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In the realm of geological and mineral exploration, remote sensing technology has emerged 

as a pivotal high-tech instrument. However, the effective interpretation of remote sensing 

images, especially in the context of heterogeneous data processing, noise, and the 

identification of fine granularity, remains a challenge. In this study, a novel method for the 

identification of mineral elements within remote sensing imagery was introduced. Firstly, a 

heterogeneous feature tensor migration technique anchored on the Coupled Heterogeneous 

Tucker Decomposition (CH-Tucker decomposition) was presented. Through this technique, 

multi-source remote sensing data were effectively processed and fused. Notably, associated 

data features from varying resolutions and angles were seamlessly coupled. Subsequently, 

an optical remote sensing image processing model founded on the RFDNet network was 

established. This model demonstrated robustness against noise data, thereby enabling the 

identification of mineral elements with a higher degree of granularity. The proposed 

methodology exhibited the capacity to extract mineral element information 

comprehensively and with remarkable accuracy. Thus, this research offers both valuable 

theoretical insights and practical evidence for furtherance in geological research and mineral 

element exploration. 
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1. INTRODUCTION

In recent times, remote sensing technology has emerged as 

a cornerstone in geological exploration and mineral 

prospecting, proving itself instrumental in acquiring terrestrial 

surface information [1-4]. Images procured through remote 

sensing offer a wealth of geological information, enabling both 

macroscopic and microscopic viewpoints of mineral 

distribution. Such images are predominantly sourced from 

various remote sensing satellites and aircraft, encapsulating 

vast terrestrial expanses. Recognized for their consecutive, 

expansive coverage, and periodic nature, these images are 

pivotal for the identification of mineral elements [1-4]. 

However, with the incessant accumulation of remote 

sensing imagery data, researchers are now confronted with the 

formidable challenge of extracting precise and trustworthy 

mineral element details. The essence of this challenge lies in 

the need to interpret vast and intricate data, spanning various 

angles and scales, through automated and intelligent 

techniques [5]. In the domain of mineral element identification, 

data-driven methodologies associated with remote sensing 

image processing have been deemed invaluable. Such 

methodologies permit the extraction of multi-scale, multi-

angle, and multi-source information, laying the foundation for 

deeper geological structure analyses, delineating ore belt 

distribution, and gauging mineral reserves [6-9]. The insights 

gleaned from these methods furnish pivotal details pertinent to 

the sustainable exploitation of mineral resources [6-9]. 

Yet, as remote sensing technologies and data acquisition 

instruments continue to evolve, there arises a surge in the 

volume and intricacy of remote sensing image data. 

Compounded by heightened heterogeneity and amplified noise 

interference, this escalation complicates data processing and 

the subsequent extraction of valuable information. Established 

methods, while somewhat effective, exhibit palpable 

shortcomings. For one, these traditional techniques often 

sidestep the inherent heterogeneity of multi-source data, 

culminating in fragmented and imprecise information 

extraction outcomes [10-14]. The multifaceted nature of such 

heterogeneity - spanning spatial, temporal, and spectral 

resolutions - necessitates more sophisticated processing 

strategies [15, 16]. Furthermore, the capabilities of current 

approaches in noise data management remain markedly 

limited. Their inability to pinpoint and mitigate interference 

compromises the reliability of mineral element identification 

results [17-19]. Finally, the increasing demands of processing 

vast swathes of remote sensing imagery data have accentuated 

challenges in achieving precise mineral element identification 

[20-22]. 

Addressing these imperatives, a novel method centered on 

remote sensing image processing was introduced. The primary 

segment of this research introduces a heterogeneous feature 

tensor migration technique anchored on the CH-Tucker 

decomposition. This method is adept at processing multi-

source remote sensing data and adeptly fuses diverse 

resolution and angle-associated data features. Consequently, 
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the accuracy and completeness of information extraction are 

enhanced. The secondary component outlines the construction 

of a fine granularity optical remote sensing image processing 

model, underpinned by the RFDNet network. This model's 

resilience to noise interference and its adeptness at mineral 

element identification suggest its potential to redefine 

standards in geological research and mineral exploration.  

 

 

2. MULTI-SOURCE REMOTE SENSING IMAGE 

FEATURE COUPLING 

 

Remote sensing images, obtained from an array of sources, 

encompass a spectrum including optical remote sensing, radar 

remote sensing, and infrared remote sensing. These images, 

originating from diverse sources, exhibit variance in spatial, 

spectral, and temporal resolutions, leading to inherent data 

heterogeneity. An effective coupling of the associated features 

from these multi-source images is postulated to counteract this 

heterogeneity, potentially enhancing the precision and 

completeness of mineral element identification. It is further 

posited that these images, laden with rich geological 

information, may offer complementary insights when sourced 

differently. By effectively fusing associated features through 

coupling, a more comprehensive utilization of the information 

embedded within various remote sensing images is anticipated, 

thus potentially elevating the information retrieval efficacy 

concerning mineral elements. 

In the context of multi-source data, the varied resolutions 

and angles, derived from different satellites, are often 

represented by feature tensors of disparate sizes. Within this 

framework, a heterogeneous feature tensor migration 

technique, anchored on the CH-Tucker decomposition, was 

introduced in Figure 1. The foundational principle of this 

method revolves around the Tucker decomposition's capability 

to disintegrate input data into a core tensor coupled with a 

sequence of factor matrices. Here, the core tensor is leveraged 

as the low-dimensional representation of the initial data. Such 

a strategy is deemed effective in harnessing and extracting 

quintessential features from intricate high-dimensional 

datasets while simultaneously seeking latent shared 

representations within heterogeneous data. Consequently, the 

associated features from diverse data sources can be adeptly 

fused and extracted, paving the way for a more holistic and 

precise portrayal of mineral elements.

 

 
 

Figure 1. Schematic representation of CH-Tucker decomposition process 

 

Assuming: {Zu
a, tu

a}Ba
u=1 represents data of source 1; {Zu

y, 

tu
y}By

u=1 represents data of source 2; Zu
aEU1,U2,...,UM and tu

a∈
{1,...,L+1} respectively represent samples coming from source 

1 and their corresponding tags; Zu
aEU1,U2,...,UM and tu

a∈
{1,...,L} respectively represent samples coming from source 2 

and their corresponding tags. It is known that data Za and Zy 

coming from the two sources can be represented by tensors of 

different dimensions, and they obey different marginal 

distribution O(Za)≠O(Zy) and category conditional distribution 

O(Za|ta)≠O(Zy|ty). So it’s necessary to construct a mapping υ(·) 

so that O(υ(Za)|ta)≈O(υ(Zy)|ty). Considering that in semi-

supervised cases, ta and ty are unknown, then complete 

P(φ(Xs)|ys)≈P(φ(Xt)|yt) based on ta and ty. 

Assuming: {Ia
mEum,Um}M

m=1 represents the multi-modal 

projection matrix of the search source domain, 

{Iy
mEum,Um}M

m=1 represents the multi-modal projection matrix 

of the target domain, {Ia
mEum,Um}M

m=1 and {Iy
mEum,Um}M

m=1 

determine whether or not the heterogeneous feature tensors of 

remote sensing images of different resolutions and angles will 

be migrated to a common feature space. In this paper, the 

source domain samples were cascaded into an M+m order 

tensor Za = [Zm
a, ..., ZBa

a], and the target domain samples were 

cascaded into an M+1 order tensor Zy = [Zm
y, ..., ZBy

y]. 

Referring to the Tucker decomposition, the low ranks of Za and 

Zy were established as follows: 

 

1 1 2 1 1...a a

a a M MZ H I I+ +     (1) 

 

1 1 2 1 1...a y

y y M MZ H I I+ +     (2) 

 

Assuming: HaEu1,...,uM,L and HyEu1,...,uM,L respectively 

represent the core tensor of source domain and the core tensor 

of target domain; the factor matrices satisfying the 

orthogonality constraints IaY
mIa

m=U, 1≤m≤M and IyY
mIy

m=U, 

1≤m≤M are represented by {Ia
m}M

m=1 and {Iy
m}M

m=1; 
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Ia
M+1EBa,L and Iy

M+1EBy,L represent category indicator factor 

matrices; then, for an annotated remote sensing image sample 

Zu
a(Zu

a), if tu
a=k(tu

y=k), then let Ia
M(u,k)=1, and 

Ia
M(u,j)=0(Iy

M(u,k)=1 and Iy
M(u,j)=0), wherein j≠k; as for 

remote sensing image samples without any annotation, the 

category indicator factor matrices can be constructed as 

follows: 

 

( ) ( )

( ) ( )

,: 0 , 1 0

,: 0 , 1 0

a a u

M M a

k

y y u

M M y

k

I u I u k IF t

I u I u k IF t

 = =

 = =




 (3) 

 

To get the effective factor matrix and core tensor of multi-

source remote sensing images, an objective function was 

constructed as follows: 

 
2

1 1 2 1 1
, , ,

2

1 1 2 1 1

...

...

a y
a y m m

a a

a a M M DH H I I

y y

y y M M D

MIN Z H I I

Z H I I

+ +

+ +

−    +

−   

 (4) 

 

where, the dimension of the (M+1) mode Ha and Hy is L, so Ha 

and Hy can be decomposed into L sub-tensors; assuming Hl
a 

and Hl
y respectively represent the category centers of the 

source domain and the target domain, then the decomposed 

sub-tensors can be written as Ha = [H1
a, ..., HL

a] and Hy = 

[H1
y, ..., HL

y]. Assuming: QaEBa,By represents the adaptive 

sample weight matrix of source domain; in this paper, based 

on Qa, outlier samples were automatically removed and 

embedded into the optimization; assuming γa represents a 

manually set constant used to determine the proportion of 

outlier samples, then there are: 

 

( ) ( )

( )

( )

2

1 1 1 2

, , , , ,
1 1 1

2

1 1 2 1 1

2

2

...

...

. . , 1

, 0

0 , 1

a y a y
a y m m

a a

a M a

a aH H I I Q Q
M M M D

y y

y a M M D

a

a a

u

a

a

Z Q H I
MIN

I Q

Z H I I

s t Q u u B

Q u k u k

Q u u



+

+ + +

+ +

 −  

 

+ −   

= −

=  

 

  
(5) 

 

For the feature migration problem, it is required that the 

remote sensing image samples from different sources should 

have similar category conditional distributions, namely let 

H=Ha+Hy, then the objective function can be adjusted as 

follows: 

 
2

1 1 1 2

, , , ,
1 1 1

2

1 1 2 1 1

...

...

a a a y
m m

a a

a M a

a aH I I Q Q
M M M D

y y

y a M M D

Z Q H I
MIN

I Q

Z H I I

+

+ + +

+ +

 −  

 

+ −   

 (6) 

 

In order to improve the separability of the migration 

features of different-source remote sensing images, the 

difference between sub core tensors of different categories 

could be emphasized, that is, to maximize ∑l||Hl-

1/LH×M+1rM||2D, wherein H = [H1, ..., HL] and rL = [1,1...1]L. 

Assuming: v represents regularization parameter, then the 

following formula gives the expression of the optimization 

problem of CH-Tucker decomposition: 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2

1 1 1 2

, , , ,
1 1 1

2

1 1 2 1 1

2

1

2

2

1 1

1 1

.

..

...

1

. . , 1

, 0 0 , 1

, 0 , 1 0

, 0 ,

a y a y
m m

a a

a M a

a aH I I Q Q
M M M D

y y

y a M M D

l

M L

l D

a

a a

u

a a

s a u

M M a

k

y y

M L

k

Z Q H I
MIN

I Q

Z H I I

v H H r
L

s t Q u u B

Q u k Q u u u k

I u k I u k IF t

I u k I u k



+

+ + +

+ +

+

+ +

+ +

 −  

 

+ −   

 
−  −  

 
 

= −

=     

 = =









 1 0u

yIF t= =

 
(7) 

 

After attaining the optimal factor matrix, the migration 

features of remote sensing images from different sources can 

be extracted through Tu
a=Zu

a×1IaY
1×2...×MIaY

M and 

Tu
y=Zu

y×1IyY
1×2...×MIyY

M. 

 

 

3. ENHANCED MINERAL ELEMENT 

IDENTIFICATION THROUGH FINE GRANULARITY 

ANALYSIS 

 

In the realm of mineral element identification, the 

prominence of fine granularity classification tasks emerges 

due to the intricate compositions and diversity inherent to 

mineral elements. Notably, single-stage identification models 

often grapple with pitfalls, including ambiguities in 

classification outcomes and diminished classification scores. 

An associated challenge is observed wherein the quality of 

detection boxes is compromised by models filtering regression 

boxes based on classification efficacy. Such issues undermine 

the overall accuracy and completeness of the identification 

process, necessitating a model attuned to the demands of fine 

granularity tasks. 

While two-stage identification models, utilizing the RPN 

structure, generate candidate boxes and subsequently 

determine RoIs, their merits in elevating recall rates and 

extracting quintessential target features are overshadowed by 

their reduced inference speed. Such impediments become 

particularly pronounced in scenarios demanding large-scale, 

real-time mineral element identification. A salient concern 

stems from the potential errors in fine granularity annotation 

data, often termed category noise. Owing to the marked 

similarities across categories, annotators confront challenges 

in distinctions, leading to misjudgments. Despite the presence 

of noise-laden training data, ensuring accurate learning of 

target representations for precise classification remains pivotal 

in mineral element identification. Regrettably, extant target 

detection algorithms display a lack of resilience to noise data. 

Thus, the pursuit of a neural network detection model adept at 

fine granularity classification, coupled with algorithmic 

efficiency, holds paramount significance to elevate 

identification precision, process noise data, and accommodate 

the intricacies of fine granularity tasks. 

In light of these considerations, a single-stage fine 

granularity optical remote sensing image identification model, 
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resilient to noise data, was introduced. Utilizing a single-stage 

anchor-based identification model as the foundational 

architecture ensures the model's basic performance metrics. 

Strategies were then employed to enhance the model's finesse 

in fine granularity classification. These included approaches to 

counteract the adverse impacts of noise annotation data on 

classification and initiatives to bolster the recall rate. Such 

refinements were demonstrated to effectively address 

prevalent challenges in fine granularity tasks, such as category 

confusion and suboptimal classification scores. Notably, an 

Anchor-Free approach was incorporated into the model, 

aiming to amplify the algorithm's computational velocity. This 

approach is poised to efficiently navigate fine granularity 

challenges, while simultaneously preserving the model's 

identification prowess.  

 

3.1 Architecture of the RFDNet model for fine granularity 

identification 

 

The constructed fine granularity identification model for 

mineral elements, denoted as RFDNet, boasts an intricate 

structure, encompassing a backbone network, a feature fusion 

network, a classification sub-network, a detection sub-network, 

and a fine granularity classification sub-network. Central to 

this architecture are the detection sub-network and the fine 

granularity classification sub-network (Refer to Figure 2).  

 

 
 

Figure 2. Foundational framework of the RFDNet identification model 

 

Responsibilities of the regression sub-network include the 

prediction of both the position and size of mineral elements 

within an image. An Anchor-Free approach is employed 

within the network, chosen for its ability to alleviate model 

complexity and computational demands. By directly 

forecasting the position and size of targets from feature images, 

without the reliance on preset anchors, the Anchor-Free 

method showcases its merit in parameter reduction and 

computational speed augmentation. Furthermore, it is posited 

that this approach bolsters the model’s adaptability towards 

targets of diverse dimensions and configurations. Defining m, 

y, e and n as distances from a sample point to the left, upper, 

right, and lower borders of the target HY box, and zv, tv as 

coordinates of the sample point, with zu, tu representing the 

coordinates of the target box vertices, the regression target 

manifests in an Anchor-Free format as: 

 

( )

( )

( )

( )

v u

v u

u v

u v

m z MIN z

y t MIN t

e MAX z z

n MAX t t

= −


= −


= −
 = −

 (8) 

 

In the context of standardized coding, parameters m, y, e, 

and n undergo a transformation, rendering them as mb, yb, eb 

and nb, respectively, leading to the relationship: 

 

, , ,b b b b

m y e n
m y e n

ST ST ST ST
= = = =  (9) 

 

The classification sub-network's primary function lies in 

discerning whether a given feature vector qualifies as a target, 

essentially demarcating between foreground and background. 

Given that this sub-network solely produces single-channel 

outcomes, inherent model complexities and computational 

loads experience significant reductions. This streamlined 

design allows for an efficient differentiation between the 

foreground and background, setting the stage for the ensuing 

fine granularity classification process. 

The role of the fine granularity classification module 

emerges as extracting features predicated on the detection sub-

network’s results, subsequently performing an in-depth 

granularity classification leveraging these features. Inspiration 

for this module’s design is drawn from the feature refinement 

methodologies characteristic of two-stage target detection 

models. Whilst ensuring the precision and discernibility of 

features, considerations towards algorithmic computational 

speed remain paramount. Equipped with this module, a more 

meticulous identification of mineral elements in images is 

achieved, culminating in the enhancement of mineral element 

identification accuracy.  
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3.2 Annotation assignment considerations in mineral 

element identification 

 

In the endeavor of mineral element recognition through 

remote sensing images, a multitude of ores present nuanced 

distinctions in attributes such as shape, color, and texture. 

Such subtleties present significant challenges, especially when 

delving into fine granularity identification. Exacerbating this 

challenge are inherent characteristics of remote sensing 

images, where variability in acquisition equipment, shooting 

angle, meteorological conditions, and lighting conditions can 

introduce noise, complicating the annotation assignment task. 

More pertinently, the intricate and analogous nature of mineral 

features can, at times, lead to erroneous annotations or 

category noise. 

In light of these complexities, a noise-robust annotation 

assignment strategy has been introduced. Utilizing both priori 

and posteriori position judgement criteria, this strategy has 

been observed to adeptly navigate potential annotation noise, 

thereby minimizing its detrimental impact on model training 

and recognition efficacy. The optimization involves 

computing and selecting the optimal joint Intersection over 

Union (IoU), leading to an enhanced precision in annotations 

tied to sample points. This, in turn, amplifies the mineral 

element identification accuracy. When juxtaposed with 

methods relying solely on posteriori criteria, this approach was 

seen to circumvent irrational annotation assignments in early 

training phases, hence expediting the model's convergence rate 

and enhancing training efficiency. 

Within the RFDNet architecture, the criterion for noise-

robust classification is determined by the loss emerging from 

the classification head's output, not the outcome of the fine 

granularity classification module. Such a design pivot shifts 

the classification benchmark from a nuanced granularity-

based perspective to a more holistic, robust question of target 

presence. 

Traditional annotation assignment approaches typically 

employ the loss function values of classification and 

regression as benchmarks for position and classification 

judgement. Upon these values, a cost matrix is constructed. 

Defining LOSSvma as the classification loss function, with ov 

and ov
y representing classification predictions and the HY 

category respectively, and LOSSIoU symbolizing the IoU 

computation function, and where η1 and η2 denote the 

positional and classification judgement weights with γ being 

an additive term, the following relationship is deduced: 

 

( ) ( )1 2, ,v v n n

vma y IoU yCOST LOSS o o LOSS o o  = + +  (10) 

 

In mineral element identification via remote sensing images, 

it is commonly observed that the number of categories 

necessitating processing can be expansive. Given each 

prediction outcome and Ground Truth (GT), the conventional 

approach that utilizes the loss function of classification and 

regression for position and classification judgement demands 

a meticulous pre-assignment loss pair computation, followed 

by a subsequent loss calculation post-assignment. Such 

computational procedures are resource-intensive, and with a 

burgeoning category count, a consequential surge in 

computational overhead is inevitable, often culminating in a 

pronounced deceleration of training speed. 

To navigate these computational intricacies, a strategy 

reminiscent of the AutoAssign method was introduced to 

construct the cost matrix. With the ability to directly compute 

the weighted sum of model outputs, thereby facilitating matrix 

construction, the AutoAssign-based approach showcased 

marked reductions in computational demands, subsequently 

fostering time efficiency in training. The final cost matrix is 

delineated as: 

 

( ) ( )( )
1

2 , , ,

v

n n n

y y

COST o

MAX IoU o o IoU AN o



 

=

+ +
 (11) 

 

The Centerness branch, as characterized in the FCOS, 

endeavors to predict each position's centrality, gravitating 

towards achieving elevated confidence at a target's central 

location. Yet, a few limitations of this method surface. 

Primarily, its foundation rests on an assumption that the center 

position of a target harbors the pinnacle of classification 

confidence. Such a presumption, however, might not 

consistently resonate with empirical observations, particularly 

when confronted with targets of irregular geometry or those 

exhibiting significant directional shifts. Secondly, the 

Centerness branch predominantly capitalizes on positional 

data, often sidelining potentially informative contextual cues, 

such as target size and texture. Such omissions could 

inadvertently compromise performance, especially in intricate 

scenarios. In such instances, the classification loss is 

articulated as: 

 

( ) ( ) ( ) ( )( )1 log 1 logy y ySSZ o o o o o o o


= − − − − +  (12) 

 

where, t = {γ,γ, ..., IOI, ..., γ} and γ is defined as 1-IoU/B-1.  

Contrastingly, the methodology that champions the Cost 

score, conceptualized as the harmonic mean of classification 

and positional criteria, manifests several merits. Foremost 

among these is the aptitude to judiciously harness both 

positional and classification data, striking a balance that 

augments detection and classification precision. Additionally, 

by eschewing assumptions regarding target morphology and 

location, it endows the model with enhanced adaptability to 

diverse target configurations and orientations. The 

amalgamation of position and classification criteria further 

enhances the model's prowess in managing noisy data, 

bolstering its resilience against erroneous annotations. For this 

methodology, t is represented as {γ, γ, ..., COST, ..., γ}, with γ 

delineated as 1-COST/B-1. The final loss function is thus: 

 

( ) ( ) ( )1 2 logSSZ o IoU o IoU o  = − +  (13) 

 

 

4. RESULTS AND DISCUSSION ON EXPERIMENTAL 

ANALYSIS 

 

To elucidate the capabilities of the techniques presented, 

Figure 3 delineates the spectral reflectance curves for dolomite, 

specifically from the Dengying Formation of the Sinian 

System. Characterized primarily by its light grey thick-layered 

blocks of micrite dolomite, this lithological formation exhibits 

a greyish-white weathered surface. Observations have been 

noted on its light grey fresh surface, the presence of developed 

rock joints, and flat, smooth joint surfaces. An elevated degree 

of rock weathering is apparent. 

For the purposes of a comparative study, data sources 

spanning four categories were employed: ZY1-02D AHSI and 

GF5 AHSI image data, spectral library data, and spectral 
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morphology data garnered from field samples. Upon 

examination, it was observed that the spectral curves of 

dolomite acquired from field measurements exhibited high 

congruence with those from spectral libraries. Furthermore, 

spectral curves derived from optical satellites demonstrated 

consistency with those of ZY1-02D and GF5. Notably, these 

curves presented reflectance peaks at wavelengths of 2200nm 

and 2400nm, and absorption features around 2500nm, albeit 

with minor discrepancies in local positions. 

 

 
 

Figure 3. Spectral reflectance curves of dolomite sourced 

from Dengying Formation of the Sinian System (as depicted 

from top left to bottom right: GF-5; ZY1-02D view; ZY1-

02E; ZY1-02E 17810 view; field measurement; spectral 

library) 

 

 
 

Figure 4. Field features of the aforementioned dolomite from 

the Dengying Formation of the Sinian System 

 

Beyond the scope of Sinian dolomite, the study also cast its 

investigative lens on various rock minerals. The identifiability 

of each geological mass type was quantitatively assessed 

based on data collected in the field. Factors influencing this 

identifiability encompass the geological mass's dimensions, 

the employed image's scale, and the distinct shape and texture 

features of geological masses as portrayed in remote sensing 

images. An empirical approach for quantifying the 

identifiability of each geological mass type has been proposed, 

as illustrated in formulas presented in Figure 4.  

Three primary categories of linear geological masses were 

identified: fracture structures, linear structures, and stratum 

bedding. Their respective lengths were recorded as 255m, 

415m, and 345m. The scales at which these measurements 

were taken were determined to be 1:10,000 and 1:12,000, 

suggesting a unit length in the image represents either 

10,000m or 12,000m on the actual ground. 

Considering block geological masses, categories such as 

limestone interlayer, laminated basalt, and laminated 

limestone were examined. Their respective dimensions were 

recorded as 300×80m, 200×40m, and 360×35m, with scales of 

1:12,000, 1:10,000, and 1:18,000 respectively. Closed-type 

geological masses, including dolomite, clastic rock strata, and 

surface coal seam outcrops, displayed diameters of 90m, 70m, 

and 60m, all captured at a scale of 1:8,000. Such detailed 

measurements are deemed essential for accurate interpretation 

of remote sensing images, facilitating precise identification 

and categorization of geological masses and thereby 

enhancing the accuracy of remote sensing analyses. 

Within this dataset, it was observed that linear geological 

masses demonstrated high identifiability, with linear-shaped 

structures showcasing the most pronounced identifiability. 

Block geological masses presented medium-level 

identifiability, with laminated limestone emerging as the most 

identifiable. In contrast, closed-style geological masses 

exhibited lower identifiability, though dolomite was found to 

be relatively more identifiable within this category. It is 

noteworthy that this analysis predominantly focused on the 

size dimensions of geological masses. The potential impact of 

shape and texture features, evident in remote sensing images, 

on the identifiability of these geological masses remains 

unexplored and warrants further investigation.  

 

 
 

Figure 5. Curves showcasing identification accuracy and the 

value of the objective function across varying iteration 

numbers 

 

An examination of Figure 5 reveals the model's 

identification accuracy and objective function value during 

training iterations. The peak accuracy, amounting to 0.845, 

was attained during the first iteration. Subsequently, a decline 

in accuracy was observed, stabilizing at approximately 0.6 

between iterations 4 and 9. Concurrently, the objective 

function's value displayed an ascending trend, initiating from 

8.83 and plateauing around 9.1. Such a trajectory suggests a 

rapid initial feature-learning phase by the model, leading to 

high accuracy. However, subsequent iterations seemingly 

induced over-fitting to the training data, reflected in the 

decreased accuracy. The stabilization of the objective function 

value signifies the model's convergence during the iterations, 

indicating a satisfactory fitting degree. 

In Figure 6, the performance of the Tucker decomposition 

model under varying annotated sample proportions and 

regularization parameters is depicted. A significant influence 
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of these parameters on model performance was noted. As 

illustrated, a general increase in the proportion of annotated 

samples corresponded to an enhancement in model accuracy 

in most instances. Such an improvement can be attributed to 

the availability of augmented data for model training, thereby 

bolstering the model's predictive capabilities. Distinct patterns 

were observed when evaluating the effect of different 

regularization parameters. For parameters set at 0.5 and 1, a 

synchronous increase in accuracy with annotated sample 

proportion was witnessed. Conversely, for values of 1.5 and 2, 

the fluctuation in accuracy across varying annotated sample 

proportions remained relatively inconspicuous. An elevation 

in the regularization parameter seemingly simplified the model, 

reducing potential overfitting. While this curtailed overfitting 

to an extent, it also might have inhibited the model's capacity 

to decipher intricate data patterns. The apt selection of both 

annotated sample proportion and regularization parameters, 

therefore, emerges as crucial for the efficacy of the proposed 

method, the optimal configuration of which may vary 

contingent on specific datasets and tasks. 

 

 
 

Figure 6. Accuracy trends of CH-Tucker decomposition 

under varied annotated sample proportions 

 

 
 

Figure 7. Visualization of migration features in remote 

sensing images across source and target domains 

 

In this research, Tucker decomposition was utilized to 

extract migration features from remote sensing images. A 

weighted factor matrix was employed, effectively mitigating 

the influence of outliers, leading to the extraction of migration 

features of notable distinguishability. To empirically 

demonstrate this advantage, an experiment was conducted on 

an appropriate dataset. Three outlier samples, possessing 

azimuth angles ranging between 90 and 135 degrees, were 

incorporated into the source domain samples to serve as 

potential disruptions. With the Tucker decomposition 

parameter calibrated to 0.1, visual representations, both pre- 

and post-feature extraction, were generated via the t-SNE 

method. A detailed analysis of these visual outcomes can be 

discerned in Figure 7. It was postulated that the sample 

distribution within the source domain might undergo 

alterations subsequent to the inclusion of outlier interference. 

Nevertheless, the migration features, as isolated by the Tucker 

decomposition, are conjectured to neutralize this external 

perturbation to a degree. This implies that the source domain's 

feature distribution could align more congruently with that of 

the target domain, which, within the visual results, could 

manifest as an enhanced proximity between the distributions 

of source and target domain samples in a 2D space. 

Figures 8-11 furnish a comparative examination of remote 

sensing geological element identification predicated upon data 

from panchromatic images, multi-spectral images, and fused 

images captured by optical satellites. Preliminary observations 

unveiled that the panchromatic and multi-spectral images 

offered limited distinguishability of geological masses, a 

constraint predominantly imposed by the images' scale and 

grey scale nuances. Moreover, the multi-spectral images 

exhibited blurring and mosaic patterns. In stark contrast, fused 

images manifested pronounced color tone variances between 

geological masses, indicative of enhanced distinguishability. 

 

 
 

Figure 8. Comparative visualization of the 1:100000 

mapping effect for remote sensing geological element 

identification - Panchromatic image (left), Multi-spectral 

image (middle), Fused data image (right) 

 

 
 

Figure 9. Comparative visualization of the 1:100000 

mapping effect for remote sensing geological element 

identification across different remote sensing data types - 

S2A (left), SPOT6 fusion (middle), GJ-1 fusion (right) 

 

 
 

Figure 10. Comparative visualization of the 1:50000 

mapping effect for remote sensing geological element 

identification - Panchromatic image (left), Multi-spectral 

image (middle), Fused data image (right) 
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Figure 11. Comparative visualization of the 1:50000 

mapping effect for remote sensing geological element 

identification across different remote sensing data types - 

S2A (left), SPOT6 fusion (middle), GJ-1 fusion (right) 

 

In the realm of remote sensing identification of geological 

elements, traditional methodologies, particularly those 

employing panchromatic and multi-spectral techniques, were 

found to be potentially inadequate in accurately discerning all 

geological elements, especially at finer scales. However, the 

incorporation of a feature fusion approach, leveraging multi-

source remote sensing images, was observed to augment the 

distinguishability significantly. 

The method of fine granularity identification introduced in 

this research demonstrated marked benefits. Primarily, a 

heightened ability was noted in capturing intricate details of 

geological masses, thus amplifying their distinguishability 

through refined granularity processing of the remote sensing 

images. Secondly, by adopting a noise-robust annotation 

assignment strategy, disturbances inherent in the images and 

potential instability were effectively mitigated, culminating in 

an enhancement in identification precision. Furthermore, the 

utilization of a cost matrix construction strategy, reminiscent 

of the AutoAssign approach, was revealed to considerably 

curtail computational burdens and expedite the training phase. 

Consequently, it can be inferred that the fine granularity 

identification method elucidated in this investigation can yield 

superior outcomes in the domain of geological element 

identification within remote sensing imagery. 

 

 

5. CONCLUSION 

 

In the pursuit of advancing fine granularity identification of 

geological elements using remote sensing images, challenges 

associated with intricate noise and the diversity of categories 

within these images were addressed. A novel approach was 

introduced in this study, utilizing CH-Tucker decomposition, 

which seamlessly integrated both a noise-robust annotation 

assignment strategy and a method akin to AutoAssign for cost 

matrix construction. This approach aimed to enhance the 

efficiency in processing and improve the accuracy of 

identification within remote sensing images. 

Upon evaluation, it was observed that the delineated method 

exhibited both a notable accuracy and robustness when tasked 

with processing multi-source remote sensing image data. 

Particularly, as the number of iterations augmented, the 

accuracy was maintained, while a decline was noted in the 

value of the objective function, suggesting superior 

convergence performance. Furthermore, this approach was 

discerned to uphold its accuracy irrespective of variations in 

the proportion of annotated samples or changes in the 

regularization parameter, emphasizing its versatility in 

adapting to varying conditions of annotated samples and 

regularization intensities. 

Synthesizing the findings and evaluations, it can be inferred 

that the method introduced, focusing on fine granularity 

identification of geological elements via CH-Tucker 

decomposition, possesses commendable noise resilience, swift 

training capabilities, and exemplary identification 

performance. Consequently, its potential applications in the 

broader realm of remote sensing geological element 

identification are vast, and its contribution to the academic 

discourse is deemed substantial. 
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