
A Machine Learning Approach to Malware Detection Using Application Programming

Interface Calls (MDAPI)

Adnan Kutay Yuksel , Yilmaz Ar*

Department of Computer Engineering, Faculty of Engineering, Ankara University, Golbasi 06830, Ankara, Turkey

Corresponding Author Email: ar@ankara.edu.tr

https://doi.org/10.18280/ts.400419 ABSTRACT

Received: 8 January 2023

Revised: 7 July 2023

Accepted: 8 August 2023

Available online: 31 August 2023

Today, all kinds of institutions and organizations depend on the Internet and information

systems. They have been an inseparable part of human life. This brings out not only

convenience, but also potentially devastating vulnerabilities. There are countless solutions

for such risks and it is true that these solutions greatly contribute to security, but no effective

solution has yet been found against Zero-Day malware. Zero-day malware is malicious

software that has not yet been identified by competent authorities and is not classified as

malicious software. A traditional malware detection tool can only detect previously detected

software and classify it as malicious. Machine learning methods, which have proven

effective in various domains, offer a promising approach to addressing Zero-Day malware.

Throughout this study, a stable solution other than traditional methods have been

investigated to overcome all kinds of malware. Instead of solutions consisting of complex,

time-consuming and heterogeneous features (such as deleting/adding/changing files,

monitoring registry records, or running processes) in various studies in the literature, a

simple, low-time cost and stable solution with homogeneous features (only API calls) has

been obtained. The 98.04% accuracy score shows that the method is quite successful. The

importance of the study is having high accuracy using only API calls as features in malware

detection. It has been realized that classical antivirus methods are no longer sufficient for

combating malicious software.

Keywords:

cyber security, zero-day, malware detection,

machine learning

1. INTRODUCTION

Thanks to its many capabilities, the Internet has become a

concept that not only people but also all kinds of institutions

and organizations in the public and private sector depend on.

With the dependence of all kinds of institutions and

organizations (including governments, armies and civilian

companies and institutions) on the internet infrastructure, data

production speed and capacity have increased significantly.

Technology dependency has expanded tremendously and is

likely to increase exponentially in the years to come.

While cyber space has increased its impact, cyber attackers

have intensified their efforts accordingly. Whether for ransom,

insider threats, politics, competition, cyber warfare, anger, or

any other reason, cyber attackers find different ways to

damage, stop, alter or monitor systems and devices. These

methods are mostly implemented through malicious software

that causes ever-increasing prices. As time passes, cyber

security and dealing with malware will always be of

significant importance in information systems.

While some losses can be expressed in billions of dollars,

even these levels are insufficient to express some types of loss.

As disrupting education systems leads to cessation of

education, destroying a forensic data base leads to injustice

and freeing criminals, altering sanitary information

contributes to inaccurate examinations and possibly deaths; by

infiltrating the military systems of a superpower nation, results

similar to those that could be achieved by an all-out war will

be easily and directly achieved.

After all these disaster scenarios, there are things to

overcome them. The first step to protecting systems and

ensuring proper cyber security requires effective malware

protection. Malware can vary in size from only a few KB to

GBs, as well as differ in characteristics, type, function and

target. Malware can disable your computer, monitor your

keyboard and mouse movements and clicks. It can also steal

your private and vital information such as IBAN number, bank

card details, and personal secrets, use your actions as part of

big data and even make your device a zombie or crypto-

currency mining bot, resulting in illegal use. As you can see,

malware can harm any person, system, organization or

institution, including armies, governments, and intelligence

agencies.

Along with the increase and diversification of potential

dangers in cyber space, there are many developments in cyber

damages studies. As malicious black hat hackers find new

ways to break into systems and good white hat hackers try new

ways to eliminate and reveal their covert actions, this war will

forever continue. Additionally, malicious software is

examined, and it is found that it is largely automated. This is

done by examining and reproducing previously written

malicious software in study [1].

Today, a developer who knows any programming language,

including cyber security libraries, regardless of their

knowledge of cyber security issues, can work on code

available on many code repository sites such as GitHub,

GitBucket, BitBucket, and Launchpad. Even if this code was

previously included in the antivirus's database and was

Traitement du Signal
Vol. 40, No. 4, August, 2023, pp. 1511-1520

Journal homepage: http://iieta.org/journals/ts

1511

https://orcid.org/0000-0003-4057-3957
https://orcid.org/0000-0003-2370-357X
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.400419&domain=pdf

considered malware, it can generate new malware by changing

the names of a few variables or functions. This tweaked

software basically does the same job as the previous software.

However, since its content has undergone minor changes to

deceive antivirus systems, it will not be recognized by

antivirus and will be treated as another piece of software. Thus,

new malware can be produced without much effort. This is

why a novel approach is needed to provide an efficient and

automated way to deal with all these dangers. The greatest

requirement of this system is not only to prevent it by making

inferences based on the information given to it, but also to

determine the patterns of operations performed on the devices

and to comment on situations that have not been reported to it

before as a result of these patterns.

The research contributes to the literature by providing a

solution that enables the detection of malicious software

universally. This is done by eliminating the weaknesses of

conventional malware combat methods, which are still

insufficient. The main idea behind the research will be

explained later. By explaining what traditional methods are,

why they are insufficient today, and by discussing what could

be the most efficient way to deal with malware while

maintaining simplicity and speed, a solution proposal will be

presented.

In the field of cyber security, machine learning methods

such as K-Nearest Neighbor (KNN), Naive Bayes Classifier,

Decision Tree and Support Vector Machine (SVM) have

proven to be indispensable tools in revealing malicious

intentions of heterogeneous structures [2]. There were many

studies that produced different solutions to detect and

eliminate malware [3-7].

Traditional methods such as manual analysis, antivirus

software are insufficient to deal with malware today. Because

of information technologies, malware development has come

a long way and malicious software numbers have increased

tremendously. There are also more resources than ever before

for software and malware development. Thus, anyone can

easily find a malware sample on the Internet and modify it

more or less to produce new malware that cannot be detected

through antivirus software. In other words, antivirus tools keep

the hash values of harmful files in their database. They

determine whether the file is harmful by looking at whether

the file's hash value is registered as malicious in the database.

However, the file hash value can be changed without affecting

the software. In theory, there can be an infinite number of

software that does the same job.

The biggest challenges are using features that can only be

verified in a single dataset or machine method, such as deleting,

adding, and modifying (heterogeneous) files without any

time/design/hardware/cost effectiveness, tracking registry

records, and running processes.

It is clear that to detect whether software is malicious, a

stable and robust solution should be developed. This solution

does not depend on some basic rules and does not decrease its

effectiveness from case to case. Machine learning approaches

deliver what we expect. They adhere to the rules, but also

capture malware behavior patterns.

Using features that consist of only API calls (homogeneous)

and that can be verified in many logically different ways, not

just in a dataset or machine method, ensuring

time/design/hardware/cost effectiveness is actually our

proposed solution.

2. RELATED WORK

Ijaz et al. [8] studied a different approach to analyze

malware than usual methods. They employed not only

dynamic analysis, but also static analysis. A malware analysis

sandbox called “Cuckoo Sandbox” was utilized for dynamic

analysis and more than 2300 features were extracted in this

context. The PE-FILE program was used for static analysis

and 92 features were extracted. For dynamic analysis, 4 types

of features, namely Registry, DLLs, APIs and summary

information were used. By using the combination of these 4

features, 9 different types of feature combinations were

utilized. They also highlighted some of the features

contributed most to the research as “significant features”. The

research was conducted on a dataset consisting of a binary file

of 49000 files, 39000 of which were labeled malware. The

article underlines that neither static nor dynamic analysis alone

analyzes a file. With this hybrid method, they achieved 97%

accuracy while combining both.

Shijo and Salim [9] focused on the advantages of hybrid

analysis methods consisting of both dynamic and static

analysis. Both methods have their own pros and cons. They

worked with their own dataset, where malware executables

were collected from the VirusShare community website. For

static analysis, PSI (Printable String Information) values were

extracted as features, and “system call frequencies” were used

to extract features for dynamic analysis. Instead of all the API

calls in the dataset, API calls that took place more than twice

were considered in feature determination. They also evaluated

the use of n-grams and after doing some research they decided

to use 3-API-call-grams and 4-API-call-grams. By making use

of the Cuckoo Sandbox, three methods were applied: static

method, dynamic method and hybrid method (consisting of

both dynamic and static analyses). They achieved 95.8%,

97.1%, and 98.7% accuracy rates, respectively, and declared

the hybrid method as the most accurate. The accuracy rates

reported are 94.84%, 96.65% and 97.68% respectively.

Liu and Wang [10] used 21378 samples, including 13518

malicious and 7860 benign ones. They see the behavior of the

software in virtual machines by running samples in the Cuckoo

Sandbox for dynamic analysis. It also sets a threshold for

sequences of 3 or more API calls. This means that if an API

call is called 3 or more times, it is considered a feature.

Interestingly, they did not use other behaviors such as registry,

folders, etc. as used in our study. They partitioned the dataset

into training, validation, and test set and constructed BLSTM

as a detection model. In this study, in which “API calls” were

considered as a feature, they obtained the most accurate score

of 97.85% with the BLSTM method.

Sun et al. [11] produced their own dataset and method to

transform sandbox logs into uniform, well-defined, shaped

form. So they use a variety of features such as registry key

changes, API calls, mutex operations, etc. As part of their

system, they use some measures, such as converting all text to

lowercase, using "/" as path delimiters, and removing "http"

and "https" strings from website names. They also classified

API calls into close_handle, reg_open, reg_create,

reg_enumerate, reg_set, reg_query_key, reg_query, reg_del,

open_file, create_file, copy_file, create_dir, and mutexes.

They state that since they point to a novel method, they

achieved accuracy rates between 74.87% and 100% in FFRI

datasets of different years.

1512

Choudhury et al. [12] do not contribute much to explain

mutexes and their importance in malware analysis. They first

explained the Cuckoo Sandbox and its implementation. They

then highlighted the fact that nowadays malware authors

bundle their code, which causes difficulties for malware

analysts in static analysis. Later, mutexes, which are important

signs of malicious software, were described as flags and

programs that control simultaneous access to system resources.

For this reason, it has been concluded that if more than one

code sample is active in the system, only one sample will

continue to run. In addition, malicious code may not achieve

its purpose by stopping other software if more samples run at

the same time.

Walker et al. [13] focused on an additional feature of the

Cuckoo protected area, which is appreciated throughout the

literature, and they focused the article on this feature. In the

study, they discovered that the Cuckoo Sandbox was useful

when analyzing malware samples, but the “threat scoring”

feature was inefficient. After doing some research and

working with their own malware samples from Malpedia, they

point out that the “threat scoring” feature of the Cuckoo

Sandbox needs to be improved. However, if we look at the

information given on Cuckoo's official page and application

interface in our own evaluation, the application developers

already state that this feature is an emerging feature and they

still continue to work for improvement. Therefore, labeling a

test feature a threat is unfair to Cuckoo, the most advanced tool

that possesses all of the characteristics and behavior of

software.

Jamalpur et al. [14] explained techniques and environments.

Firstly, Malwr (now called Cuckoo), JoeSandbox,

ThreatExpert etc. They talked about common sandboxes like

"m1.exe", which copied kernel132.dll files to kernel1.dll. Here,

this expression is not “kernel” (letter k-letter e-letter r-letter n-

letter e-letter l), but “kerne1” (letter k-letter e-letter r-letter n-

letter e-number 1). It should not be overlooked that it is a scam.

As a result, it takes more time to analyze malware samples as

cyber-attacks increase day by day. It is concluded that using

sandboxes like Cuckoo on virtual machines is the most

efficient and safest solution for dealing with malware samples.

Irshad et al. [15] used the features extracted by the Genetic

Algorithm in their article. Starting with some possible features,

including API calls, Registry Keys, Windows Directories,

Windows DLL file, EXE file of Windows system, exploiting

the Genetic Algorithm, they have identified the 41 most

valuable features. The study dataset consists of 236 samples,

of which 121 are labeled as malware and 115 are labeled as

non-malware. They state that they use three different

classifiers. Finally, they state that they have 81.3% accuracy

rates with the Support Vector Machine, 64.7% for the Naive

Bayes classifier, and 86.8% for the Random Forest Classifier.

While simpler and universal solutions are needed, as will be

discussed in Section 3 later, it would not be wrong to admit

that the accuracy rates they obtained by working on very

heterogeneous features, as well as by genetic algorithms

(which increase the time/hardware/information costs), are low.

Lengyel et al. [16] mainly described another dynamic

malware analysis system called DRAKVUF in their study. By

doing their work on the Xen Virtual Machine, they tried out

novel methods such as execution monitoring, overcoming

DKOM attacks, monitoring file system access with memory

events, and handling files deleted from memory. Considering

their effectiveness, they are very complex. They worked on

some malware samples, including TDL4, Zeus, Shadowserver

etc. Although they claim that DRAKVUF is an effective way

to analyze malware samples, they do not give a scalable

accuracy rate. Therefore, it is considered that there are many

aspects to improve in the study and the article in which it was

published.

Fujino et al. [17] utilized API calling topics to detect

malware, which we found very useful. This is based on API

calls, as we will do in this study. They began their work by

noting that there were many API calls to deal with. A method

was needed to figure out which one to select as a feature.

Through their own logic, they calculated a threshold value

experimentally. After working on API calls, if the API call

value is below the specified threshold, it will be discarded. As

a result, if it is above the threshold, it will be selected as a

feature. In the article, they also stated that this threshold value

between 0.1 and 0.5 would be the optimal approach. They

continued their studies, which they continued as unsupervised,

by stating that the studies they referred to in their articles also

used supervised learning. However, since they failed to

provide an accuracy rate, it is evident that the work they started

was very good. However, it can be considered unfinished. As

we will explain later in Section 4, it can be said that we have

obtained a very high percentage of accuracy using API calls

with a much simpler method.

Pirscoveanu et al. [18] used their own dataset of about

80000 samples downloaded from VirusShare. By running

these samples in the sandbox (virtual machine) of the Cuckoo

Sandbox, they also created a commonly employed whitelist of

benign software. With this study, they aimed to eliminate

unnecessary features. They use 4 types of information when

dealing with malware: DNS information, files accessed,

mutexes, and registry keys. They classify VirusTotal's tags

into 4 main groups: Trojan, potentially unwanted program,

adware, rootkit. At the end of their studies, they achieved an

accuracy rate of 98% by implementing the tree-to-random

forest algorithm.

Mehra and Pandey [19] focused on HCI (Human Computer

Interaction), a very significant topic neglected in articles. This

means that some malware works regardless of human

interaction, but some require human interaction as a method of

misleading. The article underlines that sandboxes are useful

tools for analyzing malware. It says this is completely

unacceptable for human-initiated malware. The article also

compares some useful tools for malware analysis, various

sandboxes for their effectiveness in dealing with event-

triggered malware.

Udayakumar et al. [20] focused on reviewing the literature

rather than revealing anything original in their work. Today,

the study, which started with the importance of malware

detection, continues with the need to focus on dynamic

analysis instead of static analysis. More than 38 articles

written in the field of malware detection/classification are

evaluated. After the literature review described above, they

provide basic information about malware analysis. The

information is basically about “.exe” files and “.dll” files.

Following the assessment that it may be beneficial to use safe

“.dll” files to find malicious ones, “possibly malicious” and

“possibly benign" “.dll” files are determined by comparing

behaviors. The paper, which does not present a clear study,

gives some recommendations for any application in this area

towards the end. This can be accomplished using the Cuckoo

Sandbox. As a result, as stated before, the article does not

reveal a study or an accuracy rate, but consists of a literature

review.

1513

Many of these studies [16-21] provided their accuracy rates

with the method they applied, but many of them either

employed very limited datasets or did not share them. When

comparing the work carried out in this study, no dataset was

found other than the two datasets utilized throughout the study.

These datasets are mentioned in Section 3. One study looked

at the order in which API calls are executed, and the other

study used the API call frequencies when similar API calls are

grouped. Another one tried to consider failed, successful and

total API call frequency counts and also one study considered

the frequencies of API calls. However, they did not use

benchmark datasets, instead they created and used their own

datasets.

Therefore, there was not sufficient data for the final

comparison made in Table 4 in Section 4. A dataset that did

not provide accuracy rates in either dataset [22] could not be

used. Only the accuracy values of the dataset's creators [23]

could be compared. However, when making this comparison,

the following points will be taken into account, which will

reveal the importance of our work more clearly. First of all,

the study does not use machine learning or deep learning

methods. Compared to the accuracy percentages obtained by

the study, it is clear that the 12-fold validation applied in our

study will yield broader and more realistic results. Most

importantly, the study first extracted malicious software from

malware scanning and antivirus websites through these

databases. Therefore, the accuracy rates achieved in our study

(MDAPI), which is based only on Machine Learning without

malware databases, are commendable.

3. EXPERIMENTAL STUDY

3.1 Main idea behind the research

As was briefly discussed in Section 2, there is a lot of

research into malware detection or classification. However,

many use a wide range of features that complicate research and

applications. In our view, a basic structure and faster

implementation are needed. Most articles focus on the many

different and complex features covered in Section 2. However,

we consider “API calls” to be the feature that most clearly

reveals what a software executes and how it behaves. From

this perspective, we will have a basis for malware detection

based on API calls extracted from dynamic malware analysis.

Keeping the accuracy rate as high as possible while keeping

simplicity and speed at the top will be the biggest defining

feature of our study. This is malware detection with machine

learning methods based on an application programming

interface (MDAPI).

First, the "Characteristic API Call features" approach was

adopted. This approach takes advantage of the fact that

possible and common malware behaviors use similar API calls.

Common malware behaviors and possible API calls for these

behaviors are as follows:

• For keystroke registration: FindWindowsA,

ShowWindow, GetAsyncKeyState, SetWindowsHookEx,

RegisterHotKey, GetMessage, UnhookWindowsHookEx etc.

• For screen capture: GetDC, GetWindowDC,

CreateCompatibleDC, CreateCompatibleBitmap,

SelectObject, BitBlt, WriteFile etc.

• To avoid Anti-Debugging: IsDebuggerPresent,

CheckRemoteDebuggerPresent, OutputDebugStringA,

OutputDebugStringW etc.

• For Downloaders: URLDownloadToFile, WinExec,

ShellExecute etc.

• For DLL Injection: OpenProcess, VirtualAllocEx,

WriteProcessMemory, CreateRemoteThread etc.

• For Droppers: FindResource, LoadResource,

SizeOfResource, LockResource etc.

• To change the Registry: RegCloseKey,

RegOpenKeyExA, RegDeleteValueA etc.

The “Most Common API Calls" approach was adopted after

reaching lower-than-expected accuracy rates with the

“Characteristic API Call Features" approach. With this novel

approach, it has been recognized that the most frequently used

API calls can provide meaningful clues about any possibility

of malware. These two approaches will be explained in more

detail in the following sections.

3.2 Dataset

Throughout our study, API calls are preferred as potential

features that the two datasets allow us, for the reasons

explained in Section 3. First, the APIMDS (API-Based

Malware Detection System) dataset, which was published in

conjunction with the study [23] and is entirely based on API

calls, is used. The size of the dataset is 112.7MB and it is a

“.csv” file consisting of 23146 software samples. Of the

samples, 14131 were “malicious”, 3137 were “benign", and

5878 were “unlabeled” (i.e., it is unknown whether they are

malicious or benign). The number of instances columns is not

specific, as different software uses different numbers of API

calls.

To examine the dataset structure, the first column is a string

that gives an idea of the software type. There are three

possibilities regarding the string in the first column:

• If the string is empty, the software is “unlabeled”,

meaning it is unknown whether it is malicious or benign.

• If the string contains the phrase “not-a-virus”, the

software is labeled “benign”.

• Software is labeled “malware” if the string is not

empty and does not contain “not-a-virus”.

Second, the dataset given in study [22] was used to compare

our performance on the first dataset with a different dataset.

The dataset, which is also available on Kaggle, consists of two

different files with a total size of approximately 2.2GB. Both

are “.txt” type files. The first file contains API calls and the

second file contains malware types. In other words, the type of

malware in the first file is written on the corresponding line

number in the second file. This second dataset consists of 7107

malware samples. 832 of them are “Spyware”, 379 of them are

“Adware”, and 891 of them are "Dropper". In this dataset,

there are also “Downloader”, “Trojan”, “Worm”, “Virus”, and

“Backdoor” types, each with 1001 instances. The number of

sample columns is not specific, as different software uses

different numbers of API calls, as in the first dataset. Since all

samples are malware, our problem will be a classification

problem, not a detection problem as in the first dataset.

Throughout the study, for convenience, the terms “first

dataset”, which refers to the dataset published by Ki et al. [23],

and “second dataset”, which refers to the dataset published by

Catak et al. [22]. Table 1 shows the main structures of datasets.

1514

Table 1. The datasets used in the study

No Dataset Task
Number of

Software
Content

1
APIMDS (API-Based Malware

Detection System) dataset
Classification 23146 14131 Malicious, 3137 Benign, 5878 Unlabeled

2
A comparison API Call dataset for

Windows PE malware classification
Detection

7107 (all

malicious)

1001 Downloader, 1001 Trojan, 1001 Worm, 1001 Virus,

1001 Backdoor, 891 Dropper, 832 Spyware, 379 Adware

The first dataset enabled binary detection, malicious or not.

The column listed whether the software was malicious and the

API calls it was running on. Since the second dataset lists the

malware type column and the API calls that this malware runs

on, we have used multi classification instead of binary

detection, since all software is already malicious.

3.3 Preparation of dataset and feature extraction

For our purposes, some work needs to be done to get the

first dataset ready for implementation in the first phase.

Preparation and operations on an Ubuntu 18.04 LTS and 12GB

RAM capable machine using Linux Bash scripts to process the

data are as follows:

• Since data is presented in double-quoted strings, all

starting and ending double quotes have been removed so that

the data is clean strings to work on.

• Due to their indifference to the learning process,

17268 pieces of software, of which 14131 are malicious and

3137 benign were retained. In addition, 5878 unlabeled

software was discarded.

• Two groups of API calls have been determined for

the feature extraction phase. The first group is “API calls that

occur in at least one malicious software but not in any benign

software” (referred to as “Supposedly-Malicious API calls” in

the rest of the study). The second group was “API calls that

occurred in at least one benign software but were not involved

in any malicious software” (which are to be referred to as

Supposedly-Benign API calls in the rest of the study). But

surprisingly, the first group, referred to as the Supposedly-

Malicious group had 599 API calls, while the second group

called the Supposedly-Benign group, had only 5 API calls.

(The number of different API calls in the whole dataset is

1165). Considering the detailed study during the feature

selection phase and the simplicity approach based on the

research, 604 features (604=599 extracted from malware+4

extracted from benign software) were considered too many. In

addition, it was evaluated that the selection of features only

from malicious or only benign software would turn our

machine learning-based work into a linear regression, and that

this would be the result of a fixed algorithm, not machine

learning, and as a result of these facts, other solutions were

sought.

• As part of our search for a more suitable solution, we

take a simpler approach. For this, it was thought to detect API

calls dependent upon other API calls. The term “dependent”

here means that an API call is included in the dataset only with

another API call. This is not in instances where the other API

call doesn’t happen. We thought we could simplify the

features we extracted in this way. All API calls that have an

impact on another API call have been detected. With this

approach, the number of “Supposedly-Malicious API calls”

was reduced from 599 to 387 and the number of “Supposedly-

Benign API calls” from 5 to 4 (thus the total number of

individual API calls was 391). However, the number 391 was

considered too much for a simple and effective solution we

needed.

• It is evaluated that some progress has been made, but

there is still room for improvement. For “Supposedly-

Malicious API calls” and “Unclear API calls” (API calls that

cannot be grouped into the two previously mentioned groups-

i.e., API calls that are involved in both at least one malware

and at least one benign software), the most frequent number of

occurrences should be considered. For “Supposedly-Benign

API calls” nothing will be done since the number is 4 and it’s

already low enough.

• “Supposedly-Malicious API calls” are listed in

descending order of the number of occurrences in the software.

API calls that occurred less than 85 (which is a heuristic

criterion we determine based on the number of features we

want to extract) in the entire dataset were finally identified as

44 “Supposedly-Malicious API calls”.

• “Uncertain API calls” are listed in descending order

of the number of passes in the software examples. A total of

16 were determined for “Uncertain API calls”.

• Finally, the feature selection was completed with 44

Supposedly-Malicious, 4 Supposedly-Benign, and 16

Uncertain API calls, with a total of 64 features. In this way, a

problem such as linearity mentioned in the previous articles

was completely overcome. In this way, API calls (designed by

us) were separated based on their characteristics and the most

frequently used ones were selected, and steps were taken

towards an effective and simple application.

• Considering the inequality of malicious and benign

samples in the dataset, it was evaluated that the number of

malicious samples (10994) should be equal to the number of

benign samples (3137) to avoid an imbalance-bias problem.

Although this will solve the imbalance-bias problem, it will

cause the loss of more than half of the data in the dataset.

The accuracy rate obtained with 64 features selected as

described above was 81.06%. When this success rate is

examined in detail, it seems quite low compared to this

detailed feature preparation process, which we can call the

“Malicious/Benign Character API calls Approach”. Therefore,

it was considered that another feature selection approach,

which we can describe as the “Most Used API Calls

Approach”, which deals with the number of API calls in the

dataset, may be more useful. Accordingly, the number of API

calls in the dataset was computed. All API calls were ranked

in descending order of the total number of occurrences, which

we consider their possible contribution to learning. And the

numbers 10, 20, 40, 60, 80, 100, 200, 300, and 400 were

chosen (intuitively) to see how much the first few "mostly

occurring” API calls contributed to the accuracy rate. The

accuracy rates, which we found insufficient in the

“Malicious/Benign Character API Calls Approach”, increased

significantly with the “Most Used API Calls Approach". When

the simple feature extraction process was evaluated, it was

more than satisfactory. Further evaluation, comparison and

information on the “Most Used API Calls Approach" will be

1515

detailed in Section 4.

3.4 Representation of features

There are lots of researches that use API calls in various

ways. Using API call frequencies [9, 17] using API call

frequencies when similar API calls are grouped [11], using

API calls executed in the first string of the software [18], the

order in which API calls occur while running a software [5]

and even the number of failures, successes and total API call

frequency [8] studies have been conducted. However, our

study will only deal with whether an API call is called and

executed, keeping simplicity in mind.

A notation called “Bag of Words” will be used to represent

the selected features, which seem most appropriate to the

situation. To create the structure in Figure 1 for this

demonstration, the following preparations will need to be

performed.

Let’s call the input matrix “A”. If xth software contains yth

feature (API call), then A[x][y]=1. If xth software does not

contain yth feature (API call), then A[x][y]=0. All the 0 and 1

values given in Figure 1 are randomly chosen examples based

on this explanation. If we interpret the shape based on what we

have explained here, 1st software includes 1st API call

(because A[0][0]=1), but does not include 2nd API call

(because A[0][1]=0).

A[6274][64] is a matrix with 6274 rows (derived from the

total software count of 3137 malicious and 3137 benign

examples) and 64 columns (extracted from API calls,

designated as 44 Supposedly-Malicious, 4 Supposedly-Benign

and 16 Uncertain API calls).

We will have another matrix for the output, called “B”. If

xth software is malicious, it will be expected to be B[x]=1, if

xth software is benign, then B[x]=0. The B[6274][1] matrix

consists of 6274 rows (derived from the total number of

software (3137 malicious and 3137 benign samples) and only

1 column (derived from a single binary result, which will

determine whether the software is malicious or not).

Figure 1. Implementation of the “Bag of Words” used in our

study

3.5 Implementation

The input size of the artificial neural network derived from

the feature size was chosen as 64 and then, 10, 20, 40, 60, 80,

100, 200, 300 and 400. The reasons will be explained in more

detail in Section 4, as they were explained in the previous

sections. Derived from the binary result (the closer to 0 the

more likely it is to be benign and the closer to 1 the more likely

it is to be malicious), the network output size is only 1.

Intuitively, the number of layers according to the number of

features was calculated as given in Table 2. The hidden layer

size and the number of neurons were determined intuitively by

considering the rule of thumb “two-thirds majority”, which

determines the size of a layer, at the ratio of 2/3 of the size of

previous layer.

In addition to the varying input, output, hidden layer size

and number of parameters, there are some parameters that we

consider to give optimal results in all the specified

architectures. When detailing these, learning rate is 0.001. In

order to overcome the saturation problem and the output value

to be stable and logically oscillating between 0 and 1, sigmoid

was chosen as the final activation function used in the last 336

(output) layer. All activation functions of all layers except the

last layer are ReLU (Rectified Linear Unit).

The formulas of these two functions are given in Eq. (1), Eq.

(2).

()Sigmoid() 1/ 1 xx e−= + (1)

ReLU() max(,)x = 0 x (2)

Afterwards, an intuitive batch size adjusted to 12, 20, and

50 epochs is sufficient for the network to learn. However, 12

is the best value in the study. The values are optimized using

“Binary Cross Entropy” and finally the results were verified

by shuffling and using 12-fold cross validation to obtain more

accurate results.

When the 100-75-50-30-20-12-8-1 architecture given in

Table 2 is evaluated as an example, it will be seen that we have

6 hidden layers and that there are that many neurons in these

layers, respectively. In addition, it should be noted that in the

studies carried out, it was observed that the number of layers,

like the number of features, increases accuracy to a certain

extent. However, after a certain point, it causes more hardware

and time costs than the contribution to success rates. It should

be noted that the values with optimal results in the time-utility

dilemma are presented above. The most accurate accuracy

value obtained was 90.34%.

Table 2. Layer sizes representing neuron sizes from input

(Left) to output (Right)

Number of Features Layer Sizes

10 10-8-1

20 20-16-12-8-1

40 40-25-18-12-8-1

60 60-40-30-20-12-8-1

80 80-50-32-20-12-8-1

100 100-75-50-30-20-12-8-1

200 200-130-80-50-30-20-12-8-1

300 300-200-120-80-50-30-20-12-8-1

400 400-250-160-120-80-50-30-20-12-8-1

4. RESULTS, COMPARISON AND DISCUSSION

4.1 Results and comparison

As mentioned in previous sections, first the

“Characterization” process with “Supposedly-Malicious” and

“Supposedly-Benign” API calls is executed. After recognizing

the drawbacks of this method, another approach was adopted

to select features based on their occurrence in the entire dataset.

1516

To be more specific, these processes can be summarized as

follows:

• Approach to API Calls with Malicious/Benign

Characteristics on First dataset: 64 Supposedly-

characteristic API calls are used as features. The results

obtained are not satisfactory.

• “Most Used API Calls” Approach in First dataset:

The most used 10, 20, 40, 60, 80, 100, 200 and 400 API calls

were selected as features, due to the lower than expected

results with the “Malicious/Benign Characteristic API calls

Approach”. The accuracy rate of the results is quite high.

• Testing Features with Another dataset: After

seeing the expected results with the "Most Used API calls

Approach”, the same feature sets are tested as the features of

the second dataset. The results are satisfactory as the features

extracted from the first dataset identify patterns in another

(second) dataset. Also, another challenge for this test is the

nature of the second dataset, which allows classification only

(the entire dataset consists of malware, contains no benign

software, and contains malware classes in its labels), while the

first dataset consists of both malicious and benign software,

requiring detection, not classification. In this way, we have

demonstrated that this approach is a very adaptable and

universal solution for a wide range of tasks and datasets.

• Testing Approaches with Another dataset:

Because satisfactory results were obtained in the previous

stages, evaluating the approach instead of testing the features

in another (second) dataset is utilized. In this context, the

“Most Used API Calls Approach” has been tested on another

(second) dataset. The most used API calls in the second dataset

are extracted. The most used API calls 373 consisting of 10,

20, 40, 60, 80, 100, 200 and 278 are determined as the feature.

It should be noted that while 300 and 400 features were tested

in the first dataset, since the number of unique API calls in the

second dataset is 278, 278 features were the only choice

instead of 300 and 400 feature numbers. Although they are

lower than in the first dataset, the results are still satisfactory.

Obviously, this is due to the very small number of unique API

calls (278) in the second dataset, and that on any dataset with

sufficient unique API calls the results will be just as

satisfactory as in the first dataset.

Figure 2, Figure 3 and Figure 4 show how feature counts

contribute to accuracy rates based on our various approaches.

Here, it is seen that as the number of features increases,

success rates also increase (with decreasing acceleration).

Therefore, if there is a need, the number of features can be

determined using cost factors such as available time and

equipment. The accuracy rates can be ignored to the desired

degree, which also clearly demonstrates the system's

flexibility.

In addition, based on the accuracy rates given in these

figures, the fact that the study can be validated not only with

the studied dataset but also with other datasets, and the success

of the study on both detection and classification problems,

should be accepted as an indication that it can bring a universal

solution to the problem studied. In addition, it is clear that a

very stable solution can be achieved above the accuracy rates

obtained by increasing the variety and number of the dataset.

This includes malicious and benign software types.

Another comparison was made as to whether a possible

correlation could be established between the “Most Used API

calls”, i.e., features of the two datasets. In the analysis, no

significant correlation was found between the most frequently

used API calls in the datasets. It is considered that this is due

to the fact that the first dataset is suitable for detection

solutions. It is composed of both malicious and benign

samples. In contrast, the second dataset consists of only

malicious samples and is appropriate for the classification

problem. Both datasets consist of certain types of software and

show different characteristics.

Figure 5 shows the correlation graph.

A variety of machine learning methods are used, and in

Table 3, the accuracy values are displayed along with other

metrics like precision, recall, and F1 values.

Figure 2. Accuracy rates obtained in the first dataset with the

features extracted from the first dataset

Figure 3. Accuracy rates obtained in the second dataset with

the features extracted from the second dataset

Figure 4. Accuracy rates obtained in the second dataset with

the features extracted from the first dataset

1517

Figure 5. Study of capturing possible correlation between

features extracted from first and second datasets

The problems encountered in the literature review and

comparison are detailed in Section 2. In addition, considering

the issues mentioned in Section 2, the results obtained by this

study are quite satisfactory, as can be seen in Table 4. The

work mentioned in the first line here [23] is about signature-

based detection, DNA sequence algorithms, etc., not machine

learning/deep learning algorithms. It should be noted that they

used a complex method consisting of studies. In other words,

the working software first checks in antivirus databases. If it is

already known as malware, the program labels it as malware

and solves some of the problems with only signature-based

algorithms. Therefore, the studies mentioned are very complex

compared to our research and require more time. As a result

(as in the first study), by comparing the signatures of the

software (MD5, SHA-1, SHA-256, etc. hash values) with the

databases of the malware, it does not benefit from previously

detected malware, does not require handwritten algorithms,

and uses machine learning/deep learning. It can easily be said

that our research, which used learning methods, was very

impressive.

Table 3. The results with respect to various metrics obtained by different methods

Metric Decision Tree K-Nearest Neighbour Naïve Bayes Random Forest Support Vector Machine Artificial Neural Network

Accuracy 89.29% 90.01% 59.00% 89.77% 90.09% 98.04%

Precision 52.51% 73.67% 57.09% 90.01% 83.38% 96.19%

Recall 89.09% 65.07% 87.30% 97.51% 55.83% 98.74%

F1 66.08% 69.10% 69.05% 94.03% 66.98% 97.45%

Table 4. Comparison of different accuracy values obtained by artificial neural network method with different approaches,

datasets, feature number and selections (*Body of works including signature-based detection, genetic algorithm etc.)

Research that

Gets the Score

Dataset where

Features were

Extracted

Approach Used

Dataset where

Results were

Obtained

Number of

Features

Problem

Solved

Obtained

Accuracy

[23] 1st dataset Different Algorithms* 1st dataset - Detection 99.88%

MDAPI 1st dataset
Malicious/Benign API

Calls Approach
1st dataset 64 Detection 81.06%

MDAPI 1st dataset
Mostly-Used API Calls

Approach
1st dataset 10 Detection 73.89%

MDAPI 1st dataset
Mostly-Used API Calls

Approach
1st dataset 20 Detection 81.19%

MDAPI 1st dataset
Mostly-Used API Calls

Approach
1st dataset 40 Detection 90.34%

MDAPI 1st dataset
Mostly-Used API Calls

Approach
1st dataset 60 Detection 94.96%

MDAPI 1st dataset
Mostly-Used API Calls

Approach
1st dataset 80 Detection 96.57%

MDAPI 1st dataset
Mostly-Used API Calls

Approach
1st dataset 100 Detection 96.84%

MDAPI 1st dataset
Mostly-Used API Calls

Approach
1st dataset 200 Detection 97.50%

MDAPI 1st dataset
Mostly-Used API Calls

Approach
1st dataset 300 Detection 97.91%

MDAPI 1st dataset
Mostly-Used API Calls

Approach
1st dataset 400 Detection 98.04%

MDAPI 1st dataset
Mostly-Used API Calls

Approach
2nd dataset 10 Classification 87.50%

MDAPI 1st dataset
Mostly-Used API Calls

Approach
2nd dataset 20 Classification 87.50%

MDAPI 1st dataset
Mostly-Used API Calls

Approach
2nd dataset 40 Classification 87.50%

MDAPI 1st dataset
Mostly-Used API Calls

Approach
2nd dataset 60 Classification 87.50%

MDAPI 1st dataset
Mostly-Used API Calls

Approach
2nd dataset 80 Classification 87.50%

MDAPI 1st dataset
Mostly-Used API Calls

Approach
2nd dataset 100 Classification 88.18%

MDAPI 1st dataset
Mostly-Used API Calls

Approach
2nd dataset 200 Classification 89.04%

1518

MDAPI 1st dataset
Mostly-Used API Calls

Approach
2nd dataset 300 Classification 90.01%

MDAPI 1st dataset
Mostly-Used API Calls

Approach
2nd dataset 400 Classification 89.89%

MDAPI 2nd dataset
Mostly-Used API Calls

Approach
2nd dataset 10 Classification 87.51%

MDAPI 2nd dataset
Mostly-Used API Calls

Approach
2nd dataset 20 Classification 87.63%

MDAPI 2nd dataset
Mostly-Used API Calls

Approach
2nd dataset 40 Classification 88.36%

MDAPI 2nd dataset
Mostly-Used API Calls

Approach
2nd dataset 60 Classification 89.50%

MDAPI 2nd dataset
Mostly-Used API Calls

Approach
2nd dataset 80 Classification 89.95%

MDAPI 2nd dataset
Mostly-Used API Calls

Approach
2nd dataset 100 Classification 90.16%

MDAPI 2nd dataset
Mostly-Used API Calls

Approach
2nd dataset 200 Classification 90.43%

MDAPI 2nd dataset
Mostly-Used API Calls

Approach
2nd dataset 278 Classification 90.66%

4.2 Discussion

For a more detailed and comprehensive discussion, there are

specific implications and lessons to be drawn:

• Machine learning methods can detect and classify

malware without complex algorithms or preparation processes.

• The number of features contributes to accuracy

values. However, after a certain stage, with the increase in the

number of features, the contribution decreases significantly

compared to the time consumed. It is considered logical to

increase the number of these features as much as possible and

to an optimal degree (which can be considered 100-200 for this

study) in a way that preserves the speed and simplicity of the

algorithm, and then not to increase it in terms of time/hardware

costs thus tuning all parameters optimally.

• It is seen that the first dataset has better accuracy rates

than the second dataset. This is due to the large number of

unique API calls in the initial dataset. That is, if we can have

a sufficient number of correctly labeled malicious and benign

software (and therefore unique API calls), it will be possible

to create a “Machine Learning Antivirus”, producing a more

universal solution to the malware detection problem.

5. CONCULUSION

It is possible to say that our research was successful in many

respects. A number of obtained features are used within a logic

that is completely homogeneous (consisting of only one type

of feature-API calls) and without including any other feature

types. We have achieved a higher level of success than many

in the literature. These accuracy rates are also reasonable for

multiple machine learning methods and different datasets.

A fast and robust solution has been developed with an

emphasis on simpler and faster methods of malware detection

using machine learning. Cyber security is a battle of wits and

research should focus on more effective, faster and simpler

methods.

After the work we have done in our research, it is no doubt

that it will be much easier to create an antivirus framework

using machine learning when there are numerous examples.

This will put a heavy burden on malicious hackers (black hat

hackers) and bring another perspective to a universal

understanding of cyber security.

REFERENCES

[1] Aliyev, V. (2010). Using honeypots to study skill level

of attackers based on the exploited vulnerabilities in the

network. Chalmers University of Technology.

[2] Kilgallon, S., De La Rosa, L., Cavazos, J. (2017).

Improving the effectiveness and efficiency of dynamic

malware analysis with machine learning. In 2017

Resilience Week (RWS). IEEE, pp. 30-36.

https://doi.org/10.1109/RWEEK.2017.8088644

[3] Pascariu, C., Barbu, I.D. (2017). Dynamic analysis of

malware using artificial neural networks: Applying

machine learning to identify malicious behavior based on

parent process hirarchy. In 2017 9th International

Conference on Electronics, Computers and Artificial

Intelligence (ECAI). IEEE, pp. 1-5.

https://doi.org/10.1109/ECAI.2017.8166505

[4] Hansen, S.S., Larsen, T.M.T., Stevanovic, M., Pedersen,

J.M. (2016). An approach for detection and family

classification of malware based on behavioral analysis.

In 2016 International Conference on Computing,

Networking and Communications (ICNC). IEEE, pp. 1-

5. https://doi.org/10.1109/ICCNC.2016.7440587

[5] Damodaran, A., Troia, F.D., Visaggio, C.A., Austin,

T.H., Stamp, M. (2017). A comparison of static, dynamic,

and hybrid analysis for malware detection. Journal of

Computer Virology and Hacking Techniques, 13: 1-12.
https://doi.org/10.1007/s11416-015-0261-z

[6] Darshan, S.S., Kumara, M.A., Jaidhar, C.D. (2016).

Windows malware detection based on cuckoo sandbox

generated report using machine learning algorithm. In

2016 11th International Conference on Industrial and

Information Systems (ICIIS). IEEE, pp. 534-539.

https://doi.org/10.1109/ICIINFS.2016.8262998

[7] Aslan, Ö., Samet, R. (2017). Investigation of possibilities

to detect malware using existing tools. In 2017

IEEE/ACS 14th International Conference on Computer

Systems and Applications (AICCSA), pp. 1277-1284.

https://doi.org/10.1109/AICCSA.2017.24

[8] Ijaz, M., Durad, M.H., Ismail, M. (2019). Static and

dynamic malware analysis using machine learning. In

2019 16th International Bhurban Conference on Applied

Sciences and Technology (IBCAST). IEEE, pp. 687-691.

https://doi.org/10.1109/IBCAST.2019.8667136

1519

[9] Shijo, P.V., Salim, A.J.P.C.S. (2015). Integrated static

and dynamic analysis for malware detection. Procedia

Computer Science, 46: 804-811.

https://doi.org/10.1016/j.procs.2015.02.149

[10] Liu, Y., Wang, Y. (2019). A robust malware detection

system using deep learning on API calls. In 2019 IEEE

3rd Information Technology, Networking, Electronic

and Automation Control Conference (ITNEC), pp. 1456-

1460. https://doi.org/10.1109/ITNEC.2019.8728992

[11] Sun, B., Fujino, A., Mori, T., Ban, T., Takahashi, T.,

Inoue, D. (2018). Automatically generating malware

analysis reports using sandbox logs. IEICE

TRANSACTIONS on Information and Systems, 101(11):

2622-2632.

https://doi.org/10.1587/transinf.2017ICP0011

[12] Choudhury, T., Jain, S., Aradhya, S.N., Kumar, P. (2018).

An entire dynamic malware examination with near

investigation of conduct examination sandboxes. In 2018

Second International Conference on Green Computing

and Internet of Things (ICGCIoT). IEEE, pp. 583-590.

https://doi.org/10.1109/ICGCIoT.2018.8752981

[13] Walker, A., Amjad, M.F., Sengupta, S. (2019). Cuckoo’s

malware threat scoring and classification: Friend or foe?

In 2019 IEEE 9th Annual Computing and

Communication Workshop and Conference (CCWC), pp.

0678-0684.

https://doi.org/10.1109/CCWC.2019.8666454

[14] Jamalpur, S., Navya, Y.S., Raja, P., Tagore, G., Rao,

G.R.K. (2018). Dynamic malware analysis using cuckoo

sandbox. In 2018 Second International Conference on

Inventive Communication and Computational

Technologies (ICICCT). IEEE, pp. 1056-1060.

https://doi.org/10.1109/ICICCT.2018.8473346

[15] Irshad, A., Maurya, R., Dutta, M.K., Burget, R., Uher, V.

(2019). Feature optimization for run time analysis of

malware in windows operating system using machine

learning approach. In 2019 42nd International

Conference on Telecommunications and Signal

Processing (TSP). IEEE, pp. 255-260.

https://doi.org/10.1109/TSP.2019.8768808

[16] Lengyel, T.K., Maresca, S., Payne, B.D., Webster, G.D.,

Vogl, S., Kiayias, A. (2014). Scalability, fidelity and

stealth in the drakvuf dynamic malware analysis system.

In Proceedings of the 30th Annual Computer Security

Applications Conference, pp. 386-395.

https://doi.org/10.1145/2664243.2664252

[17] Fujino, A., Murakami, J., Mori, T. (2015). Discovering

similar malware samples using API call topics. In 2015

12th Annual IEEE Consumer Communications and

Networking Conference (CCNC), pp. 140-147.

https://doi.org/10.1109/CCNC.2015.7157960

[18] Pirscoveanu, R.S., Hansen, S.S., Larsen, T.M.,

Stevanovic, M., Pedersen, J.M., Czech, A. (2015).

Analysis of malware behavior: Type classification using

machine learning. In 2015 International Conference on

Cyber Situational Awareness, Data Analytics and

Assessment (CyberSA). IEEE, pp. 1-7.

https://doi.org/10.1109/CyberSA.2015.7166115

[19] Mehra, M., Pandey, D. (2015). Event triggered malware:

A new challenge to sandboxing. In 2015 Annual IEEE

India Conference (INDICON), pp. 1-6.

https://doi.org/10.1109/INDICON.2015.7443327

[20] Udayakumar, N., Anandaselvi, S., Subbulakshmi, T.

(2017). Dynamic malware analysis using machine

learning algorithm. In 2017 International Conference on

Intelligent Sustainable Systems (ICISS). IEEE, pp. 795-

800. https://doi.org/10.1109/ISS1.2017.8389286

[21] Naeem, H., Alsirhani, A., Alshahrani, M.M., Alomari, A.

(2022). Android device malware classification

framework using multistep image feature extraction and

multihead deep neural ensemble. Traitement du Signal,

39(3): 991-1003. https://doi.org/10.18280/ts.390326

[22] Catak, F.O., Yazı, A.F. (2019). A benchmark API call

dataset for windows PE malware classification. arXiv

Preprint arXiv: 1905.01999.

https://doi.org/10.48550/arXiv.1905.01999

[23] Ki, Y., Kim, E., Kim, H.K. (2015). A novel approach to

detect malware based on API call sequence analysis.

International Journal of Distributed Sensor Networks,

11(6): 659101. https://doi.org/10.1155/2015/659101

1520

