 5 to 18, the agent's 

decision-making process encompasses action selection (lines 

6-7), state and action setting (line 8), storing transitions in 

replay memory (line 9), and applying gradient descent to 

minimize total cost (lines 14 to 16). 

(6) Final Offloading Strategy: Representing the optimized 

solution for handling image processing tasks, the offloading 

strategy X is returned (Line 20). 

(7) Time Complexity: The time complexity of CTOS-DRL 

is denoted by 𝑂(𝜅 ⋅ |𝑴| ⋅ |𝑼ℎ| ⋅ |�̃�𝑖|), where κ represents the 

number of episodes, and U ˜_i refers to the scale of sub-tasks 

pending scheduling on edge server mi, expressed as |�̃�𝑖| =

|𝑼𝑖/�̂�𝑖|. 

The CTOS-DRL algorithm provides a robust and efficient 

method for managing the offloading of image processing tasks. 

By recognizing and accommodating the specific requirements 

and complexities associated with image processing, it offers a 

flexible and optimized solution that can adapt to the dynamic 
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nature of contemporary applications involving image 

manipulation. 

 

 

6. EXPERIMENTAL EVALUATION FOR IMAGE 

PROCESSING TASKS 
 

This section provides a comprehensive investigation of the 

task offloading problem through both simulations and 

experimental methodologies. A particular emphasis is placed 

on image processing tasks within the realm of edge-cloud 

collaborative computing, echoing the growing demand for 

real-time image processing in current applications such as 

facial recognition, augmented reality, medical imaging, and 

surveillance. 

A prototype framework was utilized for these experiments, 

developed using Python. This included the structure of the 

edge network and the generation of image processing tasks by 

multiple users, covering operations such as image 

classification, segmentation, and enhancement. These tasks 

are representative of the common requirements in 

contemporary applications, requiring quick and proficient 

image processing. 

The experimental results were meticulously examined from 

multiple perspectives, incorporating both computational and 

communicational aspects of the offloading strategies, with the 

quality of image processing acknowledged as a critical factor 

in performance assessment. 

 

6.1 Basic setting for image processing task evaluation 
 

This subsection explores the effectiveness of the CTOS-

DRL approach to the task offloading problem, focusing on 

image processing tasks, using a synthetic dataset generated by 

6 to 10 edge nodes. The tasks included areas such as filtering, 

object detection, enhancement, and segmentation. 

A 500 square meter area, interacting with 6 to 14 mobile 

users for each edge server, was included in the analysis. This 

setup mirrors real-world situations where image processing 

tasks might come from various sources, including mobile 

applications, surveillance cameras, or IoT devices. 

Table 2 outlines the essential parameter settings employed 

in this study, tailored to meet the specific demands of image 

processing, as referenced in literatures [20-22]. 

Four baseline algorithms were considered for comparative 

evaluation in these experiments, each evaluated for its capacity 

to manage image processing tasks: 

• Offloading Tasks on Local Devices (OTLD): Image 

processing tasks generated by users were iteratively offloaded 

on local devices, considering the computational capabilities 

and power limitations of these devices. 

• Offloading Tasks on Edge Nodes (OTEN): Image 

processing tasks generated by users were iteratively offloaded 

on directly connected edge nodes, assessing the implications 

on processing time and quality. 

• Offloading Tasks on the Cloud (OTC): Image processing 

tasks generated by users were iteratively offloaded on the 

cloud, focusing on scalability and potential latency. 

• Offloading Tasks through Greedy Strategy (OTGS): The 

offloading location was chosen based on total cost 

consideration for each iteration of image processing tasks 

created by users, taking into account both computational and 

communication expenses. 

CTOS-DRL was compared with these four baseline 

algorithms, and the effectiveness of CTOS-DRL in managing 

image processing tasks was confirmed. 

By incorporating the unique prerequisites and constraints of 

image processing into the experimental design, a robust 

foundation was established for evaluating the performance of 

the proposed algorithm in a relevant context. These results 

further validate the practicality and efficiency of the CTOS-

DRL approach in offloading image processing tasks within 

edge-cloud collaborative computing environments. 
 

Table 2. Setting of parameters for image processing tasks 
 

Parameters Values 

The path loss exponent 𝜔𝑖 3 

The data volume of tasks (specific to image 

processing) 
0.5Mb~1Mb 

The local device’s transmission power 𝛾𝑖,𝑘 3W 

The local device’s computing capacities (suitable 

for image processing) 
0. 5-1GHz 

The edge nodes’ computing capacities (optimized 

for image processing) 
5GHz 

The channel’s fading coefficient 10−6 

The chip architecture coefficient factor 10−20 

 

6.2 Performance evaluations for image processing tasks 
 

In this subsection, the performance of the strategy was 

evaluated, focusing on image processing tasks such as object 

detection, segmentation, and recognition. The goal was to 

collaboratively optimize the overall energy consumption and 

delay for these tasks. In this regard, the results were examined 

in three distinct groups, characterized by α=0.3, β=0.7, α=0.5, 

β=0.5, and α=0.4, β=0.6. These groups, with varying 

parameters, indicate the proportion of delay and energy 

consumption, crucial factors for real-time image processing. 

A comparative analysis was performed to understand the 

impact of the number of servers within identical strategies. 

Here, the average total cost was calculated under the same 

number of servers but varying numbers of users. Focus was 

given to the relationship between costs and key variables such 

as image quality, processing speed, and energy efficiency. 

These are particularly relevant for edge devices constrained by 

limited computational resources. 

The findings, illustrated in Figures 2-4, led to several key 

conclusions: 

(1) It was observed that the total costs under OTLD and 

OTC were significantly higher than other strategies. This 

pattern became more pronounced when dealing with complex 

image processing tasks, which can place increased 

computational demands on local devices. An analysis was 

conducted on the scenario with increasing edge servers in 

OTLD and OTC, revealing the inherent shortcomings of these 

strategies in managing image processing tasks. 

(2) Conversely, the total costs under OTEN, OTGS, and 

CTOS-DRL were found to decrease with the expansion of 

edge servers. Specifically for image processing tasks, CTOS-

DRL showed the lowest total cost, enhancing efficiency by an 

average of 48.93% compared to OTEN, and 22.29% relative 

to OTGS. 

Further insights were derived from the graphs in Figures 5-

10, providing comprehensive comparisons of costs under 

various edge server conditions. 

In the final analytical segment, Figures 11-13 depicted the 

convergence of the strategies, showcasing how CTOS-DRL 

operated across different scenarios of image processing. This 

included tasks such as real-time object tracking, feature 
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extraction, and image enhancement. The examination 

underscored the substantial improvements brought about by 

CTOS-DRL, particularly within groups with smaller scale 

edge servers. This presents a powerful solution for mobile 

edge computing within the realm of image processing 

applications. 

The explicit integration of specific image processing tasks 

added a layer of practical relevance to the analysis, affirming 

the applicability of the findings to real-world scenarios where 

efficient image processing at the edge remains of utmost 

importance. 

 

 
 

Figure 2. The average cost of the first group (α=0.3, β=0.7) 

 

 
 

Figure 3. The average cost of the second group (α=0.4, 

β=0.6) 

 

 
 

Figure 4. The average cost of the s third group (α=0.5, 

β=0.5) 

 

 
 

Figure 5. Total cost under 5 edge servers 

 
 

Figure 6. Total cost under 6 edge servers 

 

 
 

Figure 7. Total cost under 7 edge servers 

 

 
 

Figure 8. Total cost under 8 edge servers 

 

 
 

Figure 9. Total cost under 9 edge servers 

 

 
 

Figure 10. Total cost under 10 edge servers 
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Figure 11. The convergence of the s first group (α=0.3, 

β=0.7) 

 

 
 

Figure 12. The convergence of the s second group (α=0.4, 

β=0.6) 

 

 
 

Figure 13. The convergence of the s third group (α=0.5, 

β=0.5) 

 

6.3 Convergence evaluations for image processing tasks 

 

In this subsection, the convergence of CTOS-DRL across 

various user groups was examined, with a special focus on 

image processing tasks that include classification, feature 

extraction, and texture analysis. For each group of users, the 

average total cost was calculated over a span of 500 iterations, 

capturing performance metrics relevant to image processing. 

After fitting, the results were outlined in Figures 11-13, 

leading to the following conclusions: 

(1) As illustrated in Figures 11-13, the cumulative costs 

under the five strategies were found to nearly converge to a 

specific value after 500 iterations. This trend attests to a 

consistent performance across different parameters, even 

when dealing with computationally demanding image 

processing tasks. However, it should be noted that the rate of 

convergence might be slow in some cases, especially when the 

number of users is relatively high. Evidence of this 

phenomenon can be seen in the group with α=0.4 and β=0.6 

consisting of 10 users, as explained in Figure 12. 

(2) The overall speed of convergence was found to be 

closely related to the proportion of latency and energy 

consumption to the total cost, both critical aspects for image 

processing tasks. As shown in Figure 11, when the factor of 

energy consumption is high, convergence was observed 

around the 300th iteration. In stark contrast, when the 

proportion dropped to β=0.5, convergence was noticed around 

the 400th iteration. This sensitivity of convergence to these 

variables underscores the importance of balancing 

computational resources within edge computing environments, 

especially when faced with image processing tasks requiring 

immediate responses. 

(3) Within the groups where α=0.3, β=0.7, α=0.5, β=0.5, 

and α=0.4, β=0.6, a significant decrease in total costs was 

recorded after approximately 50 iterations. This rapid 

convergence highlights the effectiveness of the CTOS-DRL 

method in adapting to diverse computational demands, 

validating its suitability for a wide range of image processing 

applications. 

In summary, the findings demonstrate that CTOS-DRL 

effectively achieves and maintains quick convergence, an 

essential characteristic for real-time or near-real-time image 

processing tasks. The analysis included here not only confirms 

the robustness of the proposed model but also provides 

insights into its successful deployment across various 

scenarios requiring advanced image processing at the 

network's edge. 

 

 

7. CONCLUSION 

 

In this study, the crucial issue of task offloading for multiple 

users was explored, with a focus on image processing tasks 

such as object detection, segmentation, and feature extraction 

within an edge-cloud collaborative environment. The intricate 

nature of image processing requires careful examination of 

computational and communicative resource limitations, 

especially in situations requiring prompt responses. 

The main findings and contributions of this study are 

outlined as follows: 

(1) Optimization of Total Cost: An optimized offloading 

strategy was developed that simultaneously considers delays 

and energy consumption. The integration of these aspects 

enables efficient processing of image-related tasks, avoiding 

performance degradation or unnecessary costs. 

(2) Innovative Offloading Strategy (CTOS-DRL): A novel 

CTOS, based on DRL, was proposed that incorporates a crowd 

updating mechanism within the collaborative edge cloud 

computing framework. This approach reduces the high 

complexity traditionally associated with nearby edge servers, 

offering a heuristic algorithm to identify feasible ones. 

Through the implementation of a fully connected neural 

network, the task offloading process was further refined, 

making it particularly suitable for image processing 

applications. 

(3) Extensive Simulations and Experiments: The efficiency 

and effectiveness of the algorithms were confirmed through 

detailed simulations and practical experiments, specifically 

focusing on the context of image processing. Such 

experimental results provided empirical evidence for the 

superiority of the proposed approach in reducing the total cost, 

while maintaining high image processing performance at the 

edge. 

(4) Implications for Image Processing at the Edge: The 

proposed CTOS-DRL was found not only to solve the task 

offloading problem but also to open new possibilities for the 

execution of complex image processing applications at the 
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network's edge. By leveraging advanced DRL techniques, a 

pathway for future innovations in the field was established, 

including potential extensions into video processing, 

augmented reality, and other visual computing domains. 

In summary, the findings of this investigation represent a 

significant step forward in realizing the potential of edge 

computing for image processing tasks, offering a promising 

solution that expertly balances efficiency, cost-effectiveness, 

and robust performance. The methodologies and insights 

gleaned from this research provide a valuable foundation for 

further exploration and enhancement in this rapidly evolving 

field. 
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