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Today, all kinds of institutions and organizations depend on the Internet and information 

systems. They have been an inseparable part of human life. This brings out not only 

convenience, but also potentially devastating vulnerabilities. There are countless solutions 

for such risks and it is true that these solutions greatly contribute to security, but no effective 

solution has yet been found against Zero-Day malware. Zero-day malware is malicious 

software that has not yet been identified by competent authorities and is not classified as 

malicious software. A traditional malware detection tool can only detect previously detected 

software and classify it as malicious. Machine learning methods, which have proven 

effective in various domains, offer a promising approach to addressing Zero-Day malware. 

Throughout this study, a stable solution other than traditional methods have been 

investigated to overcome all kinds of malware. Instead of solutions consisting of complex, 

time-consuming and heterogeneous features (such as deleting/adding/changing files, 

monitoring registry records, or running processes) in various studies in the literature, a 

simple, low-time cost and stable solution with homogeneous features (only API calls) has 

been obtained. The 98.04% accuracy score shows that the method is quite successful. The 

importance of the study is having high accuracy using only API calls as features in malware 

detection. It has been realized that classical antivirus methods are no longer sufficient for 

combating malicious software. 
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1. INTRODUCTION

Thanks to its many capabilities, the Internet has become a 

concept that not only people but also all kinds of institutions 

and organizations in the public and private sector depend on. 

With the dependence of all kinds of institutions and 

organizations (including governments, armies and civilian 

companies and institutions) on the internet infrastructure, data 

production speed and capacity have increased significantly. 

Technology dependency has expanded tremendously and is 

likely to increase exponentially in the years to come. 

While cyber space has increased its impact, cyber attackers 

have intensified their efforts accordingly. Whether for ransom, 

insider threats, politics, competition, cyber warfare, anger, or 

any other reason, cyber attackers find different ways to 

damage, stop, alter or monitor systems and devices. These 

methods are mostly implemented through malicious software 

that causes ever-increasing prices. As time passes, cyber 

security and dealing with malware will always be of 

significant importance in information systems. 

While some losses can be expressed in billions of dollars, 

even these levels are insufficient to express some types of loss. 

As disrupting education systems leads to cessation of 

education, destroying a forensic data base leads to injustice 

and freeing criminals, altering sanitary information 

contributes to inaccurate examinations and possibly deaths; by 

infiltrating the military systems of a superpower nation, results 

similar to those that could be achieved by an all-out war will 

be easily and directly achieved. 

After all these disaster scenarios, there are things to 

overcome them. The first step to protecting systems and 

ensuring proper cyber security requires effective malware 

protection. Malware can vary in size from only a few KB to 

GBs, as well as differ in characteristics, type, function and 

target. Malware can disable your computer, monitor your 

keyboard and mouse movements and clicks. It can also steal 

your private and vital information such as IBAN number, bank 

card details, and personal secrets, use your actions as part of 

big data and even make your device a zombie or crypto-

currency mining bot, resulting in illegal use. As you can see, 

malware can harm any person, system, organization or 

institution, including armies, governments, and intelligence 

agencies. 

Along with the increase and diversification of potential 

dangers in cyber space, there are many developments in cyber 

damages studies. As malicious black hat hackers find new 

ways to break into systems and good white hat hackers try new 

ways to eliminate and reveal their covert actions, this war will 

forever continue. Additionally, malicious software is 

examined, and it is found that it is largely automated. This is 

done by examining and reproducing previously written 

malicious software in study [1]. 

Today, a developer who knows any programming language, 

including cyber security libraries, regardless of their 

knowledge of cyber security issues, can work on code 

available on many code repository sites such as GitHub, 

GitBucket, BitBucket, and Launchpad. Even if this code was 

previously included in the antivirus's database and was 
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considered malware, it can generate new malware by changing 

the names of a few variables or functions. This tweaked 

software basically does the same job as the previous software. 

However, since its content has undergone minor changes to 

deceive antivirus systems, it will not be recognized by 

antivirus and will be treated as another piece of software. Thus, 

new malware can be produced without much effort. This is 

why a novel approach is needed to provide an efficient and 

automated way to deal with all these dangers. The greatest 

requirement of this system is not only to prevent it by making 

inferences based on the information given to it, but also to 

determine the patterns of operations performed on the devices 

and to comment on situations that have not been reported to it 

before as a result of these patterns. 

The research contributes to the literature by providing a 

solution that enables the detection of malicious software 

universally. This is done by eliminating the weaknesses of 

conventional malware combat methods, which are still 

insufficient. The main idea behind the research will be 

explained later. By explaining what traditional methods are, 

why they are insufficient today, and by discussing what could 

be the most efficient way to deal with malware while 

maintaining simplicity and speed, a solution proposal will be 

presented. 

In the field of cyber security, machine learning methods 

such as K-Nearest Neighbor (KNN), Naive Bayes Classifier, 

Decision Tree and Support Vector Machine (SVM) have 

proven to be indispensable tools in revealing malicious 

intentions of heterogeneous structures [2]. There were many 

studies that produced different solutions to detect and 

eliminate malware [3-7]. 

Traditional methods such as manual analysis, antivirus 

software are insufficient to deal with malware today. Because 

of information technologies, malware development has come 

a long way and malicious software numbers have increased 

tremendously. There are also more resources than ever before 

for software and malware development. Thus, anyone can 

easily find a malware sample on the Internet and modify it 

more or less to produce new malware that cannot be detected 

through antivirus software. In other words, antivirus tools keep 

the hash values of harmful files in their database. They 

determine whether the file is harmful by looking at whether 

the file's hash value is registered as malicious in the database. 

However, the file hash value can be changed without affecting 

the software. In theory, there can be an infinite number of 

software that does the same job. 

The biggest challenges are using features that can only be 

verified in a single dataset or machine method, such as deleting, 

adding, and modifying (heterogeneous) files without any 

time/design/hardware/cost effectiveness, tracking registry 

records, and running processes. 

It is clear that to detect whether software is malicious, a 

stable and robust solution should be developed. This solution 

does not depend on some basic rules and does not decrease its 

effectiveness from case to case. Machine learning approaches 

deliver what we expect. They adhere to the rules, but also 

capture malware behavior patterns. 

Using features that consist of only API calls (homogeneous) 

and that can be verified in many logically different ways, not 

just in a dataset or machine method, ensuring 

time/design/hardware/cost effectiveness is actually our 

proposed solution. 

2. RELATED WORK

Ijaz et al. [8] studied a different approach to analyze 

malware than usual methods. They employed not only 

dynamic analysis, but also static analysis. A malware analysis 

sandbox called “Cuckoo Sandbox” was utilized for dynamic 

analysis and more than 2300 features were extracted in this 

context. The PE-FILE program was used for static analysis 

and 92 features were extracted. For dynamic analysis, 4 types 

of features, namely Registry, DLLs, APIs and summary 

information were used. By using the combination of these 4 

features, 9 different types of feature combinations were 

utilized. They also highlighted some of the features 

contributed most to the research as “significant features”. The 

research was conducted on a dataset consisting of a binary file 

of 49000 files, 39000 of which were labeled malware. The 

article underlines that neither static nor dynamic analysis alone 

analyzes a file. With this hybrid method, they achieved 97% 

accuracy while combining both. 

Shijo and Salim [9] focused on the advantages of hybrid 

analysis methods consisting of both dynamic and static 

analysis. Both methods have their own pros and cons. They 

worked with their own dataset, where malware executables 

were collected from the VirusShare community website. For 

static analysis, PSI (Printable String Information) values were 

extracted as features, and “system call frequencies” were used 

to extract features for dynamic analysis. Instead of all the API 

calls in the dataset, API calls that took place more than twice 

were considered in feature determination. They also evaluated 

the use of n-grams and after doing some research they decided 

to use 3-API-call-grams and 4-API-call-grams. By making use 

of the Cuckoo Sandbox, three methods were applied: static 

method, dynamic method and hybrid method (consisting of 

both dynamic and static analyses). They achieved 95.8%, 

97.1%, and 98.7% accuracy rates, respectively, and declared 

the hybrid method as the most accurate. The accuracy rates 

reported are 94.84%, 96.65% and 97.68% respectively. 

Liu and Wang [10] used 21378 samples, including 13518 

malicious and 7860 benign ones. They see the behavior of the 

software in virtual machines by running samples in the Cuckoo 

Sandbox for dynamic analysis. It also sets a threshold for 

sequences of 3 or more API calls. This means that if an API 

call is called 3 or more times, it is considered a feature. 

Interestingly, they did not use other behaviors such as registry, 

folders, etc. as used in our study. They partitioned the dataset 

into training, validation, and test set and constructed BLSTM 

as a detection model. In this study, in which “API calls” were 

considered as a feature, they obtained the most accurate score 

of 97.85% with the BLSTM method. 

Sun et al. [11] produced their own dataset and method to 

transform sandbox logs into uniform, well-defined, shaped 

form. So they use a variety of features such as registry key 

changes, API calls, mutex operations, etc. As part of their 

system, they use some measures, such as converting all text to 

lowercase, using "/" as path delimiters, and removing "http" 

and "https" strings from website names. They also classified 

API calls into close_handle, reg_open, reg_create, 

reg_enumerate, reg_set, reg_query_key, reg_query, reg_del, 

open_file, create_file, copy_file, create_dir, and mutexes. 

They state that since they point to a novel method, they 

achieved accuracy rates between 74.87% and 100% in FFRI 

datasets of different years. 
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Choudhury et al. [12] do not contribute much to explain 

mutexes and their importance in malware analysis. They first 

explained the Cuckoo Sandbox and its implementation. They 

then highlighted the fact that nowadays malware authors 

bundle their code, which causes difficulties for malware 

analysts in static analysis. Later, mutexes, which are important 

signs of malicious software, were described as flags and 

programs that control simultaneous access to system resources. 

For this reason, it has been concluded that if more than one 

code sample is active in the system, only one sample will 

continue to run. In addition, malicious code may not achieve 

its purpose by stopping other software if more samples run at 

the same time. 

Walker et al. [13] focused on an additional feature of the 

Cuckoo protected area, which is appreciated throughout the 

literature, and they focused the article on this feature. In the 

study, they discovered that the Cuckoo Sandbox was useful 

when analyzing malware samples, but the “threat scoring” 

feature was inefficient. After doing some research and 

working with their own malware samples from Malpedia, they 

point out that the “threat scoring” feature of the Cuckoo 

Sandbox needs to be improved. However, if we look at the 

information given on Cuckoo's official page and application 

interface in our own evaluation, the application developers 

already state that this feature is an emerging feature and they 

still continue to work for improvement. Therefore, labeling a 

test feature a threat is unfair to Cuckoo, the most advanced tool 

that possesses all of the characteristics and behavior of 

software. 

Jamalpur et al. [14] explained techniques and environments. 

Firstly, Malwr (now called Cuckoo), JoeSandbox, 

ThreatExpert etc. They talked about common sandboxes like 

"m1.exe", which copied kernel132.dll files to kernel1.dll. Here, 

this expression is not “kernel” (letter k-letter e-letter r-letter n-

letter e-letter l), but “kerne1” (letter k-letter e-letter r-letter n-

letter e-number 1). It should not be overlooked that it is a scam. 

As a result, it takes more time to analyze malware samples as 

cyber-attacks increase day by day. It is concluded that using 

sandboxes like Cuckoo on virtual machines is the most 

efficient and safest solution for dealing with malware samples. 

Irshad et al. [15] used the features extracted by the Genetic 

Algorithm in their article. Starting with some possible features, 

including API calls, Registry Keys, Windows Directories, 

Windows DLL file, EXE file of Windows system, exploiting 

the Genetic Algorithm, they have identified the 41 most 

valuable features. The study dataset consists of 236 samples, 

of which 121 are labeled as malware and 115 are labeled as 

non-malware. They state that they use three different 

classifiers. Finally, they state that they have 81.3% accuracy 

rates with the Support Vector Machine, 64.7% for the Naive 

Bayes classifier, and 86.8% for the Random Forest Classifier. 

While simpler and universal solutions are needed, as will be 

discussed in Section 3 later, it would not be wrong to admit 

that the accuracy rates they obtained by working on very 

heterogeneous features, as well as by genetic algorithms 

(which increase the time/hardware/information costs), are low. 

Lengyel et al. [16] mainly described another dynamic 

malware analysis system called DRAKVUF in their study. By 

doing their work on the Xen Virtual Machine, they tried out 

novel methods such as execution monitoring, overcoming 

DKOM attacks, monitoring file system access with memory 

events, and handling files deleted from memory. Considering 

their effectiveness, they are very complex. They worked on 

some malware samples, including TDL4, Zeus, Shadowserver 

etc. Although they claim that DRAKVUF is an effective way 

to analyze malware samples, they do not give a scalable 

accuracy rate. Therefore, it is considered that there are many 

aspects to improve in the study and the article in which it was 

published. 

Fujino et al. [17] utilized API calling topics to detect 

malware, which we found very useful. This is based on API 

calls, as we will do in this study. They began their work by 

noting that there were many API calls to deal with. A method 

was needed to figure out which one to select as a feature. 

Through their own logic, they calculated a threshold value 

experimentally. After working on API calls, if the API call 

value is below the specified threshold, it will be discarded. As 

a result, if it is above the threshold, it will be selected as a 

feature. In the article, they also stated that this threshold value 

between 0.1 and 0.5 would be the optimal approach. They 

continued their studies, which they continued as unsupervised, 

by stating that the studies they referred to in their articles also 

used supervised learning. However, since they failed to 

provide an accuracy rate, it is evident that the work they started 

was very good. However, it can be considered unfinished. As 

we will explain later in Section 4, it can be said that we have 

obtained a very high percentage of accuracy using API calls 

with a much simpler method. 

Pirscoveanu et al. [18] used their own dataset of about 

80000 samples downloaded from VirusShare. By running 

these samples in the sandbox (virtual machine) of the Cuckoo 

Sandbox, they also created a commonly employed whitelist of 

benign software. With this study, they aimed to eliminate 

unnecessary features. They use 4 types of information when 

dealing with malware: DNS information, files accessed, 

mutexes, and registry keys. They classify VirusTotal's tags 

into 4 main groups: Trojan, potentially unwanted program, 

adware, rootkit. At the end of their studies, they achieved an 

accuracy rate of 98% by implementing the tree-to-random 

forest algorithm. 

Mehra and Pandey [19] focused on HCI (Human Computer 

Interaction), a very significant topic neglected in articles. This 

means that some malware works regardless of human 

interaction, but some require human interaction as a method of 

misleading. The article underlines that sandboxes are useful 

tools for analyzing malware. It says this is completely 

unacceptable for human-initiated malware. The article also 

compares some useful tools for malware analysis, various 

sandboxes for their effectiveness in dealing with event-

triggered malware. 

Udayakumar et al. [20] focused on reviewing the literature 

rather than revealing anything original in their work. Today, 

the study, which started with the importance of malware 

detection, continues with the need to focus on dynamic 

analysis instead of static analysis. More than 38 articles 

written in the field of malware detection/classification are 

evaluated. After the literature review described above, they 

provide basic information about malware analysis. The 

information is basically about “.exe” files and “.dll” files. 

Following the assessment that it may be beneficial to use safe 

“.dll” files to find malicious ones, “possibly malicious” and 

“possibly benign" “.dll” files are determined by comparing 

behaviors. The paper, which does not present a clear study, 

gives some recommendations for any application in this area 

towards the end. This can be accomplished using the Cuckoo 

Sandbox. As a result, as stated before, the article does not 

reveal a study or an accuracy rate, but consists of a literature 

review. 
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Many of these studies [16-21] provided their accuracy rates 

with the method they applied, but many of them either 

employed very limited datasets or did not share them. When 

comparing the work carried out in this study, no dataset was 

found other than the two datasets utilized throughout the study. 

These datasets are mentioned in Section 3. One study looked 

at the order in which API calls are executed, and the other 

study used the API call frequencies when similar API calls are 

grouped. Another one tried to consider failed, successful and 

total API call frequency counts and also one study considered 

the frequencies of API calls. However, they did not use 

benchmark datasets, instead they created and used their own 

datasets. 

Therefore, there was not sufficient data for the final 

comparison made in Table 4 in Section 4. A dataset that did 

not provide accuracy rates in either dataset [22] could not be 

used. Only the accuracy values of the dataset's creators [23] 

could be compared. However, when making this comparison, 

the following points will be taken into account, which will 

reveal the importance of our work more clearly. First of all, 

the study does not use machine learning or deep learning 

methods. Compared to the accuracy percentages obtained by 

the study, it is clear that the 12-fold validation applied in our 

study will yield broader and more realistic results. Most 

importantly, the study first extracted malicious software from 

malware scanning and antivirus websites through these 

databases. Therefore, the accuracy rates achieved in our study 

(MDAPI), which is based only on Machine Learning without 

malware databases, are commendable. 

 

 

3. EXPERIMENTAL STUDY 

 

3.1 Main idea behind the research 

 

As was briefly discussed in Section 2, there is a lot of 

research into malware detection or classification. However, 

many use a wide range of features that complicate research and 

applications. In our view, a basic structure and faster 

implementation are needed. Most articles focus on the many 

different and complex features covered in Section 2. However, 

we consider “API calls” to be the feature that most clearly 

reveals what a software executes and how it behaves. From 

this perspective, we will have a basis for malware detection 

based on API calls extracted from dynamic malware analysis. 

Keeping the accuracy rate as high as possible while keeping 

simplicity and speed at the top will be the biggest defining 

feature of our study. This is malware detection with machine 

learning methods based on an application programming 

interface (MDAPI). 

First, the "Characteristic API Call features" approach was 

adopted. This approach takes advantage of the fact that 

possible and common malware behaviors use similar API calls. 

Common malware behaviors and possible API calls for these 

behaviors are as follows: 

 

• For keystroke registration: FindWindowsA, 

ShowWindow, GetAsyncKeyState, SetWindowsHookEx, 

RegisterHotKey, GetMessage, UnhookWindowsHookEx etc. 

• For screen capture: GetDC, GetWindowDC, 

CreateCompatibleDC, CreateCompatibleBitmap, 

SelectObject, BitBlt, WriteFile etc. 

• To avoid Anti-Debugging: IsDebuggerPresent, 

CheckRemoteDebuggerPresent, OutputDebugStringA, 

OutputDebugStringW etc. 

• For Downloaders: URLDownloadToFile, WinExec, 

ShellExecute etc. 

• For DLL Injection: OpenProcess, VirtualAllocEx, 

WriteProcessMemory, CreateRemoteThread etc. 

• For Droppers: FindResource, LoadResource, 

SizeOfResource, LockResource etc. 

• To change the Registry: RegCloseKey, 

RegOpenKeyExA, RegDeleteValueA etc. 

 

The “Most Common API Calls" approach was adopted after 

reaching lower-than-expected accuracy rates with the 

“Characteristic API Call Features" approach. With this novel 

approach, it has been recognized that the most frequently used 

API calls can provide meaningful clues about any possibility 

of malware. These two approaches will be explained in more 

detail in the following sections. 

 

3.2 Dataset 

 

Throughout our study, API calls are preferred as potential 

features that the two datasets allow us, for the reasons 

explained in Section 3. First, the APIMDS (API-Based 

Malware Detection System) dataset, which was published in 

conjunction with the study [23] and is entirely based on API 

calls, is used. The size of the dataset is 112.7MB and it is a 

“.csv” file consisting of 23146 software samples. Of the 

samples, 14131 were “malicious”, 3137 were “benign", and 

5878 were “unlabeled” (i.e., it is unknown whether they are 

malicious or benign). The number of instances columns is not 

specific, as different software uses different numbers of API 

calls. 

To examine the dataset structure, the first column is a string 

that gives an idea of the software type. There are three 

possibilities regarding the string in the first column: 

 

• If the string is empty, the software is “unlabeled”, 

meaning it is unknown whether it is malicious or benign. 

• If the string contains the phrase “not-a-virus”, the 

software is labeled “benign”. 

• Software is labeled “malware” if the string is not 

empty and does not contain “not-a-virus”. 

 

Second, the dataset given in study [22] was used to compare 

our performance on the first dataset with a different dataset. 

The dataset, which is also available on Kaggle, consists of two 

different files with a total size of approximately 2.2GB. Both 

are “.txt” type files. The first file contains API calls and the 

second file contains malware types. In other words, the type of 

malware in the first file is written on the corresponding line 

number in the second file. This second dataset consists of 7107 

malware samples. 832 of them are “Spyware”, 379 of them are 

“Adware”, and 891 of them are "Dropper". In this dataset, 

there are also “Downloader”, “Trojan”, “Worm”, “Virus”, and 

“Backdoor” types, each with 1001 instances. The number of 

sample columns is not specific, as different software uses 

different numbers of API calls, as in the first dataset. Since all 

samples are malware, our problem will be a classification 

problem, not a detection problem as in the first dataset. 

Throughout the study, for convenience, the terms “first 

dataset”, which refers to the dataset published by Ki et al. [23], 

and “second dataset”, which refers to the dataset published by 

Catak et al. [22]. Table 1 shows the main structures of datasets.
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Table 1. The datasets used in the study 

 

No Dataset Task 
Number of 

Software 
Content 

1 
APIMDS (API-Based Malware 

Detection System) dataset 
Classification  23146 14131 Malicious, 3137 Benign, 5878 Unlabeled 

2 
A comparison API Call dataset for 

Windows PE malware classification 
Detection 

7107 (all 

malicious) 

1001 Downloader, 1001 Trojan, 1001 Worm, 1001 Virus, 

1001 Backdoor, 891 Dropper, 832 Spyware, 379 Adware 

 

The first dataset enabled binary detection, malicious or not. 

The column listed whether the software was malicious and the 

API calls it was running on. Since the second dataset lists the 

malware type column and the API calls that this malware runs 

on, we have used multi classification instead of binary 

detection, since all software is already malicious. 

 

3.3 Preparation of dataset and feature extraction 

 

For our purposes, some work needs to be done to get the 

first dataset ready for implementation in the first phase. 

Preparation and operations on an Ubuntu 18.04 LTS and 12GB 

RAM capable machine using Linux Bash scripts to process the 

data are as follows: 

• Since data is presented in double-quoted strings, all 

starting and ending double quotes have been removed so that 

the data is clean strings to work on. 

• Due to their indifference to the learning process, 

17268 pieces of software, of which 14131 are malicious and 

3137 benign were retained. In addition, 5878 unlabeled 

software was discarded. 

• Two groups of API calls have been determined for 

the feature extraction phase. The first group is “API calls that 

occur in at least one malicious software but not in any benign 

software” (referred to as “Supposedly-Malicious API calls” in 

the rest of the study). The second group was “API calls that 

occurred in at least one benign software but were not involved 

in any malicious software” (which are to be referred to as 

Supposedly-Benign API calls in the rest of the study). But 

surprisingly, the first group, referred to as the Supposedly-

Malicious group had 599 API calls, while the second group 

called the Supposedly-Benign group, had only 5 API calls. 

(The number of different API calls in the whole dataset is 

1165). Considering the detailed study during the feature 

selection phase and the simplicity approach based on the 

research, 604 features (604=599 extracted from malware+4 

extracted from benign software) were considered too many. In 

addition, it was evaluated that the selection of features only 

from malicious or only benign software would turn our 

machine learning-based work into a linear regression, and that 

this would be the result of a fixed algorithm, not machine 

learning, and as a result of these facts, other solutions were 

sought. 

• As part of our search for a more suitable solution, we 

take a simpler approach. For this, it was thought to detect API 

calls dependent upon other API calls. The term “dependent” 

here means that an API call is included in the dataset only with 

another API call. This is not in instances where the other API 

call doesn’t happen. We thought we could simplify the 

features we extracted in this way. All API calls that have an 

impact on another API call have been detected. With this 

approach, the number of “Supposedly-Malicious API calls” 

was reduced from 599 to 387 and the number of “Supposedly-

Benign API calls” from 5 to 4 (thus the total number of 

individual API calls was 391). However, the number 391 was 

considered too much for a simple and effective solution we 

needed. 

• It is evaluated that some progress has been made, but 

there is still room for improvement. For “Supposedly-

Malicious API calls” and “Unclear API calls” (API calls that 

cannot be grouped into the two previously mentioned groups-

i.e., API calls that are involved in both at least one malware 

and at least one benign software), the most frequent number of 

occurrences should be considered. For “Supposedly-Benign 

API calls” nothing will be done since the number is 4 and it’s 

already low enough. 

• “Supposedly-Malicious API calls” are listed in 

descending order of the number of occurrences in the software. 

API calls that occurred less than 85 (which is a heuristic 

criterion we determine based on the number of features we 

want to extract) in the entire dataset were finally identified as 

44 “Supposedly-Malicious API calls”. 

• “Uncertain API calls” are listed in descending order 

of the number of passes in the software examples. A total of 

16 were determined for “Uncertain API calls”. 

• Finally, the feature selection was completed with 44 

Supposedly-Malicious, 4 Supposedly-Benign, and 16 

Uncertain API calls, with a total of 64 features. In this way, a 

problem such as linearity mentioned in the previous articles 

was completely overcome. In this way, API calls (designed by 

us) were separated based on their characteristics and the most 

frequently used ones were selected, and steps were taken 

towards an effective and simple application. 

• Considering the inequality of malicious and benign 

samples in the dataset, it was evaluated that the number of 

malicious samples (10994) should be equal to the number of 

benign samples (3137) to avoid an imbalance-bias problem. 

Although this will solve the imbalance-bias problem, it will 

cause the loss of more than half of the data in the dataset. 

The accuracy rate obtained with 64 features selected as 

described above was 81.06%. When this success rate is 

examined in detail, it seems quite low compared to this 

detailed feature preparation process, which we can call the 

“Malicious/Benign Character API calls Approach”. Therefore, 

it was considered that another feature selection approach, 

which we can describe as the “Most Used API Calls 

Approach”, which deals with the number of API calls in the 

dataset, may be more useful. Accordingly, the number of API 

calls in the dataset was computed. All API calls were ranked 

in descending order of the total number of occurrences, which 

we consider their possible contribution to learning. And the 

numbers 10, 20, 40, 60, 80, 100, 200, 300, and 400 were 

chosen (intuitively) to see how much the first few "mostly 

occurring” API calls contributed to the accuracy rate. The 

accuracy rates, which we found insufficient in the 

“Malicious/Benign Character API Calls Approach”, increased 

significantly with the “Most Used API Calls Approach". When 

the simple feature extraction process was evaluated, it was 

more than satisfactory. Further evaluation, comparison and 

information on the “Most Used API Calls Approach" will be 
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detailed in Section 4. 

 

3.4 Representation of features 

 

There are lots of researches that use API calls in various 

ways. Using API call frequencies [9, 17] using API call 

frequencies when similar API calls are grouped [11], using 

API calls executed in the first string of the software [18], the 

order in which API calls occur while running a software [5] 

and even the number of failures, successes and total API call 

frequency [8] studies have been conducted. However, our 

study will only deal with whether an API call is called and 

executed, keeping simplicity in mind. 

A notation called “Bag of Words” will be used to represent 

the selected features, which seem most appropriate to the 

situation. To create the structure in Figure 1 for this 

demonstration, the following preparations will need to be 

performed. 

Let’s call the input matrix “A”. If xth software contains yth 

feature (API call), then A[x][y]=1. If xth software does not 

contain yth feature (API call), then A[x][y]=0. All the 0 and 1 

values given in Figure 1 are randomly chosen examples based 

on this explanation. If we interpret the shape based on what we 

have explained here, 1st software includes 1st API call 

(because A[0][0]=1), but does not include 2nd API call 

(because A[0][1]=0). 

A[6274][64] is a matrix with 6274 rows (derived from the 

total software count of 3137 malicious and 3137 benign 

examples) and 64 columns (extracted from API calls, 

designated as 44 Supposedly-Malicious, 4 Supposedly-Benign 

and 16 Uncertain API calls). 

We will have another matrix for the output, called “B”. If 

xth software is malicious, it will be expected to be B[x]=1, if 

xth software is benign, then B[x]=0. The B[6274][1] matrix 

consists of 6274 rows (derived from the total number of 

software (3137 malicious and 3137 benign samples) and only 

1 column (derived from a single binary result, which will 

determine whether the software is malicious or not). 

 

 
 

Figure 1. Implementation of the “Bag of Words” used in our 

study 

 

3.5 Implementation 

 

The input size of the artificial neural network derived from 

the feature size was chosen as 64 and then, 10, 20, 40, 60, 80, 

100, 200, 300 and 400. The reasons will be explained in more 

detail in Section 4, as they were explained in the previous 

sections. Derived from the binary result (the closer to 0 the 

more likely it is to be benign and the closer to 1 the more likely 

it is to be malicious), the network output size is only 1. 

Intuitively, the number of layers according to the number of 

features was calculated as given in Table 2. The hidden layer 

size and the number of neurons were determined intuitively by 

considering the rule of thumb “two-thirds majority”, which 

determines the size of a layer, at the ratio of 2/3 of the size of 

previous layer. 

In addition to the varying input, output, hidden layer size 

and number of parameters, there are some parameters that we 

consider to give optimal results in all the specified 

architectures. When detailing these, learning rate is 0.001. In 

order to overcome the saturation problem and the output value 

to be stable and logically oscillating between 0 and 1, sigmoid 

was chosen as the final activation function used in the last 336 

(output) layer. All activation functions of all layers except the 

last layer are ReLU (Rectified Linear Unit). 

The formulas of these two functions are given in Eq. (1), Eq. 

(2). 

 

( )Sigmoid( ) 1/ 1 xx e−= +  (1) 

 

ReLU( ) max( , )x = 0 x  (2) 

 

Afterwards, an intuitive batch size adjusted to 12, 20, and 

50 epochs is sufficient for the network to learn. However, 12 

is the best value in the study. The values are optimized using 

“Binary Cross Entropy” and finally the results were verified 

by shuffling and using 12-fold cross validation to obtain more 

accurate results. 

When the 100-75-50-30-20-12-8-1 architecture given in 

Table 2 is evaluated as an example, it will be seen that we have 

6 hidden layers and that there are that many neurons in these 

layers, respectively. In addition, it should be noted that in the 

studies carried out, it was observed that the number of layers, 

like the number of features, increases accuracy to a certain 

extent. However, after a certain point, it causes more hardware 

and time costs than the contribution to success rates. It should 

be noted that the values with optimal results in the time-utility 

dilemma are presented above. The most accurate accuracy 

value obtained was 90.34%. 

 

Table 2. Layer sizes representing neuron sizes from input 

(Left) to output (Right) 

 
Number of Features Layer Sizes 

10 10-8-1 

20 20-16-12-8-1 

40 40-25-18-12-8-1 

60 60-40-30-20-12-8-1 

80 80-50-32-20-12-8-1 

100 100-75-50-30-20-12-8-1 

200 200-130-80-50-30-20-12-8-1 

300 300-200-120-80-50-30-20-12-8-1 

400 400-250-160-120-80-50-30-20-12-8-1 

 

 

4. RESULTS, COMPARISON AND DISCUSSION 

 

4.1 Results and comparison 

 

As mentioned in previous sections, first the 

“Characterization” process with “Supposedly-Malicious” and 

“Supposedly-Benign” API calls is executed. After recognizing 

the drawbacks of this method, another approach was adopted 

to select features based on their occurrence in the entire dataset. 
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To be more specific, these processes can be summarized as 

follows: 

• Approach to API Calls with Malicious/Benign 

Characteristics on First dataset: 64 Supposedly-

characteristic API calls are used as features. The results 

obtained are not satisfactory. 

• “Most Used API Calls” Approach in First dataset: 

The most used 10, 20, 40, 60, 80, 100, 200 and 400 API calls 

were selected as features, due to the lower than expected 

results with the “Malicious/Benign Characteristic API calls 

Approach”. The accuracy rate of the results is quite high. 

• Testing Features with Another dataset: After 

seeing the expected results with the "Most Used API calls 

Approach”, the same feature sets are tested as the features of 

the second dataset. The results are satisfactory as the features 

extracted from the first dataset identify patterns in another 

(second) dataset. Also, another challenge for this test is the 

nature of the second dataset, which allows classification only 

(the entire dataset consists of malware, contains no benign 

software, and contains malware classes in its labels), while the 

first dataset consists of both malicious and benign software, 

requiring detection, not classification. In this way, we have 

demonstrated that this approach is a very adaptable and 

universal solution for a wide range of tasks and datasets. 

• Testing Approaches with Another dataset: 

Because satisfactory results were obtained in the previous 

stages, evaluating the approach instead of testing the features 

in another (second) dataset is utilized. In this context, the 

“Most Used API Calls Approach” has been tested on another 

(second) dataset. The most used API calls in the second dataset 

are extracted. The most used API calls 373 consisting of 10, 

20, 40, 60, 80, 100, 200 and 278 are determined as the feature. 

It should be noted that while 300 and 400 features were tested 

in the first dataset, since the number of unique API calls in the 

second dataset is 278, 278 features were the only choice 

instead of 300 and 400 feature numbers. Although they are 

lower than in the first dataset, the results are still satisfactory. 

Obviously, this is due to the very small number of unique API 

calls (278) in the second dataset, and that on any dataset with 

sufficient unique API calls the results will be just as 

satisfactory as in the first dataset. 

Figure 2, Figure 3 and Figure 4 show how feature counts 

contribute to accuracy rates based on our various approaches. 

Here, it is seen that as the number of features increases, 

success rates also increase (with decreasing acceleration). 

Therefore, if there is a need, the number of features can be 

determined using cost factors such as available time and 

equipment. The accuracy rates can be ignored to the desired 

degree, which also clearly demonstrates the system's 

flexibility. 

In addition, based on the accuracy rates given in these 

figures, the fact that the study can be validated not only with 

the studied dataset but also with other datasets, and the success 

of the study on both detection and classification problems, 

should be accepted as an indication that it can bring a universal 

solution to the problem studied. In addition, it is clear that a 

very stable solution can be achieved above the accuracy rates 

obtained by increasing the variety and number of the dataset. 

This includes malicious and benign software types. 

Another comparison was made as to whether a possible 

correlation could be established between the “Most Used API 

calls”, i.e., features of the two datasets. In the analysis, no 

significant correlation was found between the most frequently 

used API calls in the datasets. It is considered that this is due 

to the fact that the first dataset is suitable for detection 

solutions. It is composed of both malicious and benign 

samples. In contrast, the second dataset consists of only 

malicious samples and is appropriate for the classification 

problem. Both datasets consist of certain types of software and 

show different characteristics. 

Figure 5 shows the correlation graph. 

A variety of machine learning methods are used, and in 

Table 3, the accuracy values are displayed along with other 

metrics like precision, recall, and F1 values. 

 

 
 

Figure 2. Accuracy rates obtained in the first dataset with the 

features extracted from the first dataset 

 

 
 

Figure 3. Accuracy rates obtained in the second dataset with 

the features extracted from the second dataset 

 

 
 

Figure 4. Accuracy rates obtained in the second dataset with 

the features extracted from the first dataset 
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Figure 5. Study of capturing possible correlation between 

features extracted from first and second datasets 

 

The problems encountered in the literature review and 

comparison are detailed in Section 2. In addition, considering 

the issues mentioned in Section 2, the results obtained by this 

study are quite satisfactory, as can be seen in Table 4. The 

work mentioned in the first line here [23] is about signature-

based detection, DNA sequence algorithms, etc., not machine 

learning/deep learning algorithms. It should be noted that they 

used a complex method consisting of studies. In other words, 

the working software first checks in antivirus databases. If it is 

already known as malware, the program labels it as malware 

and solves some of the problems with only signature-based 

algorithms. Therefore, the studies mentioned are very complex 

compared to our research and require more time. As a result 

(as in the first study), by comparing the signatures of the 

software (MD5, SHA-1, SHA-256, etc. hash values) with the 

databases of the malware, it does not benefit from previously 

detected malware, does not require handwritten algorithms, 

and uses machine learning/deep learning. It can easily be said 

that our research, which used learning methods, was very 

impressive. 

 

Table 3. The results with respect to various metrics obtained by different methods 

 
Metric Decision Tree K-Nearest Neighbour Naïve Bayes Random Forest Support Vector Machine Artificial Neural Network 

Accuracy 89.29% 90.01% 59.00% 89.77% 90.09% 98.04% 

Precision 52.51% 73.67% 57.09% 90.01% 83.38% 96.19% 

Recall 89.09% 65.07% 87.30% 97.51% 55.83% 98.74% 

F1 66.08% 69.10% 69.05% 94.03% 66.98% 97.45% 

 

Table 4. Comparison of different accuracy values obtained by artificial neural network method with different approaches, 

datasets, feature number and selections (*Body of works including signature-based detection, genetic algorithm etc.) 

 

Research that 

Gets the Score 

Dataset where 

Features were 

Extracted 

Approach Used 

Dataset where 

Results were 

Obtained 

Number of 

Features 

Problem 

Solved 

Obtained 

Accuracy 

[23] 1st dataset Different Algorithms* 1st dataset - Detection 99.88% 

MDAPI 1st dataset 
Malicious/Benign API 

Calls Approach 
1st dataset 64 Detection 81.06% 

MDAPI 1st dataset 
Mostly-Used API Calls 

Approach 
1st dataset 10 Detection 73.89% 

MDAPI 1st dataset 
Mostly-Used API Calls 

Approach 
1st dataset 20 Detection 81.19% 

MDAPI 1st dataset 
Mostly-Used API Calls 

Approach 
1st dataset 40 Detection 90.34% 

MDAPI 1st dataset 
Mostly-Used API Calls 

Approach 
1st dataset 60 Detection 94.96% 

MDAPI 1st dataset 
Mostly-Used API Calls 

Approach 
1st dataset 80 Detection 96.57% 

MDAPI 1st dataset 
Mostly-Used API Calls 

Approach 
1st dataset 100 Detection 96.84% 

MDAPI 1st dataset 
Mostly-Used API Calls 

Approach 
1st dataset 200 Detection 97.50% 

MDAPI 1st dataset 
Mostly-Used API Calls 

Approach 
1st dataset 300 Detection 97.91% 

MDAPI 1st dataset 
Mostly-Used API Calls 

Approach 
1st dataset 400 Detection 98.04% 

MDAPI 1st dataset 
Mostly-Used API Calls 

Approach 
2nd dataset 10 Classification 87.50% 

MDAPI 1st dataset 
Mostly-Used API Calls 

Approach 
2nd dataset 20 Classification 87.50% 

MDAPI 1st dataset 
Mostly-Used API Calls 

Approach 
2nd dataset 40 Classification 87.50% 

MDAPI 1st dataset 
Mostly-Used API Calls 

Approach 
2nd dataset 60 Classification 87.50% 

MDAPI 1st dataset 
Mostly-Used API Calls 

Approach 
2nd dataset 80 Classification 87.50% 

MDAPI 1st dataset 
Mostly-Used API Calls 

Approach 
2nd dataset 100 Classification 88.18% 

MDAPI 1st dataset 
Mostly-Used API Calls 

Approach 
2nd dataset 200 Classification 89.04% 
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MDAPI 1st dataset 
Mostly-Used API Calls 

Approach 
2nd dataset 300 Classification 90.01% 

MDAPI 1st dataset 
Mostly-Used API Calls 

Approach 
2nd dataset 400 Classification 89.89% 

MDAPI 2nd dataset 
Mostly-Used API Calls 

Approach 
2nd dataset 10 Classification 87.51% 

MDAPI 2nd dataset 
Mostly-Used API Calls 

Approach 
2nd dataset 20 Classification 87.63% 

MDAPI 2nd dataset 
Mostly-Used API Calls 

Approach 
2nd dataset 40 Classification 88.36% 

MDAPI 2nd dataset 
Mostly-Used API Calls 

Approach 
2nd dataset 60 Classification 89.50% 

MDAPI 2nd dataset 
Mostly-Used API Calls 

Approach 
2nd dataset 80 Classification 89.95% 

MDAPI 2nd dataset 
Mostly-Used API Calls 

Approach 
2nd dataset 100 Classification 90.16% 

MDAPI 2nd dataset 
Mostly-Used API Calls 

Approach 
2nd dataset 200 Classification 90.43% 

MDAPI 2nd dataset 
Mostly-Used API Calls 

Approach 
2nd dataset 278 Classification 90.66% 

 

 

4.2 Discussion 

 

For a more detailed and comprehensive discussion, there are 

specific implications and lessons to be drawn: 

• Machine learning methods can detect and classify 

malware without complex algorithms or preparation processes. 

• The number of features contributes to accuracy 

values. However, after a certain stage, with the increase in the 

number of features, the contribution decreases significantly 

compared to the time consumed. It is considered logical to 

increase the number of these features as much as possible and 

to an optimal degree (which can be considered 100-200 for this 

study) in a way that preserves the speed and simplicity of the 

algorithm, and then not to increase it in terms of time/hardware 

costs thus tuning all parameters optimally. 

• It is seen that the first dataset has better accuracy rates 

than the second dataset. This is due to the large number of 

unique API calls in the initial dataset. That is, if we can have 

a sufficient number of correctly labeled malicious and benign 

software (and therefore unique API calls), it will be possible 

to create a “Machine Learning Antivirus”, producing a more 

universal solution to the malware detection problem. 

 

 

5. CONCULUSION 

 

It is possible to say that our research was successful in many 

respects. A number of obtained features are used within a logic 

that is completely homogeneous (consisting of only one type 

of feature-API calls) and without including any other feature 

types. We have achieved a higher level of success than many 

in the literature. These accuracy rates are also reasonable for 

multiple machine learning methods and different datasets. 

A fast and robust solution has been developed with an 

emphasis on simpler and faster methods of malware detection 

using machine learning. Cyber security is a battle of wits and 

research should focus on more effective, faster and simpler 

methods. 

After the work we have done in our research, it is no doubt 

that it will be much easier to create an antivirus framework 

using machine learning when there are numerous examples. 

This will put a heavy burden on malicious hackers (black hat 

hackers) and bring another perspective to a universal 

understanding of cyber security. 

REFERENCES 

 

[1] Aliyev, V. (2010). Using honeypots to study skill level 

of attackers based on the exploited vulnerabilities in the 

network. Chalmers University of Technology. 

[2] Kilgallon, S., De La Rosa, L., Cavazos, J. (2017). 

Improving the effectiveness and efficiency of dynamic 

malware analysis with machine learning. In 2017 

Resilience Week (RWS). IEEE, pp. 30-36. 

https://doi.org/10.1109/RWEEK.2017.8088644 

[3] Pascariu, C., Barbu, I.D. (2017). Dynamic analysis of 

malware using artificial neural networks: Applying 

machine learning to identify malicious behavior based on 

parent process hirarchy. In 2017 9th International 

Conference on Electronics, Computers and Artificial 

Intelligence (ECAI). IEEE, pp. 1-5. 

https://doi.org/10.1109/ECAI.2017.8166505 

[4] Hansen, S.S., Larsen, T.M.T., Stevanovic, M., Pedersen, 

J.M. (2016). An approach for detection and family 

classification of malware based on behavioral analysis. 

In 2016 International Conference on Computing, 

Networking and Communications (ICNC). IEEE, pp. 1-

5. https://doi.org/10.1109/ICCNC.2016.7440587 

[5] Damodaran, A., Troia, F.D., Visaggio, C.A., Austin, 

T.H., Stamp, M. (2017). A comparison of static, dynamic, 

and hybrid analysis for malware detection. Journal of 

Computer Virology and Hacking Techniques, 13: 1-12. 
https://doi.org/10.1007/s11416-015-0261-z 

[6] Darshan, S.S., Kumara, M.A., Jaidhar, C.D. (2016). 

Windows malware detection based on cuckoo sandbox 

generated report using machine learning algorithm. In 

2016 11th International Conference on Industrial and 

Information Systems (ICIIS). IEEE, pp. 534-539. 

https://doi.org/10.1109/ICIINFS.2016.8262998 

[7] Aslan, Ö., Samet, R. (2017). Investigation of possibilities 

to detect malware using existing tools. In 2017 

IEEE/ACS 14th International Conference on Computer 

Systems and Applications (AICCSA), pp. 1277-1284. 

https://doi.org/10.1109/AICCSA.2017.24 

[8] Ijaz, M., Durad, M.H., Ismail, M. (2019). Static and 

dynamic malware analysis using machine learning. In 

2019 16th International Bhurban Conference on Applied 

Sciences and Technology (IBCAST). IEEE, pp. 687-691. 

https://doi.org/10.1109/IBCAST.2019.8667136 

1519



[9] Shijo, P.V., Salim, A.J.P.C.S. (2015). Integrated static

and dynamic analysis for malware detection. Procedia

Computer Science, 46: 804-811.

https://doi.org/10.1016/j.procs.2015.02.149

[10] Liu, Y., Wang, Y. (2019). A robust malware detection

system using deep learning on API calls. In 2019 IEEE

3rd Information Technology, Networking, Electronic

and Automation Control Conference (ITNEC), pp. 1456-

1460. https://doi.org/10.1109/ITNEC.2019.8728992

[11] Sun, B., Fujino, A., Mori, T., Ban, T., Takahashi, T.,

Inoue, D. (2018). Automatically generating malware

analysis reports using sandbox logs. IEICE

TRANSACTIONS on Information and Systems, 101(11):

2622-2632.

https://doi.org/10.1587/transinf.2017ICP0011

[12] Choudhury, T., Jain, S., Aradhya, S.N., Kumar, P. (2018).

An entire dynamic malware examination with near

investigation of conduct examination sandboxes. In 2018

Second International Conference on Green Computing

and Internet of Things (ICGCIoT). IEEE, pp. 583-590.

https://doi.org/10.1109/ICGCIoT.2018.8752981

[13] Walker, A., Amjad, M.F., Sengupta, S. (2019). Cuckoo’s

malware threat scoring and classification: Friend or foe?

In 2019 IEEE 9th Annual Computing and

Communication Workshop and Conference (CCWC), pp.

0678-0684.

https://doi.org/10.1109/CCWC.2019.8666454

[14] Jamalpur, S., Navya, Y.S., Raja, P., Tagore, G., Rao,

G.R.K. (2018). Dynamic malware analysis using cuckoo

sandbox. In 2018 Second International Conference on

Inventive Communication and Computational

Technologies (ICICCT). IEEE, pp. 1056-1060.

https://doi.org/10.1109/ICICCT.2018.8473346

[15] Irshad, A., Maurya, R., Dutta, M.K., Burget, R., Uher, V.

(2019). Feature optimization for run time analysis of

malware in windows operating system using machine

learning approach. In 2019 42nd International

Conference on Telecommunications and Signal

Processing (TSP). IEEE, pp. 255-260.

https://doi.org/10.1109/TSP.2019.8768808

[16] Lengyel, T.K., Maresca, S., Payne, B.D., Webster, G.D.,

Vogl, S., Kiayias, A. (2014). Scalability, fidelity and

stealth in the drakvuf dynamic malware analysis system.

In Proceedings of the 30th Annual Computer Security

Applications Conference, pp. 386-395.

https://doi.org/10.1145/2664243.2664252

[17] Fujino, A., Murakami, J., Mori, T. (2015). Discovering

similar malware samples using API call topics. In 2015

12th Annual IEEE Consumer Communications and

Networking Conference (CCNC), pp. 140-147.

https://doi.org/10.1109/CCNC.2015.7157960

[18] Pirscoveanu, R.S., Hansen, S.S., Larsen, T.M.,

Stevanovic, M., Pedersen, J.M., Czech, A. (2015).

Analysis of malware behavior: Type classification using

machine learning. In 2015 International Conference on

Cyber Situational Awareness, Data Analytics and

Assessment (CyberSA). IEEE, pp. 1-7.

https://doi.org/10.1109/CyberSA.2015.7166115

[19] Mehra, M., Pandey, D. (2015). Event triggered malware:

A new challenge to sandboxing. In 2015 Annual IEEE

India Conference (INDICON), pp. 1-6.

https://doi.org/10.1109/INDICON.2015.7443327

[20] Udayakumar, N., Anandaselvi, S., Subbulakshmi, T.

(2017). Dynamic malware analysis using machine

learning algorithm. In 2017 International Conference on

Intelligent Sustainable Systems (ICISS). IEEE, pp. 795-

800. https://doi.org/10.1109/ISS1.2017.8389286

[21] Naeem, H., Alsirhani, A., Alshahrani, M.M., Alomari, A.

(2022). Android device malware classification

framework using multistep image feature extraction and

multihead deep neural ensemble. Traitement du Signal,

39(3): 991-1003. https://doi.org/10.18280/ts.390326

[22] Catak, F.O., Yazı, A.F. (2019). A benchmark API call

dataset for windows PE malware classification. arXiv

Preprint arXiv: 1905.01999.

https://doi.org/10.48550/arXiv.1905.01999

[23] Ki, Y., Kim, E., Kim, H.K. (2015). A novel approach to

detect malware based on API call sequence analysis.

International Journal of Distributed Sensor Networks,

11(6): 659101. https://doi.org/10.1155/2015/659101

1520




