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Fossil fuels are diminishing at an alarming rate in today's generation. The usage of renewable 

energy sources has emerged as the plan most likely to succeed in the long term. As a result, 

renewable energy supplies are being encouraged owing to their eco-friendliness, 

inexhaustibility, cheap cost, dependability, and resilience. The amount of the negative 

impact on the functioning of electrical networks caused by this change is proportional to the 

capacity of the particular station. Accurate forecasting of solar photovoltaic power on a 

minute-by-minute basis is beneficial to the functioning of the energy market, consumption 

of solar photovoltaic power, and power system stability. In this study, a CNN classifier 

(AlexNet) is proposed to classify the images of sun. The PSO based segmentation method 

is used to defog the sun image. The performance of the proposed method is evaluated for 

different architecture of CNN. For this we comparing proposed AlexNet to the other two 

models (VGGNet, GoogLeNet) to know the accuracy of our proposed model. To evaluate 

the accuracy performance metrics is used. 
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1. INTRODUCTION

In the present generation, fossil fuels are depleting day by 

day. As Pothineni et al. [1] suggest, renewable sources of 

power have emerged as the strategy most likely to be 

successful over the long run. Therefore, as Xie et al. [2] point 

out, renewable energy resources are being promoted due to 

their eco-friendly nature, inexhaustibility, low cost, reliability, 

and resilience. Energy from renewable sources [3] can be 

produced for transportation, space and water heating and 

cooling, and electrical production. Efficient methods of 

generating electrical power have become significant to the 

global economy [4]. 

The output of a single photovoltaic power plant is most 

sensitive to ambient surface irradiation, which is primarily 

affected by clouds with a variable distribution above the plant, 

as noted by Wang et al. [5]. Surface irradiance exhibits large 

nonlinear variation when the clouds undergo radical shifts in a 

minute time period. This variation, in relation to station 

capacity, can negatively impact electrical networks [6]. 

Accurate minute-by-minute solar PV forecasting helps the 

energy market estimate customer demand and maintain power 

system dependability [7]. Thus, an accurate PV prediction 

approach would improve scheduling choices and the power 

sector's adaptation to intermittent power supply [8]. 

Many PV power analyses have ignored cloud motion speed 

[9]. The birth, dissipation, and deformation of clouds are 

crucial components of the change in solar irradiance, which 

results in changes in PV production [10]. Thus, cloud motion 

analysis is essential to the forecasting method [11]. 

Many authors have discussed sky image classification using 

different approaches [12]. Some of these are discussed below. 

To classify clouds from the ground, the author of this study 

proposes employing deep convolutional activations-based 

features (DCAFs) [13, 14]. This research presents a transfer 

learning technique for using a Convolutional Neural Network 

(CNN) to extract features from sky images to capture the close 

relationship between clouds and sun irradiation. Ye et al. [15] 

proposed a fill-in approach for fine-grained cloud detection 

and identification in WSIs. Zhen et al. [16] classified the 

clouds using a Gray-level co-occurrence matrix-based texture 

feature system and the k-means clustering approach. Kong et 

al. [17] offered a number of unique ways for extremely short-

term solar photovoltaic production forecasting.  

Contribution of the paper: 

The contribution of the paper is stated as follows: 

• A CNN based architecture is used for the sky image

classification.

• The performance is evaluated for different

architectures of CNN.

2. BACKGROUND

2.1 AlexNet architecture 

The design has eight layers: five convolutional and three 

completely connected. Max-pooling links the top 2 

convolutional layers for maximum feature extraction. Each 

fully-connected layer connects directly to the third, fourth, and 

fifth convolutional layers [18]. The ReLu non-linear 

operational amplifier connects all convolutional layer outputs 

and fully-connected layer outputs. Figure 1 shows AlexNet 

architecture. 
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Figure 1. AlexNet architecture 

 

 
 

Figure 2. VGGNet architecture 

 

 
 

Figure 3. Google net architecture 

 

 

The last softmax activation layer distributes the thousand 

class labels. 

AlexNet gets a 256-by-256 RGB (3-channel) image. 60 

million parameters, 650,000 neurons [19]. Dropout layers 

reduce overtraining. Dropped neurons don't propagate. These 

are the first two fully-connected layers. 

 

2.2 VGGNet architecture 

 

The first two layer’s employ 4096 channels, the third uses 
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1000 channels (one for each class) for ILSVRC classification, 

and the fourth uses softmax. All related levels follow this 

structure. ReLu activation functions are applied to hidden 

layers as the VGG network advances as shown in Figure 2. 

 

2.3 GoogLeNet architecture 

 

The GoogLeNet architecture is comprised of 27 pooling 

levels and has a total of 22 stacked layers [20]. In all, there are 

nine inception modules that are arranged in a linear fashion. 

The global average pooling layer is linked to the terminals of 

the inception modules. Figure 3 shows the whole of the 

GoogLeNet architecture at a reduced scale. 

 

 

3. METHODOLOGY 

 

3.1 Dataset description 

 

The dataset has two data tiers, making it unique among 

open-sourced solar forecasting datasets for deep learning 

studies. 

 

3.2 Benchmark dataset 

 

3 years’ worth of reconstructed sky photos (6464) as well 

as simultaneous PV power production data at 1-min intervals, 

all of which are prepared for use in the construction of deep 

learning models. 

 

3.3 Raw dataset  

 

Overlapping high quality sky video footage (2048×2048) 

captured at 20 frames per second, sky picture frames 

(2048×2048), and historical PV power production data 

documented at 1-min frequency that fit different study 

objectives. 

The data we collected at this website 

https://github.com/yuhao-nie/Stanford-solar-forecasting-

dataset. 

 

3.4 Pre-processing steps for image classification 

 

To show how well-known pre-processing techniques affect 

basic convolutional networks' accuracy. Pre-processing 

processes follow. 

• Read image 

• Resize image 

• Remove noise 

• Image defogging 

• Segmentation 

• Morphology 

 

Read image: We loaded picture-containing folders into 

arrays after putting the path to our image dataset in a variable 

to read the image. 

Resize image: To illustrate the difference while resizing 

pictures, we'll develop two ways to display one and two 

images. We then create a processing mechanism that only 

accepts photographs. 

Remove noise: Gaussian blurring removes noise. 

Animation programmes use it for picture clean up. Computer 

vision algorithms pre-process images using Gaussian 

smoothing to enhance visual structures at different sizes. 

3.4.1 Image segmentation 

In the given approach, a semi-automatic segmentation is 

used to transform a foggy image into a clear one depicting the 

sun. To achieve this, a pixel threshold needs to be set to judge 

and process the image. The determination of the pixel 

threshold depends on several factors and can be done using 

various techniques. Here are some common methods for 

determining the pixel threshold in image segmentation: 

• Manual Selection: In some cases, a domain expert 

or an image analyst manually selects the pixel 

threshold based on their visual assessment of the 

image.  

• Histogram Analysis: A histogram represents the 

distribution of pixel intensities in an image. 

Histogram-based methods analyse the histogram of 

the image to determine the pixel threshold.  

• Image Statistics: Statistical measures of the image, 

such as mean, variance, or entropy, can be used to 

determine the pixel threshold. 

 

Image defogging 

Image defogging using modified dark channel prior 

For the purpose of transmission map estimation, a modified 

dark channel has been computed in this study. After that, the 

guided image filter is used to finish refining the transmission 

map (GIF). GIF is more effective than the other refinement 

filters since it shortens the total amount of time needed for 

calculation while refining the transmission map. As a result, 

the defogging process is improved. The proposed approach is 

used to calculate dark channel and atmospheric light from a 

foggy image. In order to estimate a transmission map which 

preserves gradient information, atmospheric light is used. The 

next step is to create a fog-free image using the revised 

transmission map. 

 

3.4.2 Dark channel and atmospheric light estimation 

Eq. (1) is used to calculate a dark channel in order to 

measure atmospheric light first. A filter of minimum window 

size ω is applied to compute dark channel, where ω is kept as 

31×31. 

 

( )
( )

 , ,

min minD
x w k

y R G B

I I y




 
=   

 
 (1) 

 

Dark channel is successfully calculated, and atmospheric 

light AL is estimated. Atmospheric light AL is a 3 by 1 vector 

with the greatest intensity values, and it is computed from 0.1% 

of the dark channel's brightest pixels. 

 

3.4.3 Transmission map estimation and refinement 

To calculate the transmission map, atmospheric light is 

employed. For each GB color channel, a transmission map 

according to Eq. (2) is calculated by dividing the input image 

by the corresponding color channel atmospheric light. 

 

( )
( )

1
I x

TT x
A


 

= −  
 

 (2) 

 

In order to minimize oversaturation and entirely remove fog 

from the input image, the values of fFD1 and fFD2 are 

constant throughout the process and used to calculate fog 

density (FD).  
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The values of fFD1 and fFD2, which are 2.5 and 1 

respectively, were obtained during cross-validation on the 

RESIDE dataset to evaluate the performance accuracy of a 

proposed model. It is mentioned that these values are set as 

fixed values in the current context. However, to determine the 

rationality of these fixed values, it is important to consider the 

context and purpose of the model, as well as the specific 

requirements of the RESIDE dataset. 

Adjusting the values of fFD1 and fFD2 based on a figure 

suggests that there may be specific visual or performance 

considerations involved. Without the specific details of the 

figure or the model being used, it is challenging to provide a 

precise explanation of the rationality behind these fixed values. 

However, it is possible to discuss some general aspects that 

may guide the selection of fixed values in similar scenarios: 

Domain Knowledge: The rationality of fixed values often 

depends on domain knowledge and prior research in the field. 

Understanding the characteristics of the RESIDE dataset, the 

nature of the model being used, and the relationships between 

fFD1, fFD2, and the model's performance can help determine 

suitable fixed values. 

Model Validation: The cross-validation process conducted 

on the RESIDE dataset helps assess the model's performance 

accuracy. The selection of fixed values may be based on 

achieving the best performance results during this evaluation 

process. 

Trade-offs and Generalization: Fixed values can be 

selected to strike a balance between model complexity and 

generalization. If fFD1 and fFD2 are too specific or fine-tuned 

to the RESIDE dataset, the model may over fit and fail to 

generalize well to other datasets or real-world scenarios. 

Setting fixed values that allow for reasonable performance on 

the RESIDE dataset while maintaining generalizability is 

crucial. 

To maintain gradient information, the transmission map 

must be refined after being computed. The refining procedure 

in our suggested technique uses guided image filters (GIF), 

where the input picture itself serves as the guiding image and 

an edge-preserving and smoothing filter. GIF is quicker than 

other refining filters because to the defogging algorithm's total 

processing cost. 

 

𝑇𝑇𝑟𝑒𝑓(𝑥) = 𝑎𝑘𝑇𝑇𝑘 + 𝑏𝑘         ∀𝑘𝜖𝑊𝑘 (3) 

 

where, a and b are constant linear coefficients in Wk, and Tref 

is a linear transform of T in a window of size W. Figure 4 

illustrates a transmission map and a revised transmission map, 

respectively.  

 

 
 

Figure 4. Transmission map refinement (Foggy image; 

Refined transmission maps) 

After the completion of the transmission map's refinement 

process, the defogged picture is rebuilt using: 

 

( )
( )

ref

I x A
R x A

T

−
= +

+

 
(4) 

 

where, ∈  is a constant with an extremely low value that 

prevents division by zero. Gamma correction is also employed 

to enhance the overall brightness of the rebuilt picture at the 

conclusion of the defogging method. 

 

3.4.4 Segmentation-based image defogging using modified 

dark channel prior 

In this study, we have proposed an algorithm for defogging 

images by making use of image segmentation methodology. 

PSO-based segmentation techniques are used in order to 

complete the image segmentation process. Calculations are 

made for each segment's dark channel and atmospheric light. 

Using the average value of atmospheric light, transmission 

map estimates are made. The refining procedure is based on 

the guided image filter, as was mentioned in the preceding 

technique. To effectively remove fog particles, a 

segmentation-based method must provide high SSIM and 

PSNR values as well as a reduced MSE value. The proposed 

algorithm based on segmentation is shown in Figure 5. 

In this approach, a semi-automatic segmentation is 

employed to transform a foggy image into a clear one 

depicting the sun. In order to transform an image into segments, 

the foreground and background pixels are each manually 

selected. Scribbles are drawn onto the image, which divides 

the image into background and foreground pixels and then 

PSO is applied for fast segmentation. 

 

 
 

Figure 5. Segmentation-based image defogging using 

modified dark channel prior 

 

Figure 6 displays the segmented pictures that were produced 

as a result. The dark channel for each segment is determined 

using the Eq. (5). While computing the dark channel, a filter 

with a minimum window size of ω is employed; for optimal 

results, the value of ω is maintained at 31 by 31 pixels 

throughout the process. 

 

𝐼𝐷𝐶𝑃(𝑠𝑒𝑔𝑖) =
𝑚𝑖𝑛

𝑥 ∈ 𝑤(𝑘)

min 𝐼𝑠𝑒𝑔𝑖
(𝑌)

𝑦𝜖[𝑅, 𝐺, 𝐵]
 (5) 

 

The defogged image is fed to the CNN classifier (AlexNet) 

to classify the image weather it is morning time production 

image, afternoon time production image, evening time 
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production image. The performance of the proposed model is 

evaluated by using performance metric. 

 

 
 

Figure 6. Image segmentation using PSO. (a) Foggy image. 

(b) Sky regions. (c) Non-sky regions 

 

3.5 Performance metrics 

 

The effectiveness of a technique is assessed in view of the 

confusion matrix's accuracy, sensitivity, precision, and F1-

score. 

Accuracy: It is the quantity of subjects that were effectively 

recognized out of all the subjects. 

 
TP TN

Accuracy
TP TN FP FN

+
=

+ + +  
(6) 

 

Sensitivity: The percentage of accurately positive labels that 

our computer recognises as being labels is called recall, also 

known as sensitivity.  

 
TP

Sensitivity
TP FN

=
+  

(7) 

 

Precision: By factoring in the overall number of precise 

predictions, it is feasible to determine the accuracy of an 

outlook. This idea also goes by the name of predictive value. 

 

Pr
TP

ecision
TP FP

=
+  

(8) 

 

F1-Score: The F1-score integrates precision and recall into 

a single score. 

 
Pr *Re

1 2*
Pr Re

ecisison call
F score

ecision call
− =

+  
(9) 

 

Specificity: The negative has been correctly categorized by 

the algorithm as specificity. 

 
TN

Specificity
TN FP

=
+

 
(10) 

 

 

4. RESULTS AND DISCUSSION 

 

MATLAB 2020a is used to implement the model. Three sky 

test photos are analyzed. Analyzing the effect of the number 

of iterations on the results of model calculation involves 

understanding the concept of iterations in the specific context 

of the implemented model. Iterations typically refer to the 

number of times a certain operation or calculation is repeated 

within the model. It can be related to training iterations, 

optimization iterations, or any other specific operation that 

involves iterating over the data or model parameters. 

 

 
 

Figure 7. AlexNet 

 

In this study, 1000 images are collected from the dataset. 

morning time production have 150 images, afternoon time 

production time have 647 images and evening time production 

have 203 images. The confusion matrix of the three 

architectures AlexNet, GoogLeNet, and VGGNet are given in 

below figures. 

Figure 7 shows the confusion matrix of the AlexNet, it 

displays 3 classes in which 0 represents morning time 

production, 1 represents afternoon time production, and 2 

represents evening time production. From the figure it is 

observable that the AlexNet classifies 132 morning time 

production images, and 580 afternoon time production images 

and 181 evening time production images. There are some 

misclassifications, 10 morning time production images are 

classified as afternoon time production images, 8 morning 

time production images are classified as evening time 

production images. 36 afternoon time production images are 

classified as morning time production images; 31 afternoon 

time production images are classified as evening time 

production images; 9 evening time production images are 

classified as morning time production image; 13 evening time 

production images are classified as afternoon time production 

images. 

 

 
 

Figure 8. GoogLeNet 
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Figure 9. VGGNet 

 

Figure 8 shows the confusion matrix of the GoogLeNet, it 

displays 3 classes in which 0 represents morning time 

production, 1 represents afternoon time production, and 2 

represents evening time production. From the figure it is 

observable that the GoogLeNet classifies 131 morning time 

production images, and 540 afternoon time production images 

and 167 evening time production images. There are some 

misclassifications, 10 morning time production images are 

classified as afternoon time production images, 9 morning 

time production images are classified as evening time 

production images. 56 afternoon time production images are 

classified as morning time production images; 51 afternoon 

time production images are classified as evening time 

production images. 17 evening time production images are 

classified as morning time production image; 19 evening time 

production images are classified as afternoon time production 

images. 

Figure 9 shows the confusion matrix of the VGGNet, it 

displays 3 classes in which 0 represents morning time 

production, 1 represents afternoon time production, and 2 

represents evening time production. From the figure it is 

observable that the VGGNet classifies 126 morning time 

production images, and 521 afternoon time production images 

and 150 evening time production images. There are some 

misclassifications, 13 morning time production images are 

classified as afternoon time production images, 11 morning 

time production images are classified as evening time 

production images. 64 afternoon time production images are 

classified as morning time production images; 62 afternoon 

time production images are classified as evening time 

production images. 24 evening time production images are 

classified as morning time production image; 29 evening time 

production images are classified as afternoon time production 

images. 

To evaluate the effectiveness of the architectures, the 

performance parameters are calculated such as Accuracy, 

Sensitivity, and Specificity and are visualized in Figure 10. 

The average accuracy of AlexNet is 94.20%, GoogLeNet is 

90.80%, and VGGNet is 88.40% in detecting the sun region. 

It suggests that AlexNet is the most accurate among the three 

models. Robustness refers to the ability of a model to maintain 

its performance across various conditions, including changes 

in input data, variations in the environment, and potential 

challenges. Figure 11 shows accuracy and loss of AlexNet. 

 
 

Figure 10. Accuracy of architectures 

 

To further discuss the robustness of the accuracy, it is 

important to analyze the model's performance in these 

different scenarios and evaluate its ability to maintain high 

accuracy. By examining data variability, generalization, 

outliers and anomalies, adversarial attacks, and transfer 

learning, we can gain a comprehensive understanding of the 

model's robustness in accurately detecting the sun region. 

 

 
 

Figure 11. Accuracy and loss of AlexNet 

 

 
 

Figure 12. Specificity of architectures 
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Figure 13. Sensitivity of architectures 

 

The specificity of AlexNet architectures is 95.63%, 

GoogLeNet architectures is 91.41% and VGGNet 

architectures is 89.60% as shown in Figure 12. By this, it is 

observable that the sensitivity of the AlexNet architectures is 

high compared to GoogLeNet, and VGGNet. 

Figure 13 shows that the sensitivity of AlexNet 

architectures is 89.27%, GoogLeNet architectures is 87.33% 

and VGGNet architectures is 81.82%. By this, it is observable 

that the sensitivity of the AlexNet architectures is high 

compared to GoogLeNet, and VGGNet.  

The given sensitivity values (89.27% for AlexNet and 

87.33% for GoogLeNet, VGGNet is 81.82%) indicate that the 

models are correctly identifying a high percentage of positive 

instances, but the sensitivity is still considered relatively low. 

Sensitivity, also known as the true positive rate, measures the 

proportion of actual positive instances that are correctly 

identified by the model. A relatively low sensitivity can be 

attributed to several factors such as insufficient training data, 

inadequate model complexity and imbalanced data. The 

comparison is shown in Table 1. 

 

Table 1. Comparison of AlexNet parameters with other 

architectures 

 

Architectures 
Accuracy 

(%) 

Specificity 

(%) 

Sensitivity 

(%) 

AlexNet 94.20 95.63 89.27 

GoogLeNet 90.80 91.41 87.33 

VGGNet 88.40 89.60 81.82 

 

 

5. CONCLUSION 

 

In this study, we performed sky image classification based 

solar power prediction using CNN. For our experimental 

results MATLAB 2020a is used. In this work, our proposed 

model is AlexNet architecture of CNN. The PSO based 

segmentation method is used to defog the sun image and the 

defogged image is fed to the proposed CNN model. The 

performance metrics is used to evaluate the accuracy, 

specificity, sensitivity for each and every model. To know the 

accuracy of our proposed model, we compared the suggested 

AlexNet to the other two models (VGGNet, GoogLeNet) 

reveals that the proposed AlexNet has the best accuracy. The 

average accuracy of AlexNet architectures is 94.20%, 

GoogLeNet architectures is 90.80% and VGGNet 

architectures is 88.40%. By this, it is observable that the 

AlexNet architectures is more accurate in detecting the sun 

region. 
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