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In the context of Industry 4.0, a transformative shift in industrial manufacturing, product 

enhancement, and distribution methods has been observed, emphasizing the critical need for 

precise recognition of human intention to ensure operational reliability, safety, and 

efficiency. Central to this recognition, especially in equipment manufacturing, is the 

accurate identification of tools manipulated by human operators. In this study, a novel object 

detection model, referred to as 'Industry-RetinaNet', has been proposed for advanced tool 

detection. Improvements upon the conventional RetinaNet are evident in the form of 

optimized anchor box shapes derived from advanced anchor generation techniques, an 

augmented number of detection boxes, and the reinforcement of an alternate backbone 

architecture. When validated against a test dataset, the model demonstrated notable 

performance metrics with an F1-score of 0.904, an mAP of 0.903, and a recall of 0.809, 

while preserving real-time processing capabilities. It is anticipated that the implementation 

of this methodology will pave the way for improved interpretation of worker intentions, 

potentially enhancing overall efficiency in the burgeoning arena of intelligent factories. 
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1. INTRODUCTION

With the emergence of Industry 4.0, transformative shifts in 

manufacturing and product distribution methodologies have 

been observed [1, 2]. These transitions have been driven by the 

integration of nascent technologies, including the Internet of 

Things, artificial intelligence, and machine learning, into 

manufacturing facilities and operational processes [3, 4]. 

Consequently, the birth of a more intelligent and automated 

industrial landscape has been witnessed, characterized by 

heightened product quality, diminished production costs, and 

enhanced safety standards. 

In the evolving landscape of intelligent factories, the 

significance of recognizing and classifying human intention is 

paramount [5-7]. Such recognition not only ensures the 

reliability and safety of human operations but also gauges the 

holistic efficiency of production systems. This understanding 

is pivotal, especially when extended to the interactions 

between humans and robots, where the goal is to establish 

more safe and efficient exchanges. Outside the confines of 

factory settings, discerning human intention has crucial 

implications in domains like autonomous driving [8], 

pedestrian intention prediction [9], and surveillance and 

security [10]. 

It is crucial to distinguish intention prediction from action 

recognition and action prediction, as the former aims to fathom 

the underlying intentions behind a sequence of evolving 

actions [11-15]. A notable area of application is equipment 

manufacturing, where the accurate detection of tools 

manipulated by operators remains an integral component of 

human intention recognition. 

Amidst the swift advancements in deep learning, various 

object detection models such as RCNN, Fast RCNN, Faster 

RCNN, SSD, YOLO, and RetinaNet have been presented in 

the literature [16-21]. However, the unique challenges 

presented by tool detection, owing to the diversity in tool sizes, 

shapes, and appearances amidst intricate backgrounds, 

necessitate the formulation of a specialized detection 

mechanism (Figure 1). 

To bridge this gap, an innovative object detection model 

named 'Industry-RetinaNet' has been proposed, specifically 

tailored for tool detection. This novel model incorporates a 

unique backbone with subnet architectural adjustments, 

amplifying the dilated convolution operation evident in the 

conventional RetinaNet. Such modifications grant the network 

an expanded receptive field, optimizing multi-scale 

performance at the same depth. For the detection of objects 

across various scales, adjustments in the anchor configuration 

and an attention-gated function have been introduced during 

the training phase. Additionally, post-processing mechanisms, 

such as Soft-NMS, have been incorporated to elevate detection 

performance [22]. 

The salient contributions of this study are delineated as: 

• Compilation of a specialized tool detection dataset tailored

for human intention recognition in equipment manufacturing. 

• Proposition of the innovative 'Industry-RetinaNet' model

for tool detection. 

• Achieving noteworthy tool detection results via 'Industry-

RetinaNet' whilst preserving real-time processing 

proficiencies. 
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The remainder of the article is organized as follows: Section 

2 delves into existing work pertinent to object detection. The 

methodologies adopted in this study are elucidated in Section 

3. Section 4 offers insights into the implementation specifics 

of the proposed model and the empirical results obtained. 

Concluding remarks are presented in Section 5. 

 

 
(a) Complex background 

 
(b) Blurred image 

 

Figure 1. Example of tool. Tools have various sizes and 

shapes, present different appearances in complex background 

 

 

2. RELATED WORKS  

 

In object detection, the primary objective remains the 

localization of specific object instances. Prior to the 

resurgence of deep learning, feature extraction for traditional 

detection algorithms was primarily dependent on detectors that 

utilized, for instance, HOG and SIFT features. Following the 

introduction of DPMs and their variants, a dominance of 

sliding-window-based detection methods was observed, a 

claim further corroborated by repeated successes in the 

PASCAL competition [23]. 

With the integration of Convolutional Neural Networks 

(CNNs) for feature extraction, significant strides were made in 

the domain. CNN-based detectors are typically bifurcated into 

two primary components: a feature extractor and a regression 

component. Differentiation between these detectors was based 

on the methodology adopted for generating potential bounding 

boxes, further categorizing them into either single-stage or 

two-stage paradigms. 

Within the two-stage paradigm, an initial stage is tasked 

with producing a series of candidate proposals, perceived to 

encapsulate objects of interest. These proposals then undergo 

refinement in a subsequent stage, wherein classification into 

foreground and background is executed. This approach was 

first manifested by the Selective Search network and later 

refined by R-CNN, wherein CNN was employed for proposal 

classification [24]. Following the acclaim of R-CNN, several 

advancements, epitomized by Fast R-CNN's use of feature 

maps and RoI pooling, were introduced to minimize 

convolution operations per image. Furthermore, the Faster R-

CNN implemented a Region Proposal module to generate 

regions of proposals. However, a notable limitation of these 

two-stage detectors was discerned: they often failed to meet 

real-time processing demands for video sequences [25]. 

On the contrary, single-stage detectors, prioritizing high 

frames per second (fps), opted for anchor boxes as a substitute 

for proposals. Such boxes, characterized by predefined ratios 

and scales, reflected prior knowledge regarding the given task. 

Earlier iterations of this paradigm, as represented by SSD and 

YOLO, emphasized speed, albeit often at the cost of accuracy 

[26]. A consistent challenge faced by these networks was the 

class-imbalance problem, which arose due to the disparity 

between background and foreground images. To mitigate this, 

focal loss was proposed, leveraging specific coefficients to 

diminish the overwhelming influence of background images 

on classification tasks. Subsequent single-shot network 

designs not only maintained commendable speed but also 

achieved performance metrics comparable to their two-stage 

counterparts [27]. A majority of these advanced designs either 

directly incorporated focal loss or introduced specialized 

structures to counter the class imbalance issue. 

To address the persistent class-imbalance issue, various 

strategies were investigated, ranging from Online Hard 

Example Mining (OHEM), class-specific sampling, and focal 

loss modifications, to class re-weighting [28]. These 

methodologies spanned from accentuating hard examples 

during training (as observed in OHEM) to altering the training 

sampling strategy, thereby ensuring a balanced representation 

between foreground and background classes. Modifications of 

the focal loss function aimed at amplifying the model's 

resilience against class imbalances were also introduced. 

Furthermore, in the class re-weighting strategy, differential 

weights were allocated to diverse classes during training, 

harmonizing their contributions to the overall loss function. 

Such dedicated strategies, in tandem with the integration of 

focal loss, have been instrumental in significantly elevating the 

performance metrics of contemporary designs, particularly in 

managing the inherent class-imbalance problem in object 

detection tasks. The aforementioned advancements lay a 

strong groundwork for further exploration and development in 

the object detection domain. 

 

 

3. METHOD 

 

This section delineates the methodology of the proposed 

tool detector, offering detailed insights into the network 

architecture, including the Feature Pyramid Network (FPN) 

and the anchor configuration. Essential components aimed at 

enhancing detection accuracy are discussed, as illustrated in 

Figure 2, which presents a schematic of the proposed network 

architecture. In the initial processing phase, DetNet is 

leveraged for feature extraction, followed by the construction 

of the FPN atop the DetNet output and residual blocks. The 

pyramid network's output features are then segmented into 

four stages and distributed across two sub-networks.  
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Figure 2. Proposed network architecture: DetNet feature extraction and FPN construction with segmentation into four stages 

distributed across dual sub-networks 

 

3.1 Proposed network architecture 

 

RetinaNet, as a single-stage detector, addresses the class 

imbalance challenge through the incorporation of focal loss. A 

FPN architecture, designed for constructing multi-scale 

outputs, is also integrated into RetinaNet. The foundational 

design of the proposed model mirrors that of RetinaNet, and 

the choice of ResNet-50 as the backbone over VGG is 

substantiated in the study [21]. The intrinsic FPN structure, as 

employed by RetinaNet, spans five stages, ranging from P3 to 

P7. Each of these stages is equipped to detect objects across 

varying scales. Notably, the mechanism labeled as the 

"shortcut output" is designed for deducing levels P3 to P5. 

This mechanism employs both lateral and top-down 

connections to the ResNet blocks C3 to C5. Here, the "shortcut 

output" represents feature maps generated by associating the 

output of a specific ResNet block with its corresponding FPN 

level through a lateral link. This design enables FPN levels to 

extract and utilize information spanning different phases of the 

backbone network. The P6 level is derived through a 2-strided 

convolution performed on P5, while P7 is formulated as a 

down-sampled variant of P6, actuated by ReLU. It is observed 

that the coarser levels, namely P6 and P7, are tailored to detect 

larger objects and are derived based on data from P5, 

bypassing the features originally imbibed by the ResNet 

backbone. Such a design strategy optimally balances 

computational speed with only a marginal compromise in 

large object detection. In the proposed architecture, an 

alternate method, aimed at enhancing speed, is incorporated 

and further elucidated in the subsequent sections. The 

computation of all five levels, spanning from P3 to P7, adheres 

to the approach detailed in the study [27]. 

 

3.2 Anchor optimization technique 

 

Anchors of diverse sizes and aspect ratios are generated atop 

each pyramid level and subsequently directed to dual subnets, 

which are tasked with label classification and bounding box 

regression. Configurations for these anchors are found to be 

consistent with sizes of 32, 64, 128, 256, and 512. Notably, for 

each of these sizes, three scales - 20, 2, and 2 - and three 

distinct aspect ratios, namely 1:2, 1:1, and 2:1, are observed. 

Owing to the pivotal role that anchor quality plays in detection, 

conventional anchor settings have been identified to be 

potentially restrictive, particularly when detecting multiple 

tools smaller than 32 within a singular frame. To address this 

shortcoming, an evolutionary algorithm is introduced to 

deduce optimal anchors [28]. Optimization of these anchor 

configurations, as delineated in the study [29], is realized 

through the formulation of a specific objective function. The 

overlap between the anchor and the object's bounding box is 

incrementally augmented using a refined set of candidate 

proposals. An increased quantity of anchors per level, paired 

with a variety of aspect ratios, ensures a more comprehensive 

anchor coverage across every pyramid scale. Deviating from 

the methodology described in the study [29], scales in this 

context are optimized in relation to their inherent stride value. 

Through rigorous experimentation, combinations of scales and 

ratios have been discerned that most aptly suit the task at hand. 

 

 
(a) Sparse coverage 

 
(b) Dense coverage 

 

Figure 3. Anchor optimization outcomes 
Note: Results of the optimization process can be observed in the depicted 

anchor boxes. Enhanced ratios and sizes offer a superior overlay of the 

ground truth label. Ground truth is symbolized by the red box, while 

predictions are denoted by the green box. 
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3.3 Implementation of dilated convolutions 

 

In preceding sections, optimal methodologies for anchor 

configurations were discussed, revealing their potential in 

augmenting detection performance, particularly for finer 

objects at the boundaries. However, it was recognized that the 

introduction of a higher anchor count necessitates a refined 

backbone structure, due to the added computational intricacy. 

Classical CNNs are often observed to reduce resolution 

while expanding the receptive field, a trait that can result in the 

derived feature map being too granular for precise discernment. 

To address this challenge, the Dilated Residual Network (DRN) 

was introduced. 

Dilated convolutions, occasionally referred to as atrous 

convolutions, are depicted by Eq. (1) [30]:  

 

( )( ) ( ) ( )l

s lt p

F k p F s k t
+ =

 =   
(1) 

 

Within this equation, l denotes the dilation rate. It is 

noteworthy that this operation induces spaces within the 

convolutional kernel. For example, a dilation of a 3×3 

convolution at a rate of 2 has been found to produce a receptive 

field size analogous to a 5×5 convolution. A salient advantage 

of this approach is the capability to maintain the same 

receptive field size, but with reduced parameters and at an 

enhanced resolution. Hence, performance improvements can 

be secured without additional depth or convolutional 

complexity. 

 

            
(a) Gridded feature map representation         (b) Degridded feature map depiction 

 

Figure 4. Feature map illustrations 
Note: The degridded feature map, as compared to its gridded counterpart, exhibits a smoother spread of heat values. 

 

Nevertheless, a prominent artifact known as the gridding 

effect has been associated with dilated convolutions. This 

artifact manifests particularly when the dilation sampling rate 

falls below the frequency of the feature map, resulting in the 

generation of the aforementioned gridded pattern, as presented 

in Figure 4(a). Several corrective mechanisms have been 

proposed and evaluated. Among these, the global pooling 

layer's replacement with a ResNet block, along with an 

increase in residual blocks, was reported in studies [31, 32]. 

Drawing inspiration from DetNet, the backbone structure 

was redefined. Specifically, the native bottleneck blocks C4 

and C5 of ResNet-50 were substituted with a dilated 

bottleneck integrated with a 1×1 convolution projection. 

Furthermore, a degridding mechanism was applied to this 

novel structure, with P5 being determined within the backbone. 

The resultant degridded feature map is visualized in Figure 

4(b). 

 

3.4 Implementation of the attention-gated block 

 

The effectiveness of attention gates, especially when 

targeted at small and variable objects, has been previously 

established [29]. Such a mechanism, requiring merely a 1×1 

convolution for the formation of an attention matrix, is not 

only lauded for improving accuracy but is also acknowledged 

for its efficiency and lightweight nature. 

The underlying principle of the attention mechanism is its 

ability to discern feature saliency, which pertains to the degree 

of relevance certain features in the input possess. It has been 

observed that, through the generation of an attention map, 

models can be guided to predominantly focus on these salient 

regions. Concurrently, less pertinent regions are either 

suppressed or altogether overlooked. Within the scope of this 

discussion, 'non-task information' encompasses elements of 

the input that are deemed extraneous to the primary task. Such 

elements may comprise background nuances, noise, or any 

distractions unrelated to object detection. 

To proficiently segregate this non-task information, 

integration of the global feature vector 'G', derived from a 

coarser spatial level, with the attention gate mechanism is 

advocated. It is postulated that this global feature vector equips 

the model with the capability to differentiate between pertinent 

features and the non-task counterparts. Consequently, the 

attention gate is facilitated in its suppression of the non-task 

information, simultaneously emphasizing the salient features, 

thus promising heightened performance metrics. 

The operational principles of the attention gate modules are 

encapsulated in Eq. (2).  

 
T

, 1

2

( ( ))

( ( , ; ))

l T l T

att i x i g xg

l l l

att att

q W x W g b b

a q x g

 



= + + +

= 
 (2) 

 

For pragmatic implementations, it is noted that the output of 

each pyramid has been utilized as the gate signal g, and 

concurrently, the output of the skip connection is employed as 

the input feature vector X. 
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4. EXPERIMENTATION AND RESULTS 

 

4.1 Configuration of the experimental environment and 

dataset description 

 

A novel tool detection was incorporated into the study. The 

experiments were conducted using an Nvidia GTX1080 Ti for 

both the training and testing phases. The open-source deep 

learning framework, TensorFlow, was employed to implement 

the model. 

A dataset was curated to discern human intentions in 

equipment manufacturing scenarios. Consisting of 3,440 pre-

processed images, the dataset exhibits varied pixel resolutions. 

Four categories were identified: screwdriver, spanner, 

screwdriver in hand, and spanner in hand. Expert personnel 

carefully annotated each image using the Label-me software. 

To gauge detection performance, a series of experiments were 

devised and executed.  

 

4.2 Process of model training 

 

Initially, images were resized to a 300×300 scale, followed 

by the application of data augmentation techniques. The 

proposed network was trained using Adam as the optimizer, 

incorporating a weight decay of 0.0001 and a momentum of 

0.9. Furthermore, focal loss and L1 loss were utilized during 

network training. 

 

4.3 Detection results for tools 

 

For this dataset, partitioning was undertaken to create 

training, validation, and testing subsets, adhering to a 5:3:2 

distribution. Given the absence of pre-trained weights suitable 

for the proposed architecture, networks were trained from their 

foundational parameters. To appraise the detection method, 

Precision, Recall, F1-score, Average Precision (AP), and 

Frame rate were selected as evaluative indicators. The 

performance in tool detection was quantified using metrics 

presented in Eq. (3).  

 

1

0

TP TP
Precision= , Recall=

TP+FP TP+FN

2 Prec Rec
F1= , AP ( )

Prec+Rec
p r dr

 
= 

 (3) 

 

 

Table 1. Tool detection outcomes on the test set 

 
Methods Params Size F1-Score mAP Recall Frame Per Second 

RetinaNet [33] 35.33M 0.822 0.87 0.815 0.0291s 

RetinaNet + AO 35.24M 0.828 0.891 0.834 0.0422s 

RetinaNet + AO + AG 35.39M 0.827 0.894 0.851 0.0422s 

RetinaNet + AO + AG + DilatedConv 29.62M 0.894 0.863 0.806 0.0198s 

RetinaNet + AO + AG + DilatedConv + Degrid 33.73M 0.904 0.903 0.809 0.0229s 

The test set outcomes for tool detection are depicted in 

Table 1, which encompasses various components. In the case 

of RetinaNet, ResNet-50 served as the backbone. For 

DilatedConv, the backbone was substituted with DetNet-59. It 

is discernible from the results that the inclusion of anchor 

optimization resulted in a 3% ascent in mAP, albeit at the cost 

of diminished processing speed. As a subsequent measure, the 

backbone architecture transitioned to DetNet, demanding 

fewer parameters without inducing a pronounced decrement in 

performance. It was observed that potential gridding effects 

could emanate from the backbone architecture. Evidently, the 

attention module mitigated these effects, bolstering detection 

performance without considerable hindrance to detection 

velocity. 

 

 

5. CONCLUSION 

 

In this research, Industry-RetinaNet, a distinct object 

detector tailored for tool detection, has been introduced. 

Factors contributing to the observed non-competitiveness in 

RetinaNet's performance were systematically investigated. 

Through this examination, it was determined that the 

incorporation of a task-specific anchor optimization strategy 

markedly augmented the original RetinaNet furnished with a 

ResNet-50 backbone. 

Furthermore, an attention gate module was seamlessly 

integrated with the degridding backbone of DetNet, ensuring 

the preservation of real-time detection speed. Subsequent 

testing on a novel dataset revealed that the refined model 

yielded remarkable outcomes in tool detection, thereby 

highlighting its efficacy and broad applicability. 

During the course of this research, a new dataset was 

curated. The proposed method, as evidenced by its superior 

performance and real-time inference capabilities, reaffirms its 

potential practical application, particularly within the ambit of 

Industry 4.0. Coupled with the model's resilience in diverse 

scenarios, a promising avenue for its deployment in future 

industry-centric applications emerges. 

The broader ramifications of this study underscore the 

profound impact of targeted modifications to object detection 

models on enhancing their proficiency within niche industrial 

domains. Such findings not only pave the way for 

advancements in machine vision but also delineate a 

prospective route for bolstering operational efficiency in 

industrial settings. As a natural progression, it is recommended 

that subsequent studies endeavor to extrapolate this approach 

to alternative industrial contexts and datasets, aiming to further 

establish the adaptability and scalability of the solution 

presented.  
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