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The classification of an individual as male or female is a significant issue with several 

practical implications. In recent years, automatic gender identification has garnered 

considerable interest because of its potential applications in e-commerce and the 

accumulation of demographic data. Recent observations indicate that models based on deep 

learning have attained remarkable success in a variety of problem domains. In this study, 

our aim is to establish an end-to-end model that capitalizes on the strengths of competing 

convolutional neural network (CNN) and vision transformer (ViT) models. To accomplish 

this, we propose a novel approach that combines the MobileNetV2 model, which is 

recognized for having fewer parameters than other CNN models, with the ViT model. 

Through rigorous evaluations, we have compared our proposed model with other recent 

studies using the accuracy metric. Our model attained state-of-the-art performance with a 

remarkable score of 96.66% on the EarVN1.0 dataset, yielding impressive results. In 

addition, we provide t-SNE results that demonstrate our model’s superior learning 

representation. Notably, the results show a more effective disentanglement of classes. 
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1. INTRODUCTION

Biometric identification technology is rapidly advancing, 

driven by its commendable security and reliability. As a 

consequence, it is finding widespread applications in various 

domains, including e-commerce, e-government, and crime 

detection. Biometric identification-based verification systems, 

such as finger-print recognition and facial identity verification 

systems, are constantly evolving [1, 2]. In recent years, 

automatic gender determination has attracted considerable 

interest due to its potential in a variety of applications, 

including human-computer interaction, banking transactions, 

disease diagnosis, visual surveillance, and demographic data 

collection. Gender determination is essential to biometric 

identification systems because it permits the database to be cut 

in half, thereby simplifying and expediting the identification 

process. This increases the efficacy and efficiency of these 

systems in their respective applications. 

Ear recognition technology has emerged as a significant 

non-invasive personal identification method with numerous 

applications, comparable to facial recognition. The human ear 

has stable, well-structured characteristics that are unaffected 

by facial expressions and aging. Notably, the earlobe, a 

distinguishing characteristic utilized in forensic investigations, 

continues to change over time. The ear’s visibility in images 

recorded by security cameras and its ease of capture in profile 

views, video recordings, or photographs increase its 

identification utility [3]. 

Due to its unique and relatively stable characteristics, the 

ear functions as a valuable biometric identifier in both 

biometric research and forensic medicine [4]. In contrast to the 

face, which can be affected by factors such as facial 

expressions, facial hair, and cosmetics, the ear’s appearance is 

stable, making it an advantageous identifier [5]. Particularly, 

the earlobe stands out as a distinguishing characteristic 

frequently used in forensic investigations, and it continues to 

change over time, providing additional identification clues [6]. 

The ability of security cameras to capture the ear, whether it is 

partially or completely visible, aids in the identification 

process [4]. Moreover, the ear is simpler to capture than the 

face in profile views, video recordings, and photographs [7]. 

In Figure 1, the fundamental components of the human ear are 

provided. 

Indeed, numerous studies have concentrated on the use of 

ear images for identification purposes [3-9]. In contrast, the 

research on extracting sensitive biometric features from ear 

images, such as age, has been relatively limited. Despite this, 

there has been considerable interest in using ear images for 

gender classification, as evidenced by several studies [10-13]. 

Previous research has investigated the use of ear images for 

gender classification, laying the groundwork for our research. 

In the study conducted by Gnanasivam and Muttan [10], they 

utilized ear hole measurements as a reference point and 

calculated Euclidean distances between the detected ear hole 

from masked ear images and seven distinct ear features. They 

used the Bayes classifier, the KNN classifier, and neural 

networks as classifiers. The KNN classifier yielded the best 

results, achieving a remarkable classification accuracy of 

90.42%. Zhang and Wang [11] investigated gender 

classification using profile face images and ear images 

separately. They employed support vector machines (SVM) 

with a histogram intersection kernel for classification. By 
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performing score-level fusion based on Bayesian analysis, 

they were able to improve accuracy. In the study conducted by 

Khorsandi and Abdel-Mottaleb [12], they employed Gabor 

filters for feature extraction and performed classification based 

on features extracted by dictionary learning. This approach 

resulted in an accuracy of 93.5%. The study utilized 2D 

images from the UND biometrics dataset collection F [14]. 

The fusion approach achieved an impressive accuracy of 

97.65%, whereas the accuracy for face-only classification was 

95.43% and ear-only classification was approximately 91.7%. 

Figure 1. Morphological components of the human ear [6] 

Despite the fact that these studies have demonstrated a high 

rate of accuracy for gender classification based on ear images, 

they have primarily relied on conventional machine-learning 

techniques. Our research extends beyond these prior works by 

proposing a novel hybrid recognition architecture, 

MobileNetV2 with ViT, for gender classification tasks. Unlike 

the traditional methods employed in prior studies, our model 

leverages deep learning techniques, particularly CNN and ViT, 

which have shown success in computer vision tasks. The 

combination of these models provides superior performance, 

computational efficiency, and reduced parameter count 

compared to individual approaches. Moreover, we provide t-

SNE results to assess how well our proposed model separates 

gender-specific characteristics in a low-dimensional space. 

This analysis provides helpful insights into the interpretability 

and feature representations of the model, which can be used to 

better comprehend its decision-making process. 

The main contributions of this work can be summarized as 

follows: 

• We propose a hybrid recognition architecture called

MobileNetV2 with ViT, which combines the strengths of CNN 

and ViT, to perform gender classification tasks. 

• Recently, the efficacy of models like MLP-Mixer and

ViT, which are alternatives to CNNs, has been evaluated. In 

terms of performance, computational efficiency, and the 

number of parameters, a hybrid model architecture that 

incorporates the benefits of these models has been identified 

as the best option. 

• We provided t-SNE results to observe how well the

proposed model disentangles features compared to other 

models in a low-dimensional space. 

The rest of the article is structured as follows: Section 2 pro-

vides a brief overview of relevant prior research. Section 3 

delves into the methodology and materials used in the study. 

The comparison results of the methods are presented in 

Section 4. Finally, the article concludes with potential future 

directions. 

2. RELATED WORKS

Ear recognition has garnered a great deal of interest, with 

applications in fields such as security, surveillance, and 

forensic science. The uniqueness and stability of ear 

characteristics make it a valuable biometric for individual 

identification. One of the crucial steps in ear recognition is the 

extraction of relevant features from ear images. The ability to 

distinguish accurately between different ears is significantly 

dependent on the efficiency of this feature extraction process. 

Nevertheless, it is frequently regarded as one of the most 

difficult aspects of ear-based identification systems. 

In recent years, the field of ear recognition has witnessed a 

shift from traditional handcrafted methods to deep learning-

based approaches, mainly due to their superior performance in 

various recognition tasks. Multiple studies have explored the 

potential of deep learning in ear recognition, each proposing 

novel architectures and techniques to achieve accurate and 

robust results. Dodge et al. [15] introduced a deep learning-

based ear recognition system that utilized CNNs and transfer 

learning for feature extraction. The extracted features were 

then fed to a shallow classifier for identification. Alshazly et 

al. [16] proposed a combination scheme for an ensemble of 

deep learning models. The study compared models trained 

with random weights, pre-trained models, and fine-tuned pre-

trained models. In their evaluation, the efficacy of finely-tuned 

models was deemed to be superior. Ahila Priyadharshini et al. 

[17] developed a simple CNN architecture for ear recognition

and evaluated its performance on ear images obtained under

both controlled and uncontrolled environmental conditions.

Khaldi and Benzaoui [18] introduced a new framework for ear

recognition using generative adversarial networks in

unconstrained conditions, showcasing the versatility of deep

learning methods in various scenarios. Additionally, the

authors proposed a deep unsupervised active learning-based

ear recognition system [19], which was tested in both

controlled and uncontrolled conditions, further demonstrating

the adaptability of deep learning techniques to diverse

environments. Mewada et al. [20] proposed a spectral-spatial

feature based on CNN for describing ear images and an

embedding algorithm for fusing multilevel spectral

information from the CNN network. The performance of the

proposed system was evaluated on ear images captured under

uncontrolled conditions.

The selection and evaluation of features play a vital role in 

ear recognition, but this process remains difficult. To address 

this issue, the study by Omara et al. [21] proposed a novel 

method for extracting features using CNN models. For 

classification, they then utilized the large margin distance 

learning metric (LDMLT) learning algorithm to calculate the 

Mahalanobis distance based on KNN. This method aimed to 

improve the accuracy and efficiency of ear recognition. 

However, one of the major limitations of deep learning 

techniques in ear recognition is the need for large amounts of 

data and the time required for models to acquire meaningful 

ear features. To overcome these limitations, Korichi et al. [22] 

proposed a computationally efficient and straightforward deep 

neural network model called TR-ICANet for ear recognition. 

Despite its simplicity, the TR-ICANet achieved an accuracy of 

51.25% when tested on the AWE (Audio-Visual Event) 

dataset. In the study by Emeršič et al. [23], a CNN-based 

pipeline was proposed, showcasing its effectiveness in both 

ear detection and recognition tasks. The results obtained from 

the AWE and UERC ear databases demonstrated high 
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accuracy, with 99.8% for ear detection and 92.6% for ear 

recognition. Similarly, in the studies by Alshazly et al. [24] 

and Radhika et al. [25], various deep learning algorithms and 

models were evaluated to optimize the accuracy of ear 

recognition. Alshazly et al. [24] employed an ensemble of 

ResNeXt101 models, achieving improved performance in ear 

recognition. Furthermore, Alshazly et al. [26] conducted 

further analysis by exploring different datasets, contributing to 

the ongoing efforts to enhance ear recognition performance 

using deep learning approaches. 

In conclusion, recent research in the field of ear recognition 

has shown promising results in using ear images for gender 

recognition tasks with high accuracy rates. In this study, a 

hybrid model has been proposed by combining state-of-the-art 

deep learning architectures to enhance the performance of ear 

gender recognition problem. 

3. MATERIAL AND METHOD

3.1 Dataset 

In the field of ear recognition, datasets collected under 

unrestricted conditions are scarce. These datasets differ in 

terms of ear morphology, the number of individuals included, 

and the data collection techniques. One of the earliest datasets 

employed for ear recognition research is the WPUT dataset 

[27], which consists of 2071 ear images from 501 individuals 

of varying ages and includes variables such as illumination, 

head position, and occlusions. The AWE dataset [3] comprises 

1000 ear images of 100 celebrities collected from the internet, 

whereas the UERC dataset [3] is an extension of AWE, 

containing 11,804 ear images from various individuals. The 

In-the-wild ear dataset [28] comprised of 2,058 ear images 

cropped from a larger dataset originally intended for face 

recognition, containing data from 231 individuals. On the 

other hand, the EarVN1.0 dataset [29] is one of the largest 

public ear datasets, containing 28,412 RGB ear images from 

164 Asian individuals. This dataset was constructed by 

cropping Internet images of ears, capturing various camera and 

lighting conditions. The presence of pose, scale, and 

illumination variations in these datasets makes them suitable 

for building models adaptable to real-life scenarios; however, 

it also presents training challenges. We utilized the EarVN1.0 

dataset for our research, which includes gender information. 

Figure 2 depicts example images of the ear from the EarVN1.0 

dataset. 

Figure 2. Sample ear images taken EarVN1.0 dataset; top: left ear images; down: right ear images for the same person. 

The images’ resolutions vary because they were captured under unconstrained conditions 

3.2 Method 

In this section, we aim to devise an architecture for the ear 

gender recognition problem that achieves both low-parameter 

complexity and state-of-the-art performance. To accomplish 

this, we propose a hybrid architecture that incorporates three 

ground-breaking deep learning techniques: CNN, MLP-Mixer, 

and ViT, as well as their derivatives. 

3.2.1 Convolutional neural networks 

Within the domain of CNN, the central operation is 

convolution. This process involves applying a KxK sized 

convolution kernel to an input image with dimensions HxW, 

where H and W represent the height and width of the feature 

map, respectively. The input image consists of N channels, and 

the terms M and N denote the number of convolution kernels 

and output feature-map channels, respectively. Figure 3 

illustrates this process. As shown, standard convolution entails 

convolving the input data with multiple convolution kernels of 

the same depth, and the final result is computed by summing 

up the results corresponding to each channel. In recent times, 

CNN-based models that have demonstrated exceptional 

performance in the Large Scale Visual Recognition Challenge 

(ILSVRC) [30] have also proven to be effective in various 

other problem domains. Several examples of these models are 

described below. 

Figure 3. The overall process of standard convolution [8] 
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3.2.2 AlexNet 

The AlexNet model, proposed by Krizhevsky et al. [31], 

achieved significantly improved recognition accuracy on the 

ImageNet dataset [32], resulting in its victory in the ILSVRC-

2012 competition. This model, which consists of eight layers, 

has demonstrated unique advantages in image classification 

tasks [33]. The data source requires input in the format of 

227×227×3 pixels, where the dimensions 227×227 represent 

the height and width of the input image, and the value 3 

indicates that the data is in RGB mode with three channels. 

The first two layers of the model perform convolution, 

followed by activation (using ReLU), max-pooling, and 

normalization operations. Subsequently, the output of the 

second layer undergoes convolution with 256 feature maps 

using a kernel size of 5×5, a stride of 1, and other parameters 

matching the first layer. The third and fourth layers only 

perform convolution and activation operations, while the fifth 

layer combines convolution, activation, and normalization 

operations. The output of the fifth layer is then reshaped and 

flattened into a long vector, which is fed into a traditional 

neural network comprising three fully connected layers. The 

first two fully connected layers contain 4,096 neurons each, 

and the final layer has output nodes corresponding to the 

number of classes, i.e., 1,000. 

3.2.3 VGGNet 

Researchers from the Oxford University Visual Geometry 

Group and Google DeepMind devised VGGNet, a deep CNN 

consisting of six models with varying depths, ranging from 11 

to 19 layers [34]. The models with the greatest number of 

layers, namely 16 and 19, have proven to be the most effective 

for image classification and localization tasks. The 

architecture of VGGNet is based on five convolutional layers, 

each utilizing a kernel size of 3×3, a stride of 1, and a padding 

of 1, followed by a max-pooling layer with a size of 2×2 and 

a stride of 2. Subsequent to the final maxpooling layer, the 

features within the image feature map are integrated through 

three fully connected layers, with the final layer employing 

Softmax for image classification and normalization. In 

comparison to traditional CNNs, VGGNet’s significant 

contributions include a smaller size of convolution and 

pooling kernels, an increased number of convolutional layers, 

the use of pre-trained data for parameter initialization [35], and 

a method for converting fully connected layers into 

convolutional layers during the testing phase. 

3.2.4 Inception 

InceptionV1, also known as GoogLeNet, is a deep 

convolutional neural network architecture proposed by 

Szegedy et al. [36]. It achieved a remarkable accuracy of 

93.3% in the ILSVRC competition and stood out for its 

significantly reduced number of parameters compared to 

earlier models like AlexNet and VGG. 

The unique feature of this architecture is its departure from 

the conventional sequential process. Instead, it employs a 

combination of network layers, pooling layers, and parallel 

computations of both large and small convolutional layers. It 

also utilizes 1×1 convolutions for dimensionality reduction. 

This approach of parallelism and dimensionality reduction 

significantly reduces the number of parameters and 

computational cost, making it more memory and computation 

efficient. Various versions of Inception exist, including 

InceptionV1/GoogLeNet, InceptionV2, and InceptionV3, 

among others. 

3.2.5 ResNet 

ResNet, a deep learning architecture proposed by He et al. 

[37], addresses the challenges of training deep neural networks, 

which include high computational costs and limitations on the 

number of layers. ResNet tackles these issues by introducing 

skip-connections or shortcuts. Unlike other architectural 

models, ResNet’s performance does not degrade as the depth 

of the architecture increases, and it significantly improves 

computational efficiency, enabling better training of networks. 

The ResNet model incorporates skip-connections, ReLU, and 

batch normalization in its architectures, typically between two 

to three layers. The exceptional image classification 

performance of ResNet, as demonstrated by He and his 

colleagues [37], highlights its efficacy in extracting image 

features. 

3.2.6 DenseNet 

DenseNet, introduced by Huang et al. [38], is a deep 

learning architecture that employs direct connections between 

all layers, facilitating an efficient flow of information. Each 

layer in the DenseNet architecture receives input from all 

preceding layers and shares its feature maps with all 

subsequent layers. The feature maps generated by a given 

layer are concatenated with those from the preceding layer, 

leading to a design known as DenseNet. 

3.2.7 MobileNet 

MobileNet is a deep learning architecture designed to 

improve accuracy by minimizing the number of convolutional 

layers. This reduction can however cause the issue of gradient 

vanishing. MobileNetV2 was developed as an enhancement 

over MobileNetV1 to address this issue. MobileNetV2 

incorporates the residual structure from ResNet to enable 

better information flow between layers and mitigate gradient 

vanishing during backward propagation. MobileNetV2’s 

fundamental building block is a depthwise separable 

convolution block with linear bottleneck and inverted 

residuals, which transforms features from N to M channels. 

The bottleneck consists of a 1×1 convolutional layer with a 

linear activation function, followed by a depthwise 

convolutional layer with subsampling using the s parameter. 

The network structure of MobileNetV2 consists of 19 layers 

and is depicted in Table 1, where conv2d represents standard 

convolution, avgpool represents average pooling, c denotes the 

number of output channels, and n signifies the number of 

repetitions. The intermediate layers are in charge of feature 

extraction, whereas the final layer is responsible for 

classification. 

Table 1. The overall network structure of MobileNetV2, 

where 'k' signifies the number of classes 

Input Shape Operator t c n s 

224∗224∗3 conv2d - 32 1 2 

112∗112∗32 bottleneck 1 16 1 1 

112∗112∗16 bottleneck 6 24 2 2 

56∗56∗24 bottleneck 6 32 3 2 

28∗28∗32 bottleneck 6 64 4 2 

14∗14∗64 bottleneck 6 96 3 1 

14∗14∗96 bottleneck 6 160 3 2 

7∗7∗160 bottleneck 6 320 1 2 

7∗7∗320 conv2d 1×1 - 120 1 1 

7∗7∗1280 avgpool 7×7 - - 1 - 

1∗1∗320 conv2d 1×1 - k -
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3.3 MLP-mixer 

MLP-mixer [39]: With the help of state-of-the-art models, 

MLP-mixer offers a fairly straightforward architecture that 

performs competitively on benchmarks for image clasification. 

The MLP-mixer is focused only on multi-layer perceptrons 

(MLPs) that do not employ convolutions or self-attention. The 

Mixer layer is made up of two separate MLP layers: one that 

applies MLPs to individual picture patches independently, 

“mixing” location-specific characteristics and another that 

applies MLPs to many patches simultaneously, “mixing” 

spatial information. Only simple matrix multiplication 

operations, data layout adjustments (reshapes and 

transpositions), and scalar nonlinearity are used by Mixer. 

MLP is a type of neural network architecture that process 

input data through various layers and produce output data as a 

result. The architecture of an MLP includes an input layer, 

several hidden layers, and an output layer. The hidden layers 

process the data and learn higher level features. The output 

layer perceptrons then produce the output data. An MLP 

includes weight and bias values for each perceptron. These 

values are learned during training and used to process the data. 

The weight values represent the connections between 

perceptrons and the bias values represent the threshold values 

of the perceptrons. This architecture is typically feed-forward, 

meaning that the data flows from input to output. It is also 

typically trained using the back-propagation algorithm, which 

updates the weight values to reduce the error rate between the 

output data and the real data. MLP is a powerful architecture 

that can be used for a variety of applications such as natural 

language processing, image recognition and audio recognition. 

With its ability to process data through multiple layers and 

learn advanced features, it has proven to be a valuable tool in 

the field of machine learning. An MLP can be represented 

mathematically using the following equation: 

𝑦 = 𝑓 (𝑊𝑛 ∗ 𝑓 (𝑊𝑛 − 1 ∗. . .∗  𝑓 (𝑊2 ∗ 𝑓 (𝑊1 ∗
𝑥 + 𝑏1) + 𝑏2). . . +𝑏𝑛 − 1) + 𝑏𝑛)  

(1) 

The equation, where y is the output of the Multi-layer 

Perceptron (MLP), x is the input data, f is the activation 

function (e.g., sigmoid, ReLU, etc.), W1, W2, ..., Wn are the 

weight matrices for each layer, b1, b2, ..., bn are the bias 

vectors for each layer and n is the number of layers in the MLP, 

describes how the input data is transformed through multiple 

layers of perceptrons. The input data is multiplied by the 

weight matrix of the first layer, passed through the activation 

function to introduce non-linearity, and then added to the bias 

vector of the first layer. This process is repeated for each 

subsequent layer, with the output of one layer serving as the 

input for the next layer. The final output is obtained by passing 

the output of the final hidden layer through the activation 

function and adding the bias vector of the output layer. It 

should be noted that the above equation depicts a feed- 

forward process, where information flows from the input layer 

to the output layer without feedback. The back-propagation 

algorithm can be utilized to adjust the weight and bias values 

during training to minimize the error between the predicted 

output and the actual output. 

The MLP-mixer is a method that uses a sequence of linearly 

projected image patches, referred to as tokens, as input. The 

input data is arranged in a table with dimensions “patches x 

channels”. The mixer has two types of MLP layers to mix 

spatial information: channel-mixing MLPs and token-mixing 

MLPs. Channel-mixing MLPs allow communication between 

different channels by processing each token independently and 

using individual rows of the input table. Token-mixing MLPs 

facilitate communication between different spatial locations 

by independently processing each channel and using 

individual columns of the input table. By alternating between 

these two types of layers, the MLP-Mixer is able to effectively 

mix both input dimensions, resulting in mixed feature maps. 

The MLP-mixer takes as input a sequence of S non-

overlapping image patches, each projected to a hidden 

dimension of C. This produces a two-dimensional input table, 

X; ϵ; RSXC. The mixer is made up of multiple layers, each of 

the same size, and each layer consists of two blocks of MLPs. 

The first block is the token-mixing MLP, which operates on 

the columns of XT and maps the input to the same dimension 

as the output. The second block is the channel-mixing MLP, 

which operates on the rows of X and maps the input to the 

same dimension as the output. Each MLP block has two fully-

connected layers and a nonlinearity operation. The 

nonlinearity is applied to each row of the input data tensor 

individually. In Table 2, we have provided the specifications 

used in the MLP-mixer architecture. 

Table 2. Specifications of the mixer architectures 

Specification Value 

Number of layers 6 

Patch size 4 

Number of channel 128 

Hidden size 128 

Output neuron size 100 

3.4 Vision transformer (ViT) 

Vision Transformers, initially introduced by Dosovitskiy et 

al. [40], are a deep learning architecture that has demonstrated 

superior performance in image classification applications 

when trained on large-scale datasets compared to CNNs. 

However, their reliance on vast quantities of training data and 

computational resources poses a challenge. To address this 

issue, Touvron et al. [41] introduced a data-efficient version of 

ViT by using commonly used data augmentation and 

manipulation techniques for CNNs. They also improved the 

performance of ViT through a transformer-based teacher-

student approach. The high performance of ViT has prompted 

further research into its use for various vision tasks [42]. 

ViT is a deep learning architecture designed to categorize 

images by modeling a series of image patches into a semantic 

label. Unlike traditional CNN designs, the ViT utilizes the 

encoder module of the transformer to allow for the 

interpretation of information throughout the entire image 

through its attention mechanism. The architecture of the ViT 

typically includes (1) an embedding layer, (2) an encoder, and 

(3) a final classifier head.

The first step in the process is to divide the training set

images into non-overlapping patches. Each patch is evaluated 

as a separate token by the transformer. A [c, h, w] dimensional 

image results in n series of [c, p, p] patches, where c represents 

the number of channels, h represents the height, w represents 

the width, and p is the size of the patch. The number of patches, 

n, is calculated by dividing h w by p2. Typically, a patch size 

of 16 or 32 is chosen, as a smaller patch size results in a wider 

array and vice versa.
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3.4.1 Embedding layer 

The patches obtained from dividing the image into non-

overlapping sections are transformed into a 1-dimensional 

vector via a trainable linear projection (embedded matrix E) 

prior to being fed into the encoder. The embedded patches are 

then combined with a learnable embedding classification 

indicator, xclass, necessary for performing the classification 

task. 

The position of each patch within the image is incorporated 

into its representation through the addition of position 

embeddings. The position embeddings, denoted by Epos, have 

a dimension of (n+1)×D, where n is the number of patches and 

D is the dimension of the vector representation. The combined 

representation of each embedded patch and its position 

embedding is represented by z0 in Eq. (2), with E being the 

embedding matrix of size (p2c) and Epos∈R(n+1)×D.

𝑧0 = [𝑥class 𝑥𝑝
1𝐸𝑖𝑥𝑝

2𝐸𝑖 … ; 𝑥𝑝
𝑛𝐸] + 𝐸𝑝𝑜𝑠 (2) 

3.4.2 Vision transformer encoder 

The encoder in ViT is constructed from L identical layers, 

each layer comprised of a Multi-Head Self-Attention (MSA) 

block and a Multi-Layer Perceptron (MLP) block. These 

blocks are separated by a normalization layer, and there are 

skip connections present after each block. The MLP block is 

composed of two layers utilizing the GELU activation 

function. 

𝑧𝑙
′ = 𝑀𝑆𝐴 (𝐿𝑁(𝑧𝑙−1)) + 𝑧𝑙−1, 𝑙 = 1 … 𝐿 (3) 

𝑧𝑙 = 𝑀𝐿𝑃𝐿𝑁𝑧𝑙
′ + 𝑧𝑘

′ 𝑙 = 1 … 𝐿 (4) 

𝑦 = 𝐿𝑁𝐿
0𝑧 (5) 

The first component in the sequence is taken from the last 

layer of the encoder and fed to the head classifier as shown in 

(5) to predict the class label.

3.4.3 Compact convolutional transformer (CCT) 

ViT architectures have been demonstrated to achieve 

superior performance in image classification tasks when 

trained on large-scale datasets, however, they come with the 

requirement for significant amounts of data and computational 

resources [38]. To overcome this challenge, researchers have 

explored the combination of transformers and convolutions to 

benefit from their respective strengths. Hassani et al. [43] 

introduced the Compact Convolutional Transformer (CCT) 

architecture, which combines a patch-based approach to 

preserve local information, addressing some of the limitations 

of ViT, while still achieving improved performance. This 

model can encode the relationships between patches 

differently from the original ViT. CCTs are efficient to 

kenizers that preserve local spatial relationships while having 

short receptive fields. Additionally, the transformer encoder 

provides a sequential pooling approach called SeqPool which 

gathers sequential information from the encoder. SeqPool 

eliminates the need for an additional Classification Symbol. 

Figure 4 shows the entire end-to-end architecture of the model. 

Figure 4. The proposed method for ear gender recognition 
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4. PROPOSED METHOD

In this section, we introduce an end-to-end approach for ear 

gender recognition. Our proposed method seeks to develop a 

hybrid model that is low-parameter, trainable quickly, and 

state-of-the-art. In order to achieve this, we have developed a 

hybrid architecture that takes into account two approaches that 

are presently competing in the image classification space: 

CNNs and ViT. Previous research has demonstrated that the 

VGG19 CNN model obtained a high level of performance for 

the ear recognition problem, achieving 91.2% accuracy [8]. 

However, this model had too many parameters (see Table 3) 

and thus did not meet our objective of developing a model with 

few parameters. As a result, we used the CNN model 

MobileNetV2, which has low accuracy but a limited number 

of parameters (see Table 3). For the ViT part, we used one of 

the vision transformer’s derivatives, i.e., CCT. CCT 

architecture introduces compact transformers by incorporating 

convolutions in place of patching and utilizing sequence 

pooling. This reduces the number of parameters while 

maintaining high accuracy. Figure 4 shows our proposed 

hybrid architecture. In this architecture, the last layer of 

MobileNetV2 is removed and its feature vector of 1280 is 

concatenated with the feature vector of CCT model. Then, an 

additional fully connected layer is added to blend the feature 

vectors from both models and attach them to the class layer. 

Our proposed hybrid model takes advantage of the strengths 

of CNN and CCT to achieve high performance for the ear 

gender recognition problem. 

Table 3. Parameter size of CNN-based models 

Model Name Parameter Size 

AlexNet 45.342.082 

VGG16 134.268.738 

VGG19 137.218.626 

InceptionV3 21.806.882 

ResNet50 23.538.690 

ResNet101 42.540.482 

DenseNet201 17.721.960 

MobileNetV2 2.243.490 

Table 4. Hyperparameters of the proposed model 

Batch size 16 

Learning rate 0.001 

Input_size 224×224×3 

Optimizer RMSProp 

Loss function cross entropy loss 

Momentum 0.9 

Epoch 200 

Epsilon 1e-08 

Learning rate decay factor 0.5 

4.1 Training details 

We utilize the RMSProp optimizer [44] with a batch size of 

16 and train all models from scratch for 200 epochs, setting the 

learning rate to 0.001, rho to 0.9, and epsilon to 1e 08. When 

the minimum validation loss stops improving after 2 epochs 

and the best model is saved using model checkpoint 

monitoring validation loss, we cut the learning rate by a factor 

of 0.5%. The cross entropy loss function was utilized to update 

the model weights during training. The hyper parameters used 

in the training of the overall model are displayed in Table 4. 

5. EXPERIMENT RESULTS

In this section, we discuss the steps we took to attain state-

of-the-art results for the problem of ear gender recognition. 

Our objective is to develop a hybrid model by combining three 

approaches that have recently made significant advancements 

in image classification: CNNs, MLP-Mixer, and ViT. In this 

context, upon examination of the literature, no studies have 

been observed that used MLP-Mixer and ViT models, while 

many models such as VGG, ResNet, etc., that performed well 

on the ImageNet dataset have been used with CNN models. 

Nguyen-Quoc and Hoang [8] examined the performance of 

popular CNN models on the EarVN1.0 dataset, and the highest 

test accuracy of 91.12% was obtained with the VGG19 model. 

However, the VGG19 model is a dense network and contains 

approximately 137 million parameters (see Table 3). In 

contrast, the MobileNetV2 model has a modest number of 

parameters, approximately 2 million, but a performance of 

85.55%. Comparing the training periods of the two models 

reveals that MobileNetV2 is trained approximately three times 

faster (see Table 5). Since our aim is to construct a model with 

few parameters, the MobileNetV2 model was chosen as the 

CNN model, and experimental studies were conducted to 

improve its performance. 

Table 5. Comparison of model results in terms of test 

accuracy, run time, and parameter size 

Model 
Test Acc 

(%) 

Run-

Time 

Parameter 

Size 

MobileNetV2 85.55 6h 32min 2.243.490 

VGG19 91.12 
18h 

48min 
137.218.626 

MLP-Mixer 88.45 9h 11min 16.171.778 

ViT 90.49 6h 32min 4.573.941 

Our MLP-Mixer with ViT 91.80 
10h 

45min 
20.968.845 

Our MobileNetV2 with 

MLP-Mixer 
96.34 

10h 

57min 
18.871.618 

Our MobileNetV2 with ViT 96.66 9h 7min 7.506.729 

In Table 5, we compare the accuracy, run-time, and 

parameter size of various models. Initially, using the MLP-

Mixer model on the EarVN1.0 dataset and training it from 

scratch yielded a test accuracy of 88.45%. This model 

performed better than MobileNetV2 but was behind VGG19 

in terms of accuracy. In terms of parameter size, it was roughly 

eight times larger than MobileNetV2 and 0.12 times smaller 

han VGG19 (see Table 5). Similarly, by training from scratch 

using the ViT model, a test accuracy of 90.49% was achieved. 

This model was found to be comparable to VGG19 and 

MobileNetV2 in terms of efficacy and parameter size, 

respectively. In addition, the performance of hybrid models 

with MobileNetV2, MLP-Mixer, and ViT architectures was 

investigated. As seen in Table 5, test accuracy of 91.80%, 

96.34% and 96.66% was obtained by using MLP-Mixer with 

ViT, MobileNetV2 with MLP-Mixer and MobileNetV2 with 

ViT respectively. These models were trained from scratch and 

end-to-end. In terms of both efficacy and parameter size, they 

surpass VGG19. Specifically, the suggested MobileNetV2 

with ViT model could be preferred in terms of performance 

and parameter size; this model increased test accuracy by 5.54 

percent compared to VGG19 and attained state-of-the-art 

results in the ear gender recognition field. In terms of 

parameter size, the magnitude of the suggested model was 
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approximately 1/18 that of VGG19. 

Table 6 illustrates the results of state-of-the-art models 

proposed for the ear gender recognition problem. Karasulu et 

al. [45] created a hybrid model by combining CNN and RNN 

architectures and achieved an accuracy of 85.16% on the test 

set. Nguyen-Quoc and Hoang [8] conducted experimental 

studies using popular CNN models with their default values 

and obtained the highest score of 91.1% with the VGG19 

model. In terms of test accuracy, number of parameters, and 

training time, our proposed MobileNetV2 with ViT model 

provides a superior model architecture. 

Table 6. Comparison of models 

Network 
Accuracy 

(%) 

Karasulu et al. [45] CNN with RNN 85.16 

Nguyen-Quoc and 

Hoang [8] 

AlexNet 87.65 

VGG16 91.04 

VGG19 91.12 

InceptionV3 87.62 

ResNet50 89.37 

ResNet101 89.39 

DenseNet201 88.30 

MobileNetV2 85.55 

Our MobileNetV2 with ViT 96.66 

The hybrid model generated by integrating CNN, MLP-

Mixer, and ViT has demonstrated superior performance in 

comparison to existing methods. The factors contributing to 

this performance improvement are as follows: (1) 

Complementary Feature Extraction: The combination of CNN, 

MLP Mixer, and ViT provides for complementary feature 

extraction capabilities. CNNs are renowned for their ability to 

identify local and spatial features in images, whereas ViT 

excels at identifying global context and long-distance 

dependencies. MLP Mixer complements these methods by 

enhancing the representation of features through token mixing. 

Using the strengths of each component, hybrid models 

produce a more comprehensive representation of the input data. 

(2) Hierarchical Information Processing: CNNs inherently

capture hierarchical information through their stacked

convolutional layers. MLP Mixers, on the other hand,

introduce token mixing operations that enable the model to

explicitly model relationships between different parts of the

image. ViT uses self-attention mechanisms to capture global

dependencies. By integrating these techniques, hybrid models

are able to process both local and global data efficiently,

resulting in enhanced performance. (3) Enhanced

Representation Learning: The combination of different

architectures allows for enhanced representation learning.

CNNs, MLP Mixers, and ViT each have their own unique

mechanisms for learning representations from data. By

integrating these mechanisms, the hybrid models can capture

a wider range of features and patterns, potentially leading to

better discrimination and classification capabilities. (4)

Adaptability to Data Characteristics: The hybrid models

provide flexibility in adapting to different types of data

characteristics. CNNs have been widely used for image-

related tasks and are effective in capturing spatial information.

MLP Mixers, with their token mixing operations, can handle

various input sizes and effectively model relationships

between tokens. ViT, with its attention mechanism, is capable

of handling both image and sequence data. The combination

of these models allows for a more versatile and adaptable

approach to the task, accommodating different data

characteristics that may arise. In summary, the proposed

hybrid models leverage the strengths of CNN, MLP Mixer,

and ViT to capture complementary features, process

hierarchical information, enhance representation learning, and

adapt to various data characteristics. These factors contribute

to the observed performance improvements when compared to

current methods.

Figure 5. Evaluating the models using the t-SNE method. The graphs represent the 0 (red): male and 1 (blue): female class 
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In Figure 5, the results of the t-Distributed Stochastic 

Neighbor Embedding (t-SNE) method are presented for 

evaluation of the models. t-SNE is a dimensionality reduction 

technique that is particularly effective for visualizing high-

dimensional data sets and was first introduced by Van der 

Maaten and Hinton [46]. The t-SNE algorithm calculates a 

measure of similarity between pairings of samples in high-

dimensional space and low-dimensional space; it then 

attempts to optimize these two similarity measures using a loss 

function. This method discovers a non-parametric mapping 

and provides an intuitive understanding of how the data is 

structured in high-dimensional space. The entanglement or 

disentanglement of features reveals the model’s performance. 

Examining Figure 5, it is observed that the results of the 

MobileNetV2 and ViT models are intertwined, making it 

challenging to separate the classes with a simple 

discriminative boundary. In our proposed MobileNetV2 with 

ViT model, the features obtained in the low-dimensional space 

are disentangled, and it is observed that the two classes can be 

easily separated. These results show that our proposed model 

is more successful for the ear gender recognition problem. 

6. CONCLUSION

In recent years, deep learning techniques have been 

extensively researched for their potential in various 

applications, including biometrics. One such application is the 

use of ear images for gender recognition. Our research 

significantly contributes to the field of biometric identification 

technology, specifically in the area of ear gender recognition. 

The main contributions of this work can be summarized as 

follows: 

(1) Hybrid Recognition Architecture: We introduce a novel

hybrid recognition architecture named “MobileNetV2 with 

ViT.” By combining the strengths of CNN and ViT, our 

proposed model achieves remarkable performance in gender 

classification tasks. 

(2) Advantages over Alternative Models: Through

comprehensive evaluations, we compare our hybrid 

architecture with alternative models like CNN models, MLP-

Mixer and ViT. Our findings indicate that the hybrid model 

outperforms these alternatives in terms of both performance 

and computational efficiency. Additionally, it stands out with 

a favorable number of parameters, making it a superior choice 

for gender recognition tasks. 

(3) Effective Feature Disentanglement: We provide t-SNE

results to demonstrate how well our proposed model 

disentangles features in a low-dimensional space compared to 

other models. This visualization highlights the model’s ability 

to effectively represent gender-related features, contributing to 

its accuracy in classification. 

The proposed model presents a strong approach for gender 

recognition using ear images, achieving an impressive success 

rate of 96.66% on the EarVN1.0 dataset. This achievement 

opens up promising applications in real-world scenarios, 

including human-computer interaction, secure banking 

transactions, gender-based disease diagnosis, and 

demographic data collection. Notably, the study’s reliance on 

a single dataset is a limitation, necessitating further research to 

enhance the model’s ability to generalize across diverse ear 

datasets. 
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