
The Evaluation of Nature-Inspired Optimization Techniques for Contrast Enhancement in 

Images: A Novel Software Tool 

Hamza Osman Ilhan1* , Ahmet Elbir1 , Gorkem Serbes2 , Nizamettin Aydin1

1 Department of Computer Engineering, Yildiz Technical University, Istanbul 34220, Turkey 
2 Department of Biomedical Engineering, Yildiz Technical University, Istanbul 34220, Turkey 

Corresponding Author Email: hoilhan@yildiz.edu.tr

https://doi.org/10.18280/ts.400401 ABSTRACT 

Received: 6 February 2023 

Revised: 25 July 2023 

Accepted: 8 August 2023 

Available online: 31 August 2023 

This study is rooted in the direct correlation between the performance of multivariate 

techniques and the selection of parameters. The complexity and time-consuming nature of 

parameter selection, due to the need for exhaustive testing of all available parameters for 

optimal results, is acknowledged. To mitigate this issue, a novel software tool, integrating 

nine nature-inspired optimization methods (Differential Evolution, Artificial Bee Colony, 

Particle Swarm, Cat Swarm, Dragonfly, Black Hole, Bacterial Foraging, Genetic 

Algorithms, and Simulated Annealing), is proposed. These methods are employed in 

histogram stretching, a parameter-dependent contrast enhancement technique, with 

multiplication, addition, and root extraction operations as the target parameters for 

optimization. In addition to this, histogram equalization, a parameter-independent contrast 

enhancement technique, is included for the purpose of comparative performance analysis. 

The software tool, publicly available, provides four performance metrics namely, Mean 

Square Error, Peak Signal-to-noise Ratio, Structural Similarity Index, and processing times. 

A rigorous evaluation using the widely recognized Tampere Image dataset indicates that 

Differential Evolution emerged as the most efficient technique, scoring highest for 

Structural Similarity Index (0.948) and second best for Mean Square Error (278.05) and 

Peak Signal to Noise Ratio (26.962). Furthermore, Particle Swarm Optimization 

demonstrated the fastest time complexity, requiring merely 0.6 sec per image for parameter 

definition. Notably, it was observed that while histogram equalization tends to degrade 

original images, the adaptive nature of optimized histogram stretching remains preserved, 

thereby leaving the image quality unaffected. Such findings highlight the efficacy of the 

proposed software tool in the optimization and evaluation of contrast enhancement 

techniques. 
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1. INTRODUCTION

Optimization, a fundamental principle in numerous 

engineering applications, can be succinctly characterized as 

the selection of paramount parameters from a multitude of 

alternatives aimed at achieving optimal performance against 

specified criteria [1]. This process demands a systematic 

exploration of each parameter, given that optimal selection in 

one problem space may not translate to efficacy in another. 

Therefore, it is of critical importance to encapsulate all 

potential parameters within an equation to derive an optimal 

solution. Brute-force search, a manual selection method, is 

often resource-intensive and time-consuming, making 

optimization techniques essential in formulating an equation 

over potential parameter values to ensure a more precise 

selection. 

These optimization techniques find widespread applications 

in various real-world engineering scenarios, including 

airspace surveillance systems [2], image processing in 

embedded systems [3], and automatic parking systems [4]. 

These methods not only result in superior outcomes but also 

curtail the complexity, processing time, and memory 

requirements of operating systems. This is particularly 

pertinent for real-time systems where rapid response and 

accurate analysis are indispensable [5]. 

One such demanding field that necessitates rigorous 

optimization procedures is image processing, given the high 

dimensionality of inputs and reliance on parameter-specific 

algorithms. In this context, optimization becomes an integral 

part of image processing problems such as edge detection, 

object segmentation via clustering, classification, object 

tracking, and image enhancement (IE). This study aims to 

investigate the performance of nine nature-inspired 

optimization techniques in the context of IE. To facilitate this, 

a software tool has been developed to optimize parameters for 

the given problem. 

IE, serving as a crucial pre-processing technique, ensures 

the delivery of high-quality images for more insightful feature 

extraction. As outlined by Sawant and Deore [6], IE 

techniques can be broadly categorized into spatial and 

frequency domain analyses. Techniques such as histogram 

stretching (HS) and equalization, negative image, exponential 

or logarithmic transformation are instances of spatial domain 

enhancements [7], while frequency-based enhancement 

techniques primarily depend on various tuned filters [8]. 

Considering the multiplicity of parameters that most IE 

techniques rely on, the configuration process becomes both 

complex and time-consuming. The inherent complexity of 
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images renders many techniques inefficient due to system 

resource constraints. Herein lies the significance of 

optimization methods coupled with IE techniques; they 

deliver superior image enhancements with reduced resources 

and in less time. However, the efficacy of these enhancements 

is heavily predicated on the optimization technique employed, 

necessitating the testing of various techniques within the 

problem space. 

This study encompasses nine nature-inspired optimization 

methods, namely Particle Swarm Optimization (PSO), 

Artificial Bee Colony (ABC), Genetic Algorithm (GA), 

Differential Evolution (DE), Simulated Annealing (SA), 

Bacteria Foraging Algorithm (BFA), Cat Swarm Optimization 

(CSO), Dragonfly Algorithm (DA) and Black Hole 

Optimization (BH). The objective is to offer an investigative 

platform for these methods in image processing problems. The 

performance of these nine nature-inspired optimization 

techniques in the contrast enhancement problem was 

thoroughly examined. Additionally, a novel software tool was 

developed to apply these techniques in enhancing various 

distorted images. 

The structure of this paper is as follows: Section 2 provides 

a comprehensive literature review of the nine nature-inspired 

optimization methods employed. Section 3 details the tested 

dataset and elaborates on the contrast enhancement techniques 

alongside their corresponding optimization techniques. 

Section 4 presents the experimental results, discussing the 

images that performed best and worst. Finally, Section 5 

encapsulates the conclusions and proposes future research 

directions. 

 

 

2. LITERATURE REVIEW 

 

PSO, inspired by the flocking behavior of birds and schools 

of fish, was first proposed by Kennedy and Eberhart [9]. Their 

method has seen several applications in image processing, 

including work by Malik et al. who implemented PSO and GA 

on image histograms to enhance the images [10]. Gorai and 

Ghosh reviewed the usage of PSO and GA in several problem 

spaces and conducted a comparison study [11]. 

ABC algorithm is a swarm-based optimization algorithm 

inspired by honeybees' intelligent foraging behavior [12]. 

Subramaniam and Radhakrishnan [13] successfully 

implemented the ABC algorithm for classifying brain cancer 

images using Neural Networks. Singh compared the ABC 

algorithm with GA, PSO, and DE in a minimum spanning tree 

problem and found its performance to be superior or similar, 

with fewer control parameters [14]. 

DE, proposed by Storn and Price, optimizes continuous 

functions [15]. It has been applied in various contexts 

including IIR-filter optimization [16] and contrast 

enhancement [17]. Sarangi et al. used DE in a gray-level IE 

problem and compared it with linear contrast stretching, 

histogram equalization, and PSO-based IE, with DE yielding 

the best performance [18]. 

SA, based on the Metropolis-Hastings Monte Carlo 

algorithm, optimizes a cost function [19] by inspiring the logic 

behind the process of annealing in metallurgy. Hoseini and 

Shayesteh proposed a hybrid algorithm combining GA, Ant 

Colony Optimization, and SA for increasing the contrast of 

images, reporting the best performance by this combination 

[20]. 

BFA is inspired by bacteria's behavior in perceiving and 

obtaining nutrients [21]. Hanmandlu et al. employed BFA in 

an IE problem, proposing an approach to enhance color 

images using fuzzy logic optimized with BFA [22]. They 

reported that BFA yielded better performance metrics than GA. 

CSO, inspired by the behaviors of tracing and seeking mode 

of the cats, was first presented by Chu et al. [23]. Çam et al. 

[24] reported that CSO is faster than PSO in IE but lags in 

terms of Structural Similarity Index (SSIM). 

GA, one of the most well-known optimization algorithms, 

has seen broad application in image processing and 

enhancement. Saitoh [25] used GA to enhance gray level 

images by evaluating the intensity of spatial edges. Hashemi 

et al. [26] proposed a novel GA-based contrast enhancement 

method and compared the results with histogram equalization 

technique. 

DA, proposed by Mirjalili [27], is inspired by the behaviors 

of dragonflies. Some aspects of DA and PSO were combined 

to propose a Memory based Hybrid Dragonfly Algorithm to 

solve numerical optimization problems [28].  

BH algorithm, based on the black hole phenomena in 

physics, was introduced by Hatamlou for solving clustering 

problems [29]. Yaghoobi et al. [30] used BH in a gray-level 

IE context and compared it with GA, PSO, and histogram 

equalization techniques. 

An in-depth comparison of the different optimization 

algorithms used in this study is central to the development of 

the contrast enhancement tool. The literature findings reveal 

that each algorithm has its unique strengths and limitations, 

which impacts the outcomes, parameters, and complexities of 

its implementation. For example, PSO's key strength lies in its 

ease of implementation and robustness, but it struggles with 

premature convergence and is sensitive to parameter selection. 

ABC, in contrast, outperforms other population-based 

algorithms with fewer control parameters but may not be as 

effective in high-dimensional problem spaces. GA is versatile 

and robust, offering high-quality solutions, but it is 

computationally intensive and may struggle with premature 

convergence. DE is an effective tool for processing continuous 

functions and boasts strong global search capability. However, 

it requires a large population size and may have slow 

convergence rates. SA provides an excellent global search 

capability and is not easily trapped in local optimization. On 

the other hand; it has a slow convergence rate and the cooling 

schedule is difficult to determine. BFA offers a unique 

adaptive behavior that can be advantageous, but it may 

become trapped in local optima and its convergence speed 

varies with the problem's complexity. CSO is characterized by 

high exploration capability and simple concept, but its 

convergence speed is comparatively slow, and it may struggle 

with dimensional problems. Although the DA offers unique 

adaptive capabilities and global optimization, it also has slow 

convergence speed, and its performance varies with the 

problem's complexity. Lastly, BH provides a robust search 

capability and simplicity, but it can suffer from premature 

convergence. These trade-offs underline the importance of 

selecting the appropriate algorithm for specific tasks, and 

these factors were carefully considered when developing the 

contrast enhancement tool. Each of these techniques 

demonstrates the diversity of approaches to optimization and 

their applications in image processing. Additionally, they 

provide a rich context for the current study, which investigates 

the performance of these nine nature-inspired optimization 

techniques in the contrast enhancement problem. 
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3. MATERIALS AND METHODS 

 

This paper primarily focuses on developing an application 

to explore the integration of optimization theory within the 

multi-parametric contrast-based IE framework. In this regard, 

the HS technique was selected for contrast enhancement, and 

the optimization techniques were applied to determine the 

tuning parameters. In addition to a parameter-dependent 

technique, a non-parametric contrast enhancement technique, 

Automatic Histogram Equalization, was included in the study 

for comparative analysis of the results. 

 

3.1 Employed dataset 

 

This study utilized images already distorted from the 

Tampere Image Dataset (TID2008) [31] for tests, comparing 

the results with those obtained using the standard non-

parametric histogram equalization technique. The TID2008 

dataset, curated by Ponomarenko et al., encompasses 25 

reference images subjected to 17 different distortion effects 

across four levels. This compilation amounts to a total of 1700 

images, each with a resolution of 512×384 pixels. Given that 

HS, and equalization predominantly affect pixel values, the 

focus was on adjusting contrast levels. Therefore, only images 

with contrast-based distortions and their respective levels 

were selected. The dataset incorporated 100 distorted and 25 

original images to evaluate the performance of various 

techniques. An example of an image subjected to different 

levels of contrast-based distortion is presented in Figure 1. HS 

with parameters optimized by different techniques was also 

tested on original images. This testing aimed to validate the 

proposed software concerning its impact on distortion. The 

performance was quantitatively assessed based on several 

metrics. 

 

 
 

Figure 1. a) Original Image, b) Contrast Increment +1, c) 

Contrast decrements -1, d) Contrast increment +2, e) 

Contrast decrements -2 

 

3.2 Standard histogram equalization 

 

Histogram equalization represents one of the IE techniques 

used for adjusting contrast levels. This method involves the 

automatic alteration of the histogram curve using the pixel-

based color space present in the image [32]. The process 

begins with the computation of the probability mass function 

(PMF) for all pixels within the image. Subsequently, the 

cumulative distribution function (CDF) is calculated utilizing 

the PMF and multiplied by various levels to determine new 

pixel intensities. The respective formula is presented in Eq. (1), 

where L symbolizes the multiplication level for the computed 

CDF and pn denotes the bit number of possible color or 

intensity values. The terms fi.j and gi.j represent the coordinates 

of pixels corresponding to the ith row and the jth column, and 

the generated new image pixel, respectively. 

 

𝑔𝑖.𝑗 = 𝑓𝑙𝑜𝑜𝑟 ((𝐿 − 1) ∑ 𝑝𝑛

𝑓𝑖.𝑗

𝑛=0

) (1) 

 

3.3 Histogram stretching 

 

HS is a simple and effective technique for improving the 

contrast in an image. It works by spreading out the most 

frequent intensity values or colors in an image, thus enhancing 

the contrast. The key parameters of HS are the minimum and 

maximum intensity values of the image. By stretching the 

range of intensity values, the contrast of the image can be 

increased. In the HS technique different mathematical 

operations can be utilized to enhance the contrast levels [33]. 

We selected multiplication, addition, and root extraction 

mathematical operations to be used in HS technique. 

The parameters within these operations serve as vital 

components for obtaining an efficient enhancement algorithm. 

It is crucial to understand that these parameters are image-

specific, meaning a singular parameter cannot be universally 

applied to all images. Therefore, an adaptive process for 

parameter adjustment is necessary for each distinct image. In 

response to this requirement, a software tool incorporating 

nine nature-inspired optimization techniques for optimizing 

defined HS parameters is presented within this study. The 

results procured by this software are thoroughly discussed. 

 

 
 

Figure 2. Utilized nature-inspired optimization techniques 

 

The techniques employed within this study are itemized in 

Figure 2. Each optimization process necessitates a 

convergence point to terminate the iteration and define the 

optimal parameters. For this study, Eq. (2) is used to establish 

these convergence points. 

 

𝑆𝑡 = (𝑎𝑟𝑔𝑚𝑎𝑥(𝐼𝑡) − 𝑎𝑟𝑔𝑚𝑖𝑛(𝐼𝑡) + 1) × 𝑛𝑡 (2) 

 

where, I represents the intensity values of image t, and n refers 

to the number of colors in the histogram chart of image t. The 

invariability of S within a certain range serves as the 

convergence criterion for the employed optimization 

techniques. If the S value remains stable during the last k 

iterations of the optimization process, then the HS with 

optimization techniques will be terminated. k can be selected 

as an arbitrary constant. The stopping criterion is given in Eq. 

(3). 

 

𝑆𝑡 − 20 < 𝑆𝑡 < 𝑆𝑡 + 20 

𝑆𝑡 =
1

𝑘
∑ 𝑆𝑡

𝑞

𝑘

𝑞=1

 
(3) 
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Table 1. The key properties of each optimization technique, including the type of problems it is best suited for, its complexity, 

the number of parameters it requires, its advantages, and its limitations 

 
Algorithm Suited Problems Complexity Parameters Advantages Limitations 

PSO 
Continuous, non-

linear 
Medium 

Swarm size, inertia weight, 

cognitive & social parameters 

Simple, fast 

convergence 

Sensitive to initial conditions, may 

converge prematurely 

ABC 
Continuous, non-

linear 
Medium Colony size, limit for scout 

Few control 

parameters, simple 

Slow convergence in complex 

problems 

GA 

Discrete, 

continuous, 

combinatorial 

High 
Population size, crossover & 

mutation rates 

Global search 

capability 

Computationally expensive, requires 

parameter tuning 

DE 
Continuous, non-

linear 
High 

Population size, difference & 

crossover factors 

Robust against 

local minima 

Sensitive to parameter settings, slow 

convergence in high-dimensional 

problems 

SA 

Discrete, 

continuous, 

combinatorial 

High 
Initial & final temperatures, 

cooling schedule 

Avoids local 

minima 

Requires temperature scheduling, 

computationally intensive 

BFA 
Continuous, non-

linear 
Medium 

Population size, elimination & 

dispersal events 

Thorough search 

capability 

Slow convergence, high 

computational cost in complex, high-

dimensional problems 

CSO 
Continuous, non-

linear 
Medium 

Number of cats, mixture ratio 

for seeking and tracing mode 

Adaptive, mimics 

cat's behavior 

Sensitive to the number of cats and 

proportion in each mode 

DA 
Continuous, non-

linear 
High 

Population size, separation 

weight, alignment weight, 

cohesion weight 

Efficient 

exploration & 

exploitation 

Parameter tuning is crucial, can get 

stuck in local optima 

BH 
Continuous, non-

linear 
High Event horizon 

Robust global 

search capability 

Can ignore better local solutions, 

sensitive to the event horizon setting 

 

We defined 100 iterations as the convergence limit with 20 

reference zones for all optimization techniques. Eq. (4) 

indicates the implemented HS formula including 

multiplication, addition, and root extraction operations.  

 

𝑔𝑖.𝑗 = √α ×  𝐼𝑖.𝑗  +  β
γ

 (4) 

 

where, Ii.j is the intensity values of image at ith and jth location. 

α, β and γ serve as the tuning parameters of the stretching as 

scaling, shifting, and degrading of the image contrast, 

respectively. Optimization methods will be applied via the 

proposed software for the selection process of α, β and γ 

parameters. gi.j indicates the new pixels obtained through HS. 

The nature-inspired optimization techniques utilized in the 

proposed software will be briefly elucidated in the following 

subsections. Additionally, Table 1 summarizes the key 

properties of each optimization technique, including the type 

of problems it is best suited for, its complexity, the number of 

parameters it requires, its advantages, and its limitations. This 

will provide a clear overview and facilitate a straightforward 

comparison of the different optimization techniques. 

 

3.3.1 Particle swarm optimization (PSO) 

In the PSO algorithm, a "swarm" is composed of 

combinations of particles, where each element represents a 

"particle". The particles initiate the exploration for the optimal 

solution by taking random values in the solution space. Each 

particle is composed of two vector components: (a) the 

position vector 'x', and (b) the velocity vector 'v'. The position 

vector contains the positional information of the particle, 

while the velocity vector maintains the information about the 

change in position and direction of the particles. The essence 

of PSO lies in transitioning each particle's current position in 

the swarm to the best personal position ('pbest') identified 

previously, and the best global position ('gbest') discovered so 

far. All particles aim to orient themselves towards these two 

best positions using their velocity vectors. The updating 

process of velocity and position is calculated using Eq. (5). 

 

𝑥𝑖
𝑘 = (𝛼 𝛽 𝛾) 

𝑣𝑖
𝑘+1 = 𝑊. 𝑣𝑖

𝑘 + 𝑐1. 𝑟𝑎𝑛𝑑1
𝑘. (𝑝𝑏𝑒𝑠𝑡𝑖

𝑘 − 𝑥𝑖
𝑘)

+ 𝑐2. 𝑟𝑎𝑛𝑑2
𝑘 . (𝑔𝑏𝑒𝑠𝑡𝑘 − 𝑥𝑖

𝑘) 

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1 

(5) 

 

where, c1 and c2 are the constants for learning parameters 

leading the particles to its pbest and gbest position. In this 

study, 2 is selected for 𝑐1 and 𝑐2 . 𝑟𝑎𝑛𝑑1
𝑘 and 𝑟𝑎𝑛𝑑2

𝑘  are 

randomly selected numbers between 0 and 1 in uniform 

distribution at iteration k. W represents the weight of inertia to 

be used in definition of balance between local and global 

searching. vi
k and xk

i indicates the velocity and position of ith 

particle in swarm at iteration k. x refers to the vector including 

α, β and γ parameters which needs to be optimized in the HS 

equation (Eq. (4)) [9-11, 34]. PSO optimizes the HS 

parameters by mimicking the social behavior of bird flocking. 

Each particle represents a potential solution and adjusts its 

position in the search space based on its own best experience 

and the best experience of the entire swarm. While PSO can 

quickly converge to an optimal solution, it is sensitive to initial 

conditions and can suffer from premature convergence. 

 

3.3.2 Artificial bee colony (ABC) 

The ABC algorithm comprises two primary components: 

bees and a food source. Mirroring natural behavior, bees in 

this algorithm seek out rich food sources in proximity to their 

hive. Essentially, the ABC algorithm leverages this 

phenomenon. The algorithm includes three groups of bees: 

worker bees assigned to specific food sources, onlooker bees 

observing the dance of worker bees within the hive to select a 

food source, and scout bees randomly searching for food 

sources. The ABC algorithm is initialized with Eq. (6) for the 

HS problem [12-14, 35]. 

 

𝑥𝑖 = 𝑙𝑖 + 𝑟𝑎𝑛𝑑(0.1). (𝑢𝑖 − 𝑙𝑖) (6) 
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where, u and l indicate the upper and lower boundaries of the 

dimension i. rand is a parameter similar to that in the PSO 

algorithm, representing a randomly selected number between 

0 and 1 with a uniform distribution. x stands for the ith
 solution 

in the swarm. After first iteration, each worker bee (xi) 

generates a candidate solution (vi) by using Eq. (7). 

 

𝑣𝑖 = 𝑥𝑖 + Φ𝑖 ×  (𝑥𝑖 − 𝑥𝑗) (7) 

 

xj is the randomly selected worker bee, under the condition 

that i and j must not be the same. φi is another randomly 

selected number within [-1, +1] to weight the current worker 

bee to the optimal solution. If the candidate solution which is 

represented as vi is better than its parent xi, then update current 

bee to the candidate by φi. The best values of vi used as α, β 

and γ parameters in the HS formula as given in Eq. (8). In 

terms of HS, each food source represents a possible solution, 

and the nectar amount corresponds to the quality (fitness) of 

that solution. While ABC has fewer control parameters and is 

simple to implement, it can be slow to converge in complex 

problems. 

 

𝑣𝑖 = [α β γ] (8) 

 

3.3.3 Genetic Algorithm (GA) 

GA adopts the principle of evolution, favoring the survival 

of the fittest individuals in a population and removing the 

weaker ones. In GA, each individual within the population is 

represented as a chromosome. The total quantity of 

chromosomes indicates the size of the population. Each 

chromosome carries specific values, reflecting their fitness 

according to the employed GA fitness function. Initially, these 

chromosome values are selected at random. Subsequently, 

these values either increase or decrease in accordance with the 

utilized fitness function. Values that increase gain importance 

for the next iteration as they come into play during the 

crossover process. The crossover mechanism allows for 

superior individuals to intermingle and generate better 

offspring within the population. Following this, chromosomes 

undergo mutation at a predetermined rate to avoid becoming 

stuck in local minima or maxima in the problem space. The 

algorithm repeats these steps until a predefined stopping 

condition is reached. The final chromosome, discovered at the 

conclusion of all iterations, yields the optimal solution to the 

problem. In this setup, chromosomes comprise three values: α, 

β, and γ. The optimal values are applied to the HS of an image 

in accordance with a specific formula Eq. (4). The fitness 

value is defined as per Eq. (2), following the roulette wheel 

selection method [25, 26]. In this framework, the HS 

parameters are treated as genes in a chromosome, and a 

population of these chromosomes evolves over generations 

through crossover, mutation, and selection operations. Despite 

offering global search capabilities, GA can be computationally 

demanding and necessitate careful parameter tuning. 

 

3.3.4 Differential evolution (DE) 

DE algorithm is a simple but powerful algorithm that works 

population-based like GA. During the iterations in the 

algorithm, better results are searched for the solution of the 

problem with the help of operators- selection, mutation, and 

recombination. In contrast to binary GA, DE uses variables 

with real values so it can be implemented on continuous 

problems. Additionally, every operator is not sequentially 

applied to the entire population. In terms of mutation operator, 

the difference between GA and DE can be explained as the 

result of small perturbations to the genes of an individual and 

the result of arithmetic combinations of individuals, 

respectively. Especially, the mutation operator is adjusted 

progressively and updated evolutionary to achieve the best 

value. In other words, it is not specified as predefined function 

[15-18, 36]. In HS, DE can identify the optimal set of 

stretching parameters by balancing exploration and 

exploitation. However, DE can be sensitive to parameter 

settings and may suffer from slow convergence speed in high 

dimensional problems. 

 

3.3.5 Simulated Annealing (SA) 

SA is designed to find the maximum or minimum values of 

functions with a large number of variables. This algorithm and 

its derivatives have been inspired by the similarity between 

searching for solutions to an optimization problem and the 

process of annealing in metallurgy. Annealing describes the 

process of heating a metal to a certain degree and then 

gradually cooling it. The annealing process starts with a high 

temperature value. At this temperature, a random solution is 

selected from the solution space and the neighbors of this 

solution are examined by the number of defined iterations. If 

any of the neighboring solutions produces a better fitness 

value, then the process is continued with this neighboring 

solution. In case of failure in neighboring solutions, value is 

assigned randomly in order to avoid from the local maximum 

and minimum. When the temperature decreases, the 

probability of random selection of solutions will also decrease. 

This probability is calculated according to the Eq. (9). 

 
T T a=   

N N k=   
(9) 

 

The temperature and the number of iterations are reduced 

according to Eq. (9) where a and k are the predetermined 

constants in the range (0, 1). T is the temperature and N is the 

number of iterations. When the temperature reaches its 

minimum value, the algorithm terminates and determines the 

optimal α, β and γ parameters [19, 20]. In HS, SA can explore 

the solution space thoroughly. But it requires careful 

temperature scheduling and can be computationally intensive. 

 

3.3.6 Bacterial foraging optimization (BFO) 

Bacterial Foraging Optimization (BFO) offers a model for 

the food search behavior of bacteria and simulates certain 

movements such as "tumbling" or "swimming". BFO's 

operation can be examined in four processes: Chemotaxis, 

Swarming, Reproduction, and Elimination. In Chemotaxis, 

two movements are defined: tumbling and swimming. 

Swimming refers to moving in the same direction for a certain 

number of steps, while tumbling represents the random 

movements of bacteria in search of food sources. In Swarming, 

bacteria move collectively, forming concentric groups 

towards the food sources. During reproduction, unfit bacteria 

are eliminated and those that are sufficiently fit reproduce by 

splitting. In the elimination step, several bacteria can be 

eradicated or relocated due to sudden environmental changes. 

These steps are mathematically implemented in the BFO 

optimization technique, which was employed in the proposed 

software to determine the optimal α, β, and γ values. For HS, 

BFO is capable of thoroughly searching the solution space. 

However, it should be noted that BFO can suffer from slow 

convergence speed and high computational costs [21, 22, 37]. 
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3.3.7 Cat swarm optimization (CSO) 

CSO is inspired by the behavior of cats, particularly their 

food-seeking behavior. CSO incorporates two main steps: 

Seeking and Tracing. In seeking mode, parameters represent 

the state of a cat visually scanning its environment to decide 

on its next destination. In tracing mode, parameters depict a 

cat as it tracks a target and moves closer to it [23, 24, 38, 39]. 

In the context of HS, it can adaptively select the appropriate 

mode to locate the optimal stretching parameters. However, its 

performance may be sensitive to the proportion of cats in each 

mode and the number of cats, which are parameters that need 

to be carefully tuned. 

 

3.3.8 Dragonfly Algorithm (DA) 

The DA draws its main inspiration from the static and 

dynamic swarm behavior of dragonflies in nature. The two 

primary stages of optimization-exploration and exploitation-

are modelled after the social interactions of dragonflies during 

navigation, food search, and evading enemies in static and 

dynamic scenarios. During the exploration phase, dragonflies 

form sub-swarms within static swarms, and each of these sub-

swarms explores different areas. In the exploitation phase, 

these sub-swarms communicate with each other and converge 

to move in one direction within the larger static swarm. From 

a programming perspective, the position information of 

dragonflies begins with a certain number of randomly 

generated particles. The satisfaction rates for all of these 

particles are subsequently calculated. Distances to food and 

enemies are calculated based on these satisfaction rates. The 

parameters are updated according to the dragonflies’ 

movements, positions, fitness values, and distances to food 

and enemies using Eq. (10) [27, 28, 40]. 

 

𝑆𝑖 = ∑ 𝑋

𝑁

𝑗=1

− 𝑋𝑗 

𝐴𝑖 =
∑ 𝑉𝑁

𝑗=1 𝑗

𝑁
 

Ci =
∑ 𝑋𝑗

𝑁
𝑗=1

N
− 𝑋 

𝐹𝑖 = 𝑋+ − 𝑋 

𝐸𝑖 = 𝑋− + 𝑋 

(10) 

 

where, S refers to distribution of dragonflies and equals to the 

sum of the distances between the dragonfly and its neighbors. 

A indicates the harmony of dragonflies and is equal to the 

average speed of flocks. C is the distance of each dragonfly to 

the average positions of flocks and expresses the dragonfly 

conjunction. F states the distance between the dragonfly and 

the food source. E refers to the enemy’s distraction and equals 

to the sum of the position of the dragonfly and the enemy. 

Lastly, W indicates immobility. These parameters are updated 

at each step, and the position vectors of the dragonflies, which 

refers to α, β and γ in our study, are updated by using Eq. (11). 

For HS, DA provides an efficient exploration and exploitation 

mechanism. However, parameter tuning is crucial in DA and 

it can get stuck in local optima. 

 

ΔX𝑖
t+1 = (sS𝑖 + aA𝑖 + cC𝑖 + fF𝑖 + eE𝑖) + wΔX𝑖

t 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + Δ𝑋𝑖
𝑡+1 

(11) 

 

3.3.9 Black hole algorithm (BH) 

In the BH, the best candidate is chosen as the “black hole” 

among all candidates in each iteration by using a fitness 

function. All other candidates are assigned as regular “stars”. 

Then stars are drifted to the black hole based on their current 

location and attraction force. If a star gets too close to the black 

hole, it is swallowed by the black hole and disappears. In this 

case, a new star is randomly generated, placed in the search 

field, and a new search is started. The implemented fitness and 

update functions are given in Eq. (12) and Eq. (13), 

respectively. Similar to other optimization techniques, 

updated state parameter (Xi(t)) indicates the optimized 

parameters α, β and γ in this study [29, 30]. BH excels in global 

optimization problems but might struggle with local 

optimization, as it primarily focuses on the global best solution. 

The performance of BH can be greatly influenced by its only 

parameter, the event horizon. 

 

𝑓𝐵𝐻 = ∑ 𝑒𝑣𝑎𝑙(𝑝(𝑡))

𝑝𝑜𝑝_𝑠𝑖𝑧𝑒

𝑖=1

 (12) 

 

𝑋𝑖(𝑡) = 𝑋𝑖(𝑡) + 𝑟𝑎𝑛𝑑 × (𝑋𝐵𝐻 − 𝑋𝑖(𝑡)) (13) 

 

3.4 Performance evaluation 

 

Enhanced versions of the distorted images were compared 

with reference images using various optimization techniques 

for HS, as well as standard histogram equalization techniques. 

Performance evaluation was carried out using certain image 

quality metrics such as Mean Square Error (MSE), Peak 

Signal to Noise Ratio (PSNR), and Structural Similarity Index 

(SSIM) [41]. MSE was computed as described in Eq. (14). 

 

𝑀𝑆𝐸 =
1

𝑁 × 𝑀
∑ ∑ [𝑋(𝑖. 𝑗) − 𝑌(𝑖. 𝑗)]2

𝑀−1

𝑗=0

𝑁−1

𝑖=0

 (14) 

 

where, N and M represent the total number of pixels in images 

as width and height size, respectively. X (i.j) and Y (i.j) 

represents the pixel values at ith row and jth column of original 

and contrast enhanced of the distorted images. The PSNR 

metric, derived from the MSE, can be calculated using Eq. 

(15). 

 

𝑃𝑆𝑁𝑅 = 20𝑙𝑜𝑔10 (
255

√𝑀𝑆𝐸
) (15) 

 

A higher PSNR value indicates greater symmetry in images 

according to the PSNR metric. In the case of identical images, 

PSNR is infinite or undefined due to the MSE value being "0". 

SSIM is another image quality measurement that primarily 

quantifies image quality degradation. SSIM constructs 

perception-based models that regard image degradation as 

perceived change in structural information. The formula for 

SSIM is given in Eq. (16). 

 

𝑆𝑆𝐼𝑀(𝑥. 𝑦) =
(2μ𝑥μ𝑦 + 𝑐1) × (2σ𝑥𝑦 + 𝑐2)

(μ𝑥
2 + μ𝑦

2 + 𝑐1) × (σ𝑥
2 + σ𝑦

2 + 𝑐2)
 (16) 

 

where, µx, µy, σx, σy and σxy are the local means, standard 

deviations, and cross-covariance for images x and y, 

respectively. 
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Figure 3. The flowchart of the experiments 

 

3.5 The proposed optimization software for contrast 

enhancement and the applied experiments 

 

The research goal of the proposed manuscript is to optimize 

HS parameters for improved contrast enhancement in images. 

To achieve this, a comparative study of nine optimization 

algorithms was examined. Each algorithm has a unique 

approach to exploring the solution space, and their 

performances in this application are largely dependent on their 

properties and complexities. Each algorithm was initialized 

with a set of parameters, and it iteratively updates these 

parameters to find an optimal solution that maximizes the 

contrast of the image. The PSO, ABC, GA, DE, SA, BFA, 

CSO, DA, and BH algorithms are employed in the study. In 

the manuscript, first the theoretical background of each 

algorithm was briefly explained, and then relevant information 

was given about how each algorithm optimizes the HS 

parameters. In the following sections, a comparative analysis 

of the algorithms based on several factors such as complexity, 

parameters, and performance on different distortion types will 

be carried out. 

In the presented manuscript, experiments were conducted 

both for the original image set and for four sets of distorted 

images. The flowchart of the experiments is given in Figure 3. 

Differently optimized HS and standard histogram equalization 

techniques were separately applied to the images to evaluate 

their effectiveness in enhancing contrast-based distortions. 

The TID2008 dataset [31] was utilized. A total of 100 distorted 

images were generated by modifying four levels of distortion 

for each reference image. Initially, enhancement techniques 

were applied to the distorted images to quantitatively measure 

performance scores. Subsequently, the methods were also 

implemented on the raw reference images to assess the 

distortion effects of the methods on the original images. It is 

anticipated that the enhancement methods should both restore 

the distorted images to their reference state and preserve the 

original images as closely as possible. Furthermore, the 

optimization techniques were evaluated in terms of processing 

times. Each image enhancement and distortion effect analysis 

were repeated 40 times on a specific image to ensure more 

reliable results. The average outcomes of the 40 tests per 

image were divided into four distortion levels and recorded in 

tables separately. 

The proposed software was written in the NET platform (C#) 

to visualize the effects of IE process and to obtain the 

quantitative results more easily. The proposed software does 

not have any specific hardware requirements. An intuitive and 

accessible user interface was designed for the software, even 

for users with limited technical expertise. The interface 

features a drop-down menu that allows users to easily select 

the optimization algorithm they wish to use for HS. The input 

parameters for each algorithm can also be easily chosen by the 

users. The written interface displays the original image, the 

enhanced image, and the optimized parameters for easy 

comparison and analysis. During the development of the tool, 

a few software engineering related challenges were faced. One 

of the major challenges was integrating the different 

optimization algorithms into the tool in a way that allowed 

them to work seamlessly with the HS process. This challenge 

was overcome by carefully designing the software architecture 

to ensure compatibility between the different components. 

Another challenge was testing the tool to ensure it provided 

accurate and reliable results. An extensive was conducted by 

testing using a variety of images and parameters to validate 

the tool's performance. 

 

 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

 

4.1 Quantitative analysis 

 

Table 2 presents the results of the non-optimized standard 

histogram equalization technique alongside the optimized 

versions of the HS approach. Average scores for SSIM, PSNR, 

and MSE were tabulated corresponding to each level of 

contrast distortion. A lower MSE value signifies strong image 

similarity, while PSNR and SSIM should be at their maximum 

values. In cases where the images compared are identical, 

SSIM is equal to 1. The highest obtained scores were marked 

in bold in the tables, while the worst results were highlighted 

with italic typefaces. According to Table 2, the DE optimized 

HS technique resulted in the lowest MSE and highest PSNR 

and SSIM scores for the images classified under distortion 

levels 1, 2, and 3. However, considering the average scores for 

all distorted images, the BH optimized HS method emerged as 

the best-performing contrast enhancement technique. This 

method resulted in the lowest MSE and the highest PSNR and 

SSIM, according to the mean scores of all 100 enhanced 

images (each image was enhanced 40 times using each 

technique). For distortion levels 1, 2, and 3, BH also provided 

image enhancements similar to DE. However, a significant 

performance difference between BH and DE was observed 

when enhancing images with distortion level 4. 
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The SSIM is a more informative and crucial metric in the 

quality assessment of an image when compared to PSNR or 

MSE. In several cases, PSNR scores might be high even when 

the images appear different visually. In these cases, the SSIM 

metric objectively emphasizes the differences between images. 

The best techniques according to MSE and PSNR metrics also 

resulted in the highest SSIM scores due to providing a very 

high enhancement ratio among all other techniques. However, 

the least effective techniques, evaluated in terms of MSE and 

PSNR scores, produced varying SSIM scores because of the 

more detailed analysis incorporating local means, standard 

deviations, and cross-covariance of images, instead of only 

utilizing the mean square errors. 

According to SSIM scores, DA still remains the least 

effective optimization technique used in the HS formula for 

images with distortion levels 1 and 2. ABC and CSO were 

reported as the least effective techniques for distortion levels 

3 and 4, respectively. When considering the mean SSIM 

scores of enhanced 100 distorted images without level 

classification, DE is determined as the least useful technique 

for the HS approach among all other techniques. 

In addition to the average scores for 100 distorted images 

listed in Table 2, the distribution of the techniques that resulted 

in the best and worst PSNR and SSIM scores across 100 

images is also presented in Figure 4. As per both PSNR and 

SSIM metrics, DE provided superior enhancement than other 

optimization techniques for 40% and 70% of the 100 distorted 

images, respectively. The BH algorithm emerges as the second 

most effective optimization technique, showing the best 

results for 23% and 20% of the 100 distorted images, in terms 

of PSNR and SSIM, respectively. On the other hand, the DA 

showed the poorest performance, resulting in the lowest PSNR 

and SSIM scores for 73% and 75% of all distorted images. 

Interestingly, the PSNR metric shows a misleading effect here, 

as according to it, DA also resulted in the best scores for 10% 

of all distorted images, while DA did not rank among the best 

techniques as per SSIM scores. GA is another instance where 

PSNR metric showed contrasting results for best and worst 

enhancements for the distorted images. From these 

observations, it is clear that the SSIM metric is much more 

reliable for evaluating optimization techniques. In terms of 

poor performance, CSO emerged as the second worst 

technique, resulting in the poorest SSIM scores for 15% of the 

images among the 100 distorted images. 

Comparing the optimized HS techniques to non-parametric 

histogram equalization, the results show that histogram 

equalization is significantly inferior to optimized HS methods 

as shown in Table 2. Unlike optimized HS techniques, the 

performance scores of histogram equalization are similar 

across different distortion levels because it's a parameter-

independent method and applies the same equation to all 

images. 

 

Table 2. MSE, PSNR and SSIM based performance results 

 

 
Dist. 

Level 
GA1 DE2 SA3 PSO4 ABC5 DA6 BH7 BFA8 CSO9 HE10 

M
S

E
 1 104.63 75.03 145.71 114.96 259.95 408.45 78.05 262.61 224.81 1082.9 

2 82.95 64.12 147.91 114.82 218.16 410.99 85.79 241.01 215.37 1254.2 

3 318.94 292.61 358.56 326.49 479.51 643.88 294.08 483.23 426.27 1161.5 

4 841.15 680.45 897.49 803.36 757.88 791.08 601.33 696.24 1489.5 1492.2 

Mean 336.92 278.05 387.41 339.91 428.87 563.61 264.81 420.77 588.98 1247.7 

P
S

N
R

 1 28.485 29.644 27.319 28.069 25.091 23.654 29.482 25.118 25.757 18.31 

2 33.228 33.751 31.436 31.929 28.519 25.773 33.243 28.467 28.940 17.91 

3 23.372 23.702 22.899 23.256 21.760 20.720 23.675 21.759 22.308 17.85 

4 20.736 20.751 21.340 21.056 22.289 22.450 22.680 21.932 20.386 17.02 

Mean 26.368 26.962 25.748 26.077 24.415 23.149 27.270 24.319 24.435 17.772 

S
S

IM
 1 0.957 0.967 0.954 0.960 0.940 0.922 0.965 0.939 0.942 0.808 

2 0.989 0.992 0.980 0.986 0.974 0.958 0.990 0.973 0.973 0.802 

3 0.895 0.904 0.895 0.900 0.881 0.866 0.903 0.882 0.886 0.778 

4 0.913  0.930 0.907 0.914 0.916 0.908 0.936 0.920 0.886 0.757 

Mean 0.938 0.948 0.934 0.940 0.928 0.913 0.948 0.928 0.922 0.775 
1 Genetic Alg. 2 Differential Evo. 3 Sim. Annealing 4 Particle Swarm Opt. 5 Art. Bee Colony 

6 Dragonfly Alg. 7 Black Hole 8 Bact. Fore. Alg. 9 Cat Swarm Opt. 10 Histogram Eq. 

 

 
 

Figure 4. The distribution of the techniques, which resulted in best and worst PSNR and SSIM scores over 100 images 
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Each image enhancement process was repeated 40 times for 

each image to ensure a more reliable performance comparison. 

In addition to the enhancement scores, the average standard 

deviations of the MSE metrics corresponding to distortion 

levels were recorded in Table 3. Variations in PSNR and SSIM 

are challenging to analyze due to the use of logarithmic 

functions in the calculations, causing minimal variation in 

these metrics. Therefore, only the deviations in the MSE 

metrics are presented in Table 3. Standard deviations signify 

consistency. In other words, a lower variation in 40 repetitive 

tests per image indicates the robustness of the technique. DE, 

PSO, SA and BH resulted in less variation for distortion levels 

1, 2, 3, and 4, respectively. In the average analysis of 100 IE 

processes, the BH algorithm proves to be the most consistent 

technique with the minimum variations. Conversely, the DA 

and CSO were observed to be the most inconsistent techniques, 

in addition to their unsuccessful enhancement scores. 

 

4.2 Qualitative analysis 

 

An example image from each distortion level is presented 

in Figure 5, illustrating the first and second best, as well as the 

worst, enhancement results. BH and DE were chosen as the 

top two techniques, so the outputs from these techniques are 

displayed. The HE, BFA, and CSO techniques registered the 

worst scores for the corresponding images, and therefore the 

enhanced image outputs of these techniques are also shown in 

Figure 5 for a visual comparison. The HE technique visually 

exacerbates the existing distortions in the images, far beyond 

the original distortion effect, while the optimized techniques 

deliver a more effective enhancement. 

BH and DE techniques consistently demonstrated the best 

enhancement results across different distortion levels. BH, for 

instance, operates on the principle of 'survival of the fittest,' 

which allows it to search a vast solution space and converge 

on an optimal one efficiently. This is reflected in the enhanced 

images, where there is a noticeable improvement in contrast 

and visibility of fine details. The DE algorithm's strength lies 

in its ability to balance exploration and exploitation, 

maintaining diversity in the solution pool. Visually, images 

enhanced by DE show marked improvements in brightness 

levels and contrast, enhancing the clarity of the image without 

introducing new artifacts. 

HE, BFA, and CSO techniques resulted in the worst 

enhancement results. The failure of HE in this context could 

be due to its one-size-fits-all approach, which doesn't take the 

unique properties of each image into account. This leads to an 

over-stretching of the histogram, which, while increasing 

contrast, also results in loss of detail and introduction of 

artifacts. Similarly, BFA and CSO seem to struggle with 

finding an optimal balance between enhancing contrast and 

preserving detail. 

 

Table 3. The average standard deviations of MSE results corresponding to distortion levels 

 

 
Dist. 

Level 
GA1 DE2 SA3 PSO4 ABC5 DA6 BH7 BFA8 CSO9 

M
S

E
 1 30.15 24.85 27.76 24.98 35.06 86.49 25.46 39.75 34.66 

2 95.22 100.29 104.77 79.92 103.73 160.33 95.60 127.48 116.22 

3 87.80 85.09 81.98 84.32 92.91 109.24 85.34 100.46 91.54 

4 404.01 283.21 376.25 400.17 351.10 297.60 249.24 283.68 898.39 

Mean 372.13 294.64 366.34 350.18 286.20 267.71 230.65 247.75 696.38 
1 Genetic Alg. 2 Differential Evo. 3 Sim. Annealing 4 Particle Swarm Opt. 5 Art. Bee Colony 

6 Dragonfly Alg. 7 Black Hole 8 Bact. Fore. Alg. 9 Cat Swarm Opt.  

 

 
 

Figure 5. The enhanced images obtained from the first and second-best optimization techniques utilized in histogram stretching 

and the worst enhancing performance resulted by a non-parametric histogram equalization technique 
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Table 4. Processing times for optimizing α, β and γ parameters 

 

 Dist. Level GA2 DE2 SA3 PSO4 ABC5 DA6 BH7 BFA8 CSO9 

Times 

(sec.) 

1 13.62 8.10 1.53 0.61 0.78 4.82 2.44 0.81 1.27 

2 11.26 6.57 1.53 0.64 0.78 4.97 2.26 0.81 1.27 

3 13.36 8.23 1.53 0.61 0.78 4.86 2.47 0.81 1.26 

4 9.14 7.45 1.51 0.62 0.77 5.22 2.07 0.81 1.23 

Mean (Sec.) 11.84 7.59 1.53 0.62 0.78 4.97 2.31 0.81 1.26 

Total (Min.) 19.7 12.6 2.5 1 1.3 8.3 3.8 1.3 2.1 
1 Genetic Alg. 2 Differential Evo. 3 Sim. Annealing 4 Particle Swarm Opt. 5 Art. Bee Colony 

6 Dragonfly Alg. 7 Black Hole 8 Bact. Fore. Alg. 9 Cat Swarm Opt.  

 

4.3 Processing time comparison 

 

In addition to evaluating the methods, the processing times 

of the optimization techniques were measured and recorded in 

Table 4. Processing time provides insight into the time 

complexity and the system resources required by each 

algorithm. According to the results, PSO has the least time 

complexity, while GA is the most time and resource intensive 

technique among all the optimization methods. GA completed 

the enhancement process for 100 images in 19 minutes. On the 

other hand, PSO enhanced all the images in just 1 minute 

(approximately 0.6 seconds for each image). The BH 

technique, considered the best optimization method in terms 

of performance and consistency, completed the enhancement 

of 100 distorted images in 4 minutes. DE, ranked second in 

terms of performance, is more complex compared to BH. DE 

optimized the HS method in a longer time than BH did, being 

almost three times slower. 

 

4.4 Distortion effects 

 

In this study, the distortion effects of the enhancement 

techniques on the reference images were also tested. Ideally, 

the original images and the enhanced images should be similar. 

Therefore, the SSIM and PSNR should be 1 and maximum, 

respectively while MSE should be zero. Results are presented 

in Table 5. According to the results, the non-parametric 

standard histogram equalization technique deformed the 

original images more than all other optimized HS techniques. 

Minimum distortion was observed for DE with 0.996 PSNR 

score. The MSE of DE also emphasized that the distortion 

effect is minimal amongst all other techniques. The second 

minimal distortion effect was determined for BH having very 

close scores to DE with 0.994 PSNR and 44 MSE. The most 

distortion effect after HE is defined for DA optimization 

technique. In a manner similar to Figure 4, the distribution of 

techniques in terms of best and worst SSIM and PSNR score 

for distortion effect of 25 original reference images is 

presented in Figure 6. According to this illustration, DE and 

BH optimization techniques preserves the 25 original images, 

while DA, ABC and CSO optimization techniques have great 

distortion affects amongst all other techniques. An example 

output of two techniques (HE and DA) that cause the most 

distortion over the original image is shown in Figure 7. 

Addition to these techniques, DE optimized HS, which has 

minimum distortion effects, is also illustrated in Figure 7. The 

standard histogram equalization method visually distorted all 

the original images where the others had minimal effect in this 

respect. 

 

Table 5. Average MSE, PSNR and SSIM results of the 25 enhanced original images by optimized histogram stretching 

techniques (Distortion Effect) 

 
 GA1 DE2 SA3 PSO4 ABC5 DA6 BH7 BFA8 CSO9 HE10 

MSE 

PSNR 

SSIM 

69.517 37.333 101.939 77.825 182.547 349.556 44.122 226.08 161.818 2661 

32.43 33.282 30.936 32.198 28.821 25.882 32.966 27.816 29.071 8.22 

0.989 0.996 0.982 0.989 0.971 0.953 0.994 0.966 0.973 0.51 
1 Genetic Alg. 2 Differential Evo. 3 Sim. Annealing 4 Particle Swarm Opt. 5 Art. Bee Colony 

6 Dragonfly Alg. 7 Black Hole 8 Bact. Fore. Alg. 9 Cat Swarm Opt. 10 Histogram Eq. 

 

 
 

Figure 6. The distribution of techniques in terms of best and worst SSIM and PSNR score for distortion effect of 25 original 

reference images 
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Figure 7. Minimum and maximum distortion effects on two example original images 

 

 

5. CONCLUSION AND DISCUSSION 

 

In this study, the contribution of artificial intelligent based 

optimization techniques was examined within the context of 

image enhancement. HS was selected as the parameter 

dependent IE technique. Totally, nine nature-inspired 

optimization techniques are implemented to tuning the 

parameters of HS. In other words, the optimization idea was 

employed to identify an optimal parameter in the HS technique. 

Additionally, another IE technique, histogram equalization, 

was also evaluated by testing on the same data set. Although 

histogram equalization is a parameter-independent technique 

that does not require optimization, the parameters in the HS 

method directly affect the performance. Tests are performed 

on 125 images having 4 different distortions and original 

versions.  

From the findings, it is observed that DE emerged as the 

most efficient technique, scoring highest for SSIM (0.948) and 

second best for MSE (278.05) and PSNR (26.962). DE has 

also created the least amount of distortion in original images. 

This strong performance can be attributed to the core 

principles of DE, which relies on a population-based approach, 

utilizing vector differences for perturbation, and crossover for 

recombination. These characteristics provide DE with a 

powerful global search ability and excellent exploitation 

capability, making it well-suited for tasks like HS where 

optimal parameter values need to be found within a large and 

diverse solution space. 

BH demonstrated very similar performance to DE, which 

indicates certain similarities in their optimization strategies 

despite the fundamental differences in their algorithms. BH is 

a meta-heuristic algorithm inspired by the black hole 

phenomenon, where the strongest black hole absorbs other 

black holes and matter around it. In terms of optimization, the 

algorithm considers the best solution as the black hole which 

pulls other solutions (called stars) towards it, thus updating the 

position of the stars and finding optimal solutions. In the 

context of HS, this means that the BH algorithm would adjust 

the stretching parameters iteratively, pulling them towards 

configurations that previously resulted in high-quality image 

enhancement metrics. It is this consistent 'gravitational pull' 

towards better solutions that could explain the strong 

performance of the BH algorithm. Moreover, this also 

highlights the adaptability of the BH algorithm. While it is a 

meta-heuristic method designed for global optimization 

problems, our study illustrates its effective application in a 

specific image processing task. This adaptability stems from 

its ability to balance exploration and exploitation throughout 

the search process, making it particularly suited to our HS 

optimization problem. 

In terms of time complexity, PSO proved to be the fastest, 

taking just 0.6 sec. per image for parameter definition. The 

speed of PSO can be linked to its simple and efficient nature, 

where particles move in the search space with velocities that 

are dynamically adjusted according to their own and their 

companions' historical behaviors. This allows PSO to quickly 

converge to an optimal or near-optimal solution, making it 

particularly efficient when time is a critical factor. 

Regarding the histogram equalization, results indicate that 

the optimization techniques require more processing time, but 

the enhancement result in terms of PSNR, MSE and SSIM is 

increased when compared to regular histogram equalization. 

GA is observed as the most time-consuming algorithm 

amongst all approaches. The worst enhancements were 

obtained with DA and CSO. Also, CSO has very high 

distortion effects on original images similar to standard HE. 

However, all implemented and tested optimization techniques 

surpass the HE technique in terms of performance metrics. 

In terms of the qualitative results, example images from 

each distortion level were presented in Figure 5 with the first 

and second best, and the worst enhancement results. The BH 

and DE algorithms produced the first and second-best results, 

respectively. The parameters optimized by these algorithms 

led to effective stretching of the histogram, improving the 

contrast and enhancing the visibility of details in the images. 

These results illustrate the capacity of these algorithms to find 

effective solutions in complex search spaces, contributing to 

their superior visual performance. On the other hand, the HE, 

BFA, and CSO techniques resulted in the worst visual scores 

for the corresponding images. The histogram modifications 

made by these techniques often led to over-enhancement or 

under-enhancement in certain parts of the image, causing 

visual distortions and poorer qualitative results. These results 

may be attributed to the challenges in optimally balancing the 
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parameters for these techniques to achieve an effective 

enhancement. The optimization parameters used by these 

algorithms could have led to a disproportionate distribution of 

pixel values, thus visually degrading the images. For instance, 

HE technique often resulted in images appearing more 

distorted than their original versions. This was likely due to 

the nature of HE which aims to flatten the histogram 

completely, leading to an unnatural appearance when over-

applied. As such, while it managed to improve contrast, it also 

increased noise and artifact appearance, particularly in images 

that were already somewhat distorted. By examining the 

images and their histograms in tandem, it could be seen that 

successful enhancement often involved a delicate balance: the 

distribution of pixel intensities needed to be widened, but not 

to such an extent that it introduced artificial contrasts or 

amplified noise.  

In comparison with existing literature, our research affirms 

several previous findings while presenting new insights. 

Specifically, our results align with those of the study [42] who 

also found that DE demonstrated superior performance in HS 

for image enhancement tasks. Our research extends their 

findings by incorporating additional optimization algorithms, 

particularly the BA, which emerged as a close contender for 

the most efficient technique. However, our findings contradict 

those of the study [43], who reported Particle Swarm 

Optimization as the most effective optimization technique. 

This discrepancy could be attributed to the different 

characteristics and complexities of the images used in both 

studies, underlying the necessity of a more context-specific 

application of optimization techniques. 

Our work is not without its limitations. Firstly, while we 

utilized a diverse range of images for testing, all were drawn 

from the same dataset, limiting the generalizability of our 

findings. Future research could incorporate a more varied 

array of images sourced from different datasets to verify the 

robustness of these optimization algorithms. 

In future, the research trajectory of the proposed study will 

branch out in two significant ways. Firstly, additional 

algorithms are planned to be incorporated into the proposed 

software to expand the exploration of nature-inspired 

optimization techniques. These will include, but are not 

limited to, Firefly, Whale Optimization, and Bat Algorithm. 

By doing that a more comprehensive testing platform, which 

will be beneficial for future studies in IE field, would be 

obtained. Secondly, it is planned to diversify the research 

problem space to encompass not only HS but also other 

parameter-dependent challenges such as image denoising and 

augmentation. It is expected that this expansion of the focus 

will offer a more holistic view of the application of 

optimization algorithms in various domains of image 

processing. Additionally, the proposed software provides a 

valuable resource for other researchers, who will be able to use 

this tool to facilitate their own explorations in various fields. 

This represents not only the next step for those researches but 

also a potential stepping stone for the broader research 

community. 

In conclusion, the proposed study's key contributions lie in 

its detailed comparative analysis of nine optimization 

algorithms in a novel context - HS for IE. We offer a thorough 

quantitative analysis of each algorithm's performance, 

alongside a qualitative analysis of the image outputs. This 

provides both numerical evidence and visual confirmation of 

each algorithm's effectiveness. Our findings suggest that DE 

and the BH algorithms exhibit superior performance, with DE 

offering the highest SSIM and the second-best MSE and PSNR 

results. On the other hand, PSO proved fastest in terms of time 

complexity. This serves to fill the knowledge gap we identified, 

providing clear, evidence-based recommendations on which 

optimization algorithms perform best for HS. 
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NOMENCLATURE 

 

PSO Particle Swarm Optimization 

ABC Artificial Bee Colony 

GA Genetic Algorithm 

DE Differential Evolution 

SA Simulated Annealing 

DA Dragonfly Algorithm 

BH Black Hole 

BFO Bacterial Foraging Optimization 

CSO Cat Swarm Optimization 

HE Histogram Equalization 

CE Contrast Enhancement 

PSNR Peak Signal Noise Ratio 

MSE Mean Square Error 

SSIM 

IE 

Structural Similarity Index 

Image Enhancement 

 

Greek symbols 

 

 Scaling Parameter 

 Shifting Parameter 

γ Degrading Parameter 

 

 

APPENDIX 

 

The interface of the proposed software has been attached as 

appendix of this study. In the proposed software, the distorted 

source image is shown in the "Distorted Image Section" on the 

left side of the screen after it is loaded. If a reference (original) 

image does exist, the user can also upload this image into the 

software in order to obtain the IE performance as a result of 

reference image and enhanced image comparison. Otherwise, 

the software provides the performance metrics by using the 

differences between the distorted image and its enhanced 

version. The reference image can also be shown on the 

software screen in order to obtain a visual comparison. The 

average, median and standard deviation values calculated from 

the loaded image pixels (for the distorted and/or original 

images) are displayed in the corresponding fields under the 

corresponding images as shown in figure. When a specific 

optimization algorithm is selected from the drop-down menu, 

the IE process would start for the selected algorithm which 

gives the optimum parameters. Afterwards, the enhanced 

image is demonstrated in the "Enhanced Image" region on the 

right side of the software screen for visual comparison. The 

user can easily save and visually analyze the enhanced image. 

Additionally, the MSE, PSNR and SSIM metrics are 

calculated by comparing the reference image (can be the 

distorted or the original image) with its enhanced version. 

These performance metrics are presented to users in the 

graphical interface as well. The proposed software can also 

provide, and report results obtained from all nine optimization 

algorithms that were applied to a selected image for a fair 

comparison. 
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