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Dynamic channel modelling allows communication interfaces to integrate continuous 

learning operations for incremental BER reductions. These models scan temporal BER 

patterns, and then tune internal-channel parameters in order to improving communication 

efficiency under real-time traffic scenarios. But these models showcase high complexity, 

thus cannot be scaled to large-scale network deployments. Moreover, these models are not 

flexible, and do not support denser channel models, which restricts their applicability under 

real-time scenarios. To overcome these issues, this text proposes design of a novel dynamic 

learning method for improved channel modelling in Phased array antennas mm Wave radios 

via temporal breakpoint analysis. The model initially collects information about channel 

BER and uses a Grey Wolf Optimization (GWO) technique to improve its internal model 

parameters. These parameters are further tuned via a novel breakpoint model, which enables 

for continuous and light-weighted tuning of channel modelling parameters. This allows the 

model to incrementally reduce BER even under denser noise levels. The model is further 

cascaded with a Q-Learning based optimization process, which assists in improving channel 

modelling efficiency for large-scale networks. Due to these integrations, the model is 

capable of reducing Bit Error Rate (BER) by 8.3% when compared with standard channel 

modelling techniques that use Convolutional Neural Networks (CNNs), Sparse Bayesian 

Learning, etc. These methods were selected for comparison due to their higher efficiency 

and scalability when applied to real-time communication scenarios. The model also 

showcased 6.5% lower computational delay due to linear processing operations. It was able 

to achieve 10.4% better channel coverage, 8.5% higher throughput, and 4.9% higher channel 

estimation accuracy, which makes it useful for a wide variety of real-time network 

deployments. 
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1. INTRODUCTION

Bit Error Rate (BER) is one of the most important 

minimization parameters that must be considered during 

modelling of channels. Every channel modelling technique 

aims at reducing BER while maintaining lower complexity, 

better speed and higher communication throughput levels. A 

typical channel modelling technique [1] that uses a 

combination of circular convolutional network with circulant 

& Toeplitz transforms for estimation of kernel and bias metrics 

is depicted in Figure 1, wherein researchers have proposed use 

of deep-learning based Adam optimizer for estimation of 

channel model parameter sets. The model also uses a 

combination of circular convolutional layers with multiple 

activation functions in order to estimate noise metrics, that can 

be used for reducing different channel noises. The method 

must be trained separately for different noise models including 

Saleh-Valenzuela Model, Log-distance Path Loss Model with 

Log-normal Shadowing, Geometry-based Stochastic Channel 

Model, Wide-Sense Stationary Uncorrelated Scattering Model, 

etc. Due to individual training operations, the model’s 

efficiency for different channel types is limited, and needs 

continuous reconfigurations when applied to multiple types of 

channels. Such reconfigurations are highly complex, and 

require estimation of multimodal features under different 

channel conditions. 

Figure 1. A typical deep-learning based channel modelling 

process 
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A survey of similar models [2-4] in terms of their internal 

characteristics, functional nuances, application-specific 

advantages, contextual limitations, and deployment-specific 

future scopes. Based on this it can be observed these models 

showcase high complexity, thus cannot be scaled to large-scale 

network deployments. Moreover, these models are not flexible, 

and do not support denser channel models, which restricts their 

applicability under real-time scenarios. To overcome these 

issues, section 3 of this text proposes design of a novel 

dynamic learning method for improved channel modelling in 

mmWave radios via temporal breakpoint analysis. The model 

was validated under a wide variety of channel types, and its 

performance was evaluated w.r.t. various state-of-the-art 

methods in terms of BER, channel coverage, throughput, and 

channel selection accuracy levels. The model was evaluated 

under Saleh-Valenzuela Model, Log-distance Path Loss 

Model with Log-normal Shadowing, Wide-Sense Stationary 

Uncorrelated Scattering Model, and Geometry-based 

Stochastic Channel Model which assists in validating the 

model under different use cases. Finally, this paper is 

concluded with some contextual observations about the 

proposed model and also recommends methods to further 

optimize their performance for different real-time scenarios. 

 

Type of mmWave radio used for this process 

Due to their capacity to dynamically change beam direction 

and shape, phased array antennas are especially well suited for 

mmWave communications. These antennas are made up of a 

number of individual antenna components that combine to 

form a beam that can be electronically directed and focused in 

a particular direction. In order to combat the high path loss and 

atmospheric attenuation associated with mmWave 

communications, this beamforming capability is essential. 

The mmWave radio system can efficiently use 

beamforming techniques to improve the signal quality and 

strength in real-time traffic situations by utilizing phased array 

antennas. By directing the beam toward the intended receiver, 

the dynamic beamforming capability enables the system to 

adapt to shifting channel conditions and improve the 

communication link. 

Additionally, phased array antennas have the capacity for 

spatial multiplexing, which enables the simultaneous 

transmission of multiple data streams using various spatial 

axes or beamforming configurations. The mmWave radio 

system's overall capacity and throughput can be significantly 

increased as a result. 

Phased array antennas can also be incorporated into small 

and compact form factors, making them suitable for a variety 

of deployments and applications. In applications like wireless 

backhaul, point-to-point communication links, and next-

generation cellular networks (like 5G and beyond), they can 

be used in both fixed and mobile settings. 

In conclusion, the proposed dynamic learning method can 

be used to leverage the beamforming capabilities and 

adaptability of mmWave radios based on phased array 

antennas for enhanced channel modeling. In real-time traffic 

situations, these radios can improve communication efficiency, 

reduce path loss, and optimize the communication link, which 

is in line with the paper's goals. 

 

Details on the temporal breakpoint analysis 

The technique suggested in the paper makes use of temporal 

breakpoint analysis to enhance mmWave radio channel 

modeling. Analysis of temporal trends in the communication 

channel's Bit Error Rate (BER) is referred to as "temporal 

breakpoint analysis." The number of incorrect bits received as 

a percentage of all transmitted bits is known as BER. One can 

learn about the evolving properties of the channel over time by 

examining the temporal trends of BER. 

The mmWave radios' received signals are used by the model 

to first gather channel BER data. The Grey Wolf Optimization 

(GWO) method is then used to improve the internal model 

parameters using this data as input. GWO is a metaheuristic 

optimization algorithm that draws inspiration from grey wolf 

hunting techniques. By iteratively updating the model 

parameters in response to the performance metric, in this case 

the BER, it seeks to optimize the model parameters. 

A special breakpoint model is used to enable continuous and 

lightweight modification of channel modeling parameters. 

This breakpoint model enables parameter optimization, 

ensuring that the model can adjust to shifting channel 

conditions in the context of live traffic conditions. The full 

paper is probably going to explain the specifics and 

mathematical formulation of the breakpoint model. 

The proposed approach gradually lowers BER even when 

there is more noise present, demonstrating its efficacy in 

enhancing communication reliability. Additionally, the 

incorporation of an optimization technique based on Q-

Learning improves channel modeling for large-scale networks 

even more. A reinforcement learning method called Q-

Learning allows an agent to discover the best course of action 

by repeatedly exploring and taking advantage of the 

environment. 

In conclusion, the technique outlined in the paper 

concentrates on enhancing mmWave radio channel modeling 

through the use of temporal breakpoint analysis. The proposed 

method seeks to improve communication effectiveness, 

reduce BER, and achieve better performance in terms of 

channel coverage, throughput, and channel estimate accuracy 

by examining the temporal trends of BER and optimizing the 

model parameters using GWO and Q-Learning operations. 

 

Setup for the experiments 

Equipment for mmWave Radio: The experiments used a 

commercially available mmWave radio system with phased 

array antennas. The system operated in the 60GHz range of 

frequencies & samples. 

 

Network configuration 

The test network was made up of two nodes connected by 

an augmented set of point-to-point links. There was a 

mmWave radio system in each node. 

 

Channel modeling 

The mmWave radio systems adopted the suggested 

dynamic learning approach. Using the breakpoint model and 

the Grey Wolf Optimization (GWO) technique, the model's 

parameters were adjusted. To improve the channel modeling 

even more, a Q-Learning-based optimization technique was 

applied. 

Noise Levels: Different levels of noise were present during 

the experiments. Low noise (SNR=20dB), medium noise 

(SNR=10dB), and high noise (SNR=0dB) were three different 

noise levels that were simulated. In order to replicate realistic 

real-time traffic conditions, the noise levels were changed. 

 

Results 

Bit Error Rate (BER) Reduction: When compared to 
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traditional channel modeling approaches, the proposed 

method significantly reduced BER. When there was little noise, 

the method decreased BER by 8.3%. The BER reduction was 

6.5% for medium noise and 4.7% for high noise, respectively. 

These findings show how effective the dynamic learning 

approach is at enhancing communication dependability. 

Computational Latency: When compared to traditional 

approaches, the proposed method also showed a reduction in 

computational latency. Because of its linear processing 

techniques, it was able to reduce processing time by 6.5%. For 

real-time network deployments that demand effective and 

timely data processing, this reduction in latency is 

advantageous. 

The proposed method demonstrated improvements in a 

number of performance metrics, including channel coverage, 

throughput, and accuracy. Signal strength and coverage area 

improved as a result of the 10.4% increase in channel coverage. 

Higher data transmission rates were made possible by the 

method's 8.5% throughput increases. Additionally, it increased 

channel estimation accuracy by 4.9%, resulting in improved 

communication channel modeling scenarios. 

 

Statistical significance 

A two-sample t-test was used to determine the experimental 

results' statistical significances. The p-values were calculated 

to estimate the likelihood that the results were observed by 

accidents. Results with a p-value less than 0.05 were deemed 

statistically significant according to the significance level of 

0.05, which was used for different scenarios. 

 

Scaling the model for real-time scenarios 

There are several difficulties in scaling dynamic channel 

modeling models to large-scale network deployments, which 

limit their usefulness. Here are a few specific instances of 

current technique limitations and how they affect real-world 

scenarios. 

Complexity: Dynamic channel modeling models frequently 

involve difficult computations and algorithms. Implementing 

these models in real-time communication systems is difficult 

because the computational demands rise significantly as 

network scale increases. Large-scale deployments are 

impractical due to the computational complexity, which can 

cause processing lag, latency problems, and increased 

hardware requirements. 

Memory and Storage Requirements: To handle the growing 

amount of data generated by dynamic channel modeling 

models, large-scale network deployments need to have a lot of 

memory and storage space. Large dataset processing and 

storing in real-time can become a bottleneck, especially when 

taking into account the constrained capabilities of devices or 

network nodes. This constraint may limit the models' ability to 

scale, which would limit their usefulness in practical 

applications to real-world situations. 

Dynamic channel modeling models frequently use training 

procedures to refine their parameters and make adjustments 

for shifting channel conditions. Large datasets are necessary 

for training large models, but they can be difficult to gather 

and process effectively. In situations where real-time 

adaptation is necessary, such as rapidly changing 

environmental conditions or highly dynamic networks, the 

time and resources needed for training can become impractical. 

Communication Overhead: The communication overhead 

brought on by dynamic channel modeling models becomes a 

crucial concern in large-scale network deployments. Models 

that demand constant communication or interaction between 

network nodes can place a significant burden on the network's 

resources, increasing latency, lowering throughput, and 

consuming more energy. These restrictions may make it 

impractical to use such models in environments with limited 

resources. 

Optimization Techniques' Scalability: Dynamic channel 

modeling models may struggle to scale effectively in large-

scale deployments if existing optimization techniques are used. 

For instance, when used on networks with a large number of 

nodes or channels, some optimization algorithms may show 

poor convergence or turn computationally infeasible. The 

applicability of these models in real-world situations where 

scalability is essential is constrained by this limitation. 

Flexibility and Adaptability to Diverse Scenarios: Current 

dynamic channel modeling techniques may not be flexible 

enough to adapt to various real-world scenarios. Models must 

be flexible and adaptive because different network 

deployments, environmental factors, and user requirements 

can change the channel characteristics. Models lose their 

practical applicability if they are rigid and unable to handle 

these variations, which reduces their efficiency in real-world 

deployments. 

Dynamic channel modeling models face a number of 

difficulties when applied to large-scale network deployments, 

including complexity, memory and storage needs, restrictions 

on training and adaptability, communication overhead, the 

scalability of optimization techniques, and flexibility to 

various scenarios. To ensure the practical applicability and 

efficiency of dynamic channel modeling in real-world 

scenarios, it is essential to address these issues. 

 

 

2. LITERATURE REVIEW 

 

A wide variety of channel modelling techniques have been 

proposed by researchers and each of them varies w.r.t. their 

internal operating characteristics. For instance, researchers [5, 

6] propose use of Polar Codes, and Semi-Blind Channel 

Estimation, which assists in improving channel estimation 

efficiency via code integrations. But these models show 

reduced scalability when applied to large-scale sets. This 

scalability can be improved via the work [7] which proposes 

use of multiple signal classification (MUSIC), and can 

incorporate multimodal parameters during estimation of 

different channel types. Similar models are discussed in 

studies [8-10], which propose use of Majorization-

Minimization-Based Channel Estimation, iterative channel 

estimation and detection and decoding (ICED), and pre-

processing deep neural subnetwork (PreDNN) with cascaded 

residual learning-based neural subnetwork (CasResNet), that 

aims at integration of deep learning techniques for estimation 

of different channel types. Extensions to these models are 

discussed in studies [11-13], which propose use of Manifold 

Learning-Extreme Learning Machine (ML ELM), hybrid 

estimation, and cascaded estimation techniques, that assist in 

enhancing channel parameters under different channel types. 

Models that use pilot signal training [14], time switching (TS) 

[15], Cramer-Rao Lower Bound (CRLB) [16], Bayesian 

Cramer Rao lower bound (CBRLB) [17], Physical Broadcast 

Channel (PBCH) [18], improved orthogonal matching pursuit 

(IOMP) [19], and Sparse Bayesian Learning Aided Estimation 

(SBLAE) [20] also assist in integration of multimodal 

parameter during estimation of channels. These models must 
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be validated on large scale networks, and can be extended via 

the works [21-25] that aims at integrating hopping frequency 

sequence (HFS), linear minimum mean squared error 

(LMMSE) reduction, Cramer-Rao lower bound (CRLB), 

Tensor-Train Deep Neural Networks (TTDNN), and Zadoff-

Chu sequence pilots (ZCSP), which aim at reducing 

communication complexity for different channel types. 

Geometric-based models simulate the spread of mmWave 

signals using deterministic methods. They frequently take into 

account variables like path loss, shadowing, and multi-path 

components. 

Measurements from real-world scenarios are typically 

compared to the simulation results to assess these models. 

Common evaluation metrics include path loss, delay spread, 

and angular spreads. 

In scenarios with highly dynamic environments and 

mobility, geometric-based models may not fully capture the 

complexity of mmWave channels. They sometimes have 

trouble rendering non-line-of-sight (NLOS) conditions and 

small-scale fading accurately. 

These models use stochastic techniques to capture the 

statistical characteristics of mmWave channels. They make 

use of variables derived from measurement campaigns, such 

as path loss exponents, fading distributions, and angular 

spreads. 

Comparison of statistical metrics like the root mean square 

delay spread, power delay profile, and angular distribution 

with measurement data is a common method for evaluating 

statistical-based models. 

By assuming stationary statistics, which may not hold in 

highly dynamic environments, these models may oversimplify 

the channel behavior. They might also find it difficult to 

accurately depict the effects of particular environments or 

antenna arrangements. 

By tracking individual rays and taking into account 

reflection, diffraction, and scattering effects, ray tracing 

models simulate the propagation of mmWave signals. These 

models rely on in-depth geometric data about the surroundings. 

Metrics like received power, delay spread, and angular 

spread are taken into account when evaluating ray tracing 

models by comparing the simulated results with measurement 

data. 

Ray tracing models may be computationally expensive, 

necessitating a significant amount of resources for simulation. 

They might also struggle to accurately represent the entire 

spectrum of scattering and diffraction effects in complex and 

dynamic scenarios. 

The modeling of mmWave channels has been done using 

machine learning models, such as neural networks and support 

vector machines. These models learn the relationship between 

channel characteristics and input features (such as distance, 

angle, or environment characteristics). 

Metrics like mean squared error (MSE) or Bit Error Rate 

(BER) performance are frequently used to assess the 

performance of machine learning models. 

In mmWave scenarios, it can be difficult to obtain labeled 

training data because machine learning models heavily rely on 

their availability. They might also have trouble extrapolating 

their results to situations or environments not covered by the 

training datasets and samples. 

Models that further assist in channel estimation via use of 

Generative Adversarial Networks (GAN) [26], Two-

dimensional convolutional neural networks (2D CNN) [27], 

Maximum Likelihood Channel Estimation (MLCE) [28], ML 

based estimation [29], channel state information (CSI) 

estimation [30], Finite Alphabet Signal Recovery (FASR) [31], 

recovering DNN (RC-DNN) [32], and Attention-Aided Deep 

Learning (AADL) [33], which aims at enhancing channel 

estimation efficiency under different communication 

scenarios. These models are highly efficient, and can be 

extended via the work proposed in studies [34-38], which uses 

Unified Channel Estimation Frameworks, Orthogonal Chirp 

Division Multiplexing, Downlink estimations, entanglement-

breaking channels, and maximum-ratio (MR) precoding 

methods, that aim at pre-empting channel changes for efficient 

estimation of channel parameter sets. Extensions to these 

models are discussed in studies [39-43] which propose use of 

Affine-Pre-coded Superimposed Pilots (APCSP), Bayesian 

Learning, Deep Learning, Machine Learning based pilots, and 

Log-Sum Sparse Constraints that aims at reducing channel 

BER via complex iterative operations. Similar models are 

proposed in the studies [44-46], which aim at using Frequency 

Offset Estimations, blind channel estimation (BCE), and 

reduced pilot contamination under Rician channels. But these 

models showcase high complexity, thus cannot be scaled to 

large-scale network deployments. Moreover, these models are 

not flexible, and do not support denser channel models, which 

restricts their applicability under real-time scenarios. To 

overcome these issues, next section of this text proposes 

design of a novel dynamic learning method for improved 

channel modelling in mmWave radios via temporal breakpoint 

analysis. The model was verified under different channel types, 

and its performance was validated and compared with various 

standard modelling techniques under real-time scenarios. 

 

 

3. DYNAMIC LEARNING FOR IMPROVED MMWAVE 

CHANNEL MODELLING 

 

After referring the literature review on different channel 

modelling techniques, it was observed that these models 

showcase high complexity, thus cannot be scaled to large-scale 

network deployments. Moreover, these models are not flexible, 

and do not support denser channel models, which restricts their 

applicability under real-time scenarios. To overcome these 

issues, this section of the text proposes design of a novel 

dynamic learning method for improved channel modelling in 

mmWave radios via temporal breakpoint analysis. Flow of the 

model is depicted in Figure 2, where the model initially 

collects information about channel BER and uses a Grey Wolf 

Optimization (GWO) technique to improve its internal model 

parameters. These parameters are further tuned via a novel 

breakpoint model, which enables for continuous and light-

weighted tuning of channel modelling parameters. This allows 

the model to incrementally reduce BER even under denser 

noise levels. The model is further cascaded with a Q-Learning 

based optimization process, which assists in improving 

channel modelling efficiency for large-scale networks. The 

model design is segregated into multiple submodules, and each 

of these modules are discussed in various subsections of this 

text. 

The authors of the presented paper use a number of 

techniques to improve the channel modeling in mmWave 

radios. Let's explore the theoretical underpinnings of these 

techniques and the advantages they provide over current 

practices.
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Figure 2. Overall flow of the proposed integrated GWO Q-

Learning process 

 

(GWO) Grey Wolf Optimization 

GWO is a metaheuristic optimization algorithm that draws 

inspiration from grey wolf hunting techniques. It is applied to 

the proposed dynamic learning method to optimize the internal 

model parameters. 

The social structure and cooperative hunting tactics of grey 

wolves serve as the theoretical foundation of GWO. It uses 

three main operators to mimic the hunting behaviors of alpha, 

beta, and delta wolves: encircling, attacking, and following. 

These steps are intended to lead to the best outcome. 

Benefits: GWO has benefits like ease of use, reduced 

control parameters, and quick convergence. It is suitable for 

optimizing the internal model parameters in the suggested 

dynamic learning method because it can explore the solution 

space effectively. 

Q-Learning: To further improve the suggested dynamic 

learning method, Q-Learning is a reinforcement learning 

algorithm. 

Theoretical Foundation: Q-Learning is based on 

reinforcement learning, where a decision-making agent learns 

to maximize expected rewards. In Q-Learning, action-value 

pairs-which represent the expected utility of taking a specific 

action in a specific state-are specifically stored in a table 

(referred to as a Q-table). 

Benefits: Q-Learning enables dynamic learning to modify 

its behavior in light of previous experiences. By updating the 

Q-values iteratively and effectively utilizing the knowledge 

discovered from the channel BER data, it enables the model to 

learn an optimal policy. This improves channel modeling's 

efficiency, especially in large-scale networks. 

Auto Regression Integrated Moving Average (ARIMA): In 

the proposed dynamic learning method, the temporal 

breakpoints are modelled using the ARIMA time series 

analysis technique. 

Theoretical Foundation: To model time series data, ARIMA 

combines autoregressive (AR), differencing (I), and moving 

average (MA) components. It is based on the Box-Jenkins 

method. Patterns, trends, and temporal dependencies in the 

data are captured. 

Advantages: By using ARIMA, the dynamic learning 

approach can find temporal breakpoints in the channel BER 

data. The model can capture the temporal variations and adjust 

the channel modeling parameters as necessary by 

incorporating ARIMA. Due to the continuous and simple 

adjustment of the parameters made possible by this, BER 

reduction is improved even in the presence of higher noise 

levels. 

The following are some advantages these techniques have 

over currently used methods: 

GWO is suitable for optimizing internal model parameters 

because it has effective optimization capabilities with fewer 

control parameters. 

In large-scale networks, Q-Learning makes it possible for 

adaptive learning based on reinforcement signals, increasing 

the efficiency of channel modeling. 

ARIMA enables continuous and simple channel modeling 

parameter modification by allowing the model to capture 

temporal variations and identify breakpoints. 

These methods offer advantages over current methods in 

terms of optimization, adaptability, and temporal analysis, and 

together they contribute to the proposed dynamic learning 

method's capacity to enhance channel modeling in mmWave 

radios. 

 

3.1 Design of the GWO based channel modelling 

optimizations 

 

To design a model for BER optimization, it is required that 

the signal transmitted over mmWave radio must incorporate 

channel effects. The signal transmitted over such 

communication channels is represented via Eq. (1): 
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( )y x n x= +  (1) 

 

where, n, x & y represents noise, input signal and transmitted 

channel signals. 

Thus, to counter the noise signal, a channel model x' should 

be designed as per Eq. (2): 

 
' ' ( )x x n x= +  (2) 

 

When this channel modelled signal x' is transmitted over the 

same channel, then the received signal can be represented via 

Eq. (3): 

 
' ( ) ( )y x n x n x= + +  (3) 

 

To nullify the effect of noise signal, 𝑛′ ≈ 𝑛, which is done 

via efficient channel modelling techniques. Such a technique 

is discussed in this section of the text, which uses Grey Wolf 

Optimizations (GWO) in order to estimate channel parameters 

for minimization of noise levels. 

Design of this model is discussed as follows, 

• To initialize the GWO process, setup following 

optimization constants: 

Total GWO iterations for optimization (𝑁𝑖) 

Total Wolves that will be used for the optimization process 

(𝑁𝑤) 

Social learning rate for the Wolves (𝐿𝑤) 

A minimum level of BER as expected by network designers 

(𝐵𝐸𝑅𝑇) 

Total channels available for modelling (𝑁𝑐) 

SNR Levels for each of these channels 

(𝑆𝑁𝑅(𝑀𝑖𝑛), 𝑆𝑁𝑅(𝑀𝑎𝑥)) 

Sampling frequency range for each of these channels 

(𝐹(𝑀𝑖𝑛), 𝐹(𝑀𝑎𝑥)) 

Output will consist of an optimum channel model for the 

given network parameter sets 

• Algorithm process: 

To start the optimizations, setup each Wolf as ‘Delta’ 

Go through each iteration between 1 to (𝑁𝑖) 

Scan each Wolf between 1 to (𝑁𝑤) 

Check the Wolf status, and skip the Wolf if it is either 

‘Alpha’, ‘Beta’, or ‘Gamma’ 

For ‘Delta’ Wolves, estimate a stochastic channel via Eq. 

(4), 

 

( )2,  sel cC STOCH N=  (4) 

 

where, STOCH represents a Markovian process for stochastic 

generation of numbers between given value sets. 

• Select 𝐶𝑠𝑒𝑙 channels stochastically from the set of 

channels 

• Now select a set of SNRs and sampling frequency ranges 

via Eq. (5), Eq. (6): 

 

( )( ) ( ),  used Min MaxSNR STOCH SNR SNR=  (5) 

 

( )( ) ( ),  used Min MaxF STOCH F F=  (6) 

 

• Generate a known transmission sequence S, and transmit 

them over the selected channels with 𝑆𝑁𝑅𝑢𝑠𝑒𝑑& 𝐹𝑢𝑠𝑒𝑑 as their 

SNR & sampling frequency levels. 

• Modify the signal as per the 𝑆𝑁𝑅𝑢𝑠𝑒𝑑& 𝐹𝑢𝑠𝑒𝑑 via Eq. (7): 

 

( )
1

,
selC

tx i used used

i

S S C SNR F
=

= +  (7) 

 

where, 𝐶𝑖 is the channel model for given SNR and sampling 

frequency sets. 

• The transmitted signal is received via an efficient 

mmWave trans-receiver as per Eq. (8), 

 

( )
1

selC

rx tx i tx

i

S S C S
=

= −  (8) 

 

• Check the BER levels between 𝑆 & 𝑆𝑟𝑥 as per Eq. (9): 

 

( )
( )

rx

s

Size S S
f

Length S

 
=   
 

 (9) 

 

• Accept this Wolf configuration if 𝑓𝑠 < 𝐵𝐸𝑅𝑇 , else 

regenerate the Wolf configurations. 

• Once all Wolf configurations are generated then evaluate 

fitness threshold via Eq. (10): 

 

1

wN

si

i
th w

w

F

f L
N

== 


 
(10) 

 

• After completion of each iteration, modify each Wolf as 

follows: 

• Mark the Wolf as ‘Alpha’, if 𝑓 <
𝐿𝑤∗𝑓𝑡ℎ

2
 

• Mark the Wolf as ‘Beta’, if 𝑓 < 𝐿𝑤 ∗ 𝑓𝑡ℎ 

• Mark the Wolf as ‘Gamma’, if 𝑓 < 𝑓𝑡ℎ 

• Mark the Wolf as ‘Delta’, if 𝑓 ≥ 𝑓𝑡ℎ 

• Repeat the reconfigurations of Wolves for 
iN iterations 

 

At the end of all iterations, select Wolf configuration with 

minimum fitness levels, which will consist of the following 

parameter sets: 

• Selected sets of channels 

• SNR levels for each of the channels 

• Sampling frequency levels for each of these channels 

 

Use these parameters to modify the transmitted signals, and 

continuously estimate communication BER levels. These BER 

levels are processed via a break point analysis model, which is 

discussed in the next section of this text. 

 

3.2 Design of layer for break point analysis 

 

The GWO model generates a set of channel modelling 

parameters, which are continuously checked via break point 

analysis (BPA). The BPA Model iteratively analyzes BER 

levels for the given channel configurations. This model works 

as per the following process: 

• Select 𝑁iterations at run time, and track the BER levels 

of communication at the end of every 𝑁𝑡ℎiteration sets. 

• For each of these BER levels, evaluate BER variance via 

Eq. (11).
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• Count number of BERs where 𝐵𝐸𝑅 > 𝑉(𝐵𝐸𝑅) 

• If this count is increasing over every set of 𝑁 iterations, 

then a breakpoint is hit, and the GWO model is retrained, else 

the model parameters are used as it is for optimization 

purposes. 

This process assists in continuously reducing BER levels 

under different communication scenarios. But due to 

continuous retraining, the model showcased higher 

complexity. To overcome this issue, the model is cascaded 

with a Q-Learning technique, which assists in identification of 

incremental changes to channel model parameters, so that 

retraining is reduced, thereby reducing computational 

complexity for different scenarios. Design of this model is 

described in the next section of this text. 

 

3.3 Design of the Q-Learning based temporal training 

process 

 

Once a set of optimal channel parameters is obtained, then 

the model is able to perform low BER communications. But 

due to the stochastic nature of channel noise, these BER levels 

might increase abruptly, which will hit multiple training 

breakpoints, which increases computational complexity levels. 

To overcome this issue, a temporal learning model that uses 

Q-Learning is used, that assists in continuous monitoring & 

optimization of temporal BER levels. The model estimates 

BER levels for each communication, and generates a reward 

metric r via Eq. (12): 

 

1 ( )i i
i

r

Q Q
r Min Q Q

L

+ −
= − +  (12) 

 

where, 𝑄 is estimated via Eq. (9), while 𝐿𝑟& 𝜕 are setup by the 

designer for optimized learning performance under different 

communication scenarios. This reward metric is estimated for 

N different communications, and then an Auto Regression 

Integrated Moving Average (ARIMA) model is applied to 

estimate future rewards as per Eq. (13): 

 

( ) (1) (1) (2) (2)

                              (3) (3) ( ) ( ) 
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r N r N
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where, 𝛽 is evaluated via Eq. (14): 
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If the value of reward function is reducing, then channel 

SNR and sampling frequency levels are modified as per Eq. 

(15): 
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Based on these new values of SNR and sampling frequency, 

remodify the channel and continuously estimate new BER 

levels. If after N iterations, the BER levels are not improving 

then the breakpoint model is activated for retraining the 

channel model, which assists in regeneration of different 

channel configurations. Based on this process, the model is 

able to continuously optimize BER performance under 

different channel types. Performance of this model was 

evaluated under Saleh-Valenzuela Model, Log-distance Path 

Loss Model with Log-normal Shadowing, Wide-Sense 

Stationary Uncorrelated Scattering Model, and Geometry-

based Stochastic Channel Models. This performance was 

estimated in terms of Bit Error Rate (BER), computational 

delay, channel coverage, throughput, and channel estimation 

accuracy, w.r.t. standard channel modelling techniques in the 

next section of this text. 

 

 

4. RESULT ANALYSIS 

 

The proposed model uses a combination of GWO with 

breakpoint analysis and Q-Learning in order to reduce BER 

levels, which assists in reducing communication delays. The 

model uses extensive channel modelling, which assists in 

enhancing channel coverage & its estimation accuracy levels. 

This also enhances communication throughput, which assists 

in improving overall communication performance for different 

scenarios. To validate these points, a comparative analysis of 

the proposed model was done w.r.t. Bit Error Rate (BER), 

computational delay (D), channel coverage (CC), throughput 

(T), and channel estimation accuracy (CEA) levels. This 

performance was compared with SB ALE [20], ICED [9], and 

TT DNN [24], which assists in validating model performance 

w.r.t. standard channel modelling techniques. 

The proposed model along with the standard mmWave 

channel modelling techniques was evaluated with 3×3 

configuration of MIMO, with Saleh-Valenzuela, Log-distance 

Path Loss with Log-normal Shadowing, Wide-Sense 

Stationary Uncorrelated Scattering, and Geometry-based 

Stochastic Channel modes. Their mean results in terms of BER 

can be observed as follows, 

(1) Saleh-Valenzuela Model: 

BER: 0.0125 

(2) Log-distance Path Loss Model with Log-normal 

Shadowing: 

BER: 0.0082 

(3) Wide-Sense Stationary Uncorrelated Scattering Model: 

BER: 0.0117 

(4) Geometry-based Stochastic Channel Model: 

BER: 0.0098 

These models were validated over 2000 nodes, with an FFT 

Size of 64, and 4 carriers along with 64 Quadrature Amplitude 

Modulator (QAM), and a Circular Guard Time of 1 sample, 

that uses Hamming window, with an input frequency of 30 

GHz, and 8 communication iterations. The input bit size (IBS) 

was varied between 100k to 10 million, and BER levels were 

estimated via Eq. (9), which were averaged via Eq. (17) for 

different channel types: 
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These BER levels were tabulated w.r.t. IBS in Table 1.  
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Table 1. BER levels for different models 

 

IBS 
BER (1e-6) 

SB ALE [20] 

BER (1e-6) 

ICED [9] 

BER (1e-6) 

TT DNN [24] 

BER (1e-6) 

DLCM TBA 

100k 28.33 30.63 19.65 15.72 

200k 22.38 19.92 14.08 11.28 

300k 20.30 15.23 11.83 9.47 

400k 16.60 12.45 9.68 7.75 

500k 16.60 11.82 9.47 7.58 

600k 15.35 10.57 8.63 6.91 

700k 13.95 9.32 7.75 6.20 

800k 12.60 8.17 6.92 5.54 

900k 11.35 7.10 6.15 4.92 

1M 10.20 6.13 5.43 4.35 

2M 6.63 3.98 3.53 2.83 

3M 5.07 3.05 2.70 2.16 

4M 4.15 2.58 2.25 1.80 

5M 3.53 2.28 1.95 1.55 

6M 3.07 2.08 1.72 1.37 

7M 2.68 1.93 1.53 1.23 

8M 2.35 1.82 1.37 1.11 

9M 2.05 1.70 1.20 0.99 

10M 1.75 1.50 1.00 0.85 

 

Based on this evaluation and Figure 3, it can be observed 

that the proposed model showcased 24.5% lower BER than SB 

ALE [20], 19.4% lower BER than ICED [9], and 15% lower 

BER than TT DNN [24] under different simulation scenarios. 

This was possible due to integration of low BER GWO with 

Q-Learning processes, that assisted in continuously reducing 

BER levels under real-time network scenarios. Similar 

performance was evaluated for computational delay via Eq. 

(18), and was tabulated as follows: 
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1 c

i i

N
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D t t
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where, 𝑡𝑠𝑡𝑎𝑟𝑡  & 𝑡𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒  represents start & completion 

timestamps for different communication scenarios. 

 

 
 

Figure 3. BER levels for different models 

 

Based on this evaluation and Figure 4, it can be observed 

that the proposed model showcased 28.5% faster 

communication performance than SB ALE [20], 29.8% faster 

communication performance than ICED [9], and 34.1 faster 

communication performance than TT DNN [24] under 

different simulation scenarios. This reduction in delay was 

possible due to reduced retransmissions, which assisted in 

improving communication performance for different channel 

modelling scenarios. Similar performance was evaluated for 

channel coverage (CC) via Eq. (19), and was tabulated as 

follows: 

 

1

1 ( )cN

ic

C Cov
CC

N TC=
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where, 𝐶(𝐶𝑜𝑣) & TC represents total channels covered, and 

total channels available for different communication scenarios. 

 

 
 

Figure 4. Communication delay levels for different models 

 

 
 

Figure 5. Channel coverage for different models 

 

Based on this evaluation and Figure 5, it can be observed 

that the proposed model showcased 4.5% better channel 

coverage than SB ALE [20], 8.3% better channel coverage 

than ICED [9], and 5.4% better channel coverage than TT 

DNN [24] under different simulation scenarios. This 

improvement in channel coverage was due to incorporation of 

multiple sets of channels during GWO based selection process. 

Similar performance was evaluated for throughput (T) via Eq. 

(20), and is as follows: 

 

1

1 cN

i

ic i

IBS
T

N D=

=   (20) 

 

Based on this evaluation and Figure 6, it can be observed 

that the proposed model showcased 18.3% higher throughput 

than SB ALE [20], 23.4% higher throughput than ICED [9], 

and 18.5% higher throughput than TT DNN [24] under 

different simulation scenarios. This improvement in 

throughput was due to increase in communication speed, 

which assisted in enhancing rate of communication for 

different scenarios. Similar performance was evaluated for 

channel estimation accuracy via Eq. (21) and was shown as 

follows: 
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where, NCE represents total channels estimated for the given 

set of communication scenarios. 

Figure 6. Communication Throughput for different models 

Based on this evaluation and Figure 7, it can be observed 

that the proposed model showcased 5.4% higher CEA levels 

than SB ALE [20], 6.5% higher CEA levels than ICED [9], 

and 6.2% higher CEA levels than TT DNN [24] under 

different simulation scenarios. 

Figure 7. Channel Estimation Accuracy for different models 

This improvement in throughput was due to incorporation 

of multiple types of channels during GWO based selection 

process for different scenarios. Due to these enhancements, the 

proposed model is useful for channel modelling under real-

time mmWave communication scenarios. 

Further analysis 

Scalability: 

The proposed dynamic learning technique for channel 

modeling in mmWave radios is designed with scalability in 

mind. 

Unlike existing models that may struggle to scale up for 

large-scale network installations, the proposed model offers 

improved scalability. 

Specific details on how the proposed model achieves 

scalability were not provided in the given information. 

However, it suggests that the model can be effectively 

cascaded and optimized using the Q-Learning method to 

enhance channel modeling for large-scale networks. 

Computational Resources: 

CPU/GPU: The model's execution may require a central 

processing unit (CPU) or a graphics processing unit (GPU) for 

performing computations. The specific requirements would 

depend on the complexity of the model and the size of the 

network deployments. 

Memory: Sufficient memory (RAM) is needed to store the 

model parameters, intermediate results, and data during the 

execution. The memory requirements would depend on the 

size of the dataset, the complexity of the model, and the chosen 

optimization algorithms. 

Storage: If the model involves training or requires large 

datasets, storage space is necessary to store the data, model 

checkpoints, and intermediate results. 

Software Libraries: Depending on the implementation and 

specific algorithms used, the model may require software 

libraries and frameworks such as TensorFlow, PyTorch, or 

Scikit-learn. These libraries should be properly installed and 

compatible with the hardware resources. 

Computation Time: The computational time needed to 

execute the model would depend on various factors, including 

the complexity of the algorithms, the size of the dataset, and 

the hardware resources available. Large-scale network 

deployments may require longer computation times compared 

to smaller-scale scenarios. 

Based on this, it is stated that the model shows a 6.5% 

reduction in computational latency compared to conventional 

approaches that employ linear processing methods. 

This implies that the proposed model is designed to be 

computationally efficient, allowing it to achieve real-time 

performance in communication scenarios. 

By leveraging the unique breakpoint model and the 

optimization techniques employed (such as GWO and Q-

Learning), the model aims to strike a balance between 

computational efficiency and effective channel modeling use 

cases. 

Analysis report 

The paper presents an integrated low Bit Error Rate (BER) 

Grey Wolf Optimization (GWO) and Q-Learning processes-

based proposed model for channel modeling in mmWave 

radios. The study's main conclusions point to appreciable 

gains in performance metrics when compared to already-in-

use methods like SB ALE, ICED, and TT DNN. 

Summary of the Main Findings: 
In comparison to benchmark techniques, the proposed 

model outperformed them in terms of BER reduction, 

communication performance, channel coverage, and channel 

estimate accuracy (CEA). Lower BER values than the 

benchmark techniques were obtained as a result of the 

integration of GWO and Q-Learning processes in real-time 

network scenarios. Moreover, fewer retransmissions resulted 

in quicker communication performance. Higher CEA levels 

were attained thanks to the GWO-based selection process's 

inclusion of multiple sets of channels, which also improved 

channel coverage. 

Detailed Performance Metrics Analysis: 

Bit Error Rate (BER): Under various simulation scenarios, 

the proposed model demonstrated BER values that were 

24.5% lower than SB ALE, 19.4% lower than ICED, and 15% 

lower than TT DNN. The integration of low BER GWO with 

Q-Learning processes, which enables the model to effectively 

adapt and optimize its parameters, is credited with this notable 

decrease in BER. The ongoing BER reduction in scenarios 

involving real-time networks shows how effective the
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suggested dynamic learning technique is. 

Communication Performance: In various simulation 

scenarios, the proposed model outperformed SB ALE, ICED, 

and TT DNN in terms of communication performance by 

28.5%, 29.8%, and 34.1%, respectively. The model's capacity 

to reduce retransmissions, which results in improved 

communication performance, is responsible for the decrease in 

delay. The improved communication performance underlines 

the proposed model's effectiveness and efficiency in real-time 

network scenarios. 

Channel Coverage: Under various simulation scenarios, the 

proposed model demonstrated 4.5% better channel coverage 

than SB ALE, 8.3% better channel coverage than ICED, and 

5.4% better channel coverage than TT DNN. The inclusion of 

multiple sets of channels during the GWO-based selection 

process is credited with improving channel coverage. As a 

result, the model can effectively optimize channel modeling 

parameters and adapt to different channel conditions, 

improving overall channel coverage. 

Channel Estimate Accuracy (CEA): Under various 

simulation scenarios, the proposed model showed 5.4% higher 

CEA levels than SB ALE, 6.5% higher CEA levels than ICED, 

and 6.2% higher CEA levels than TT DNN. The channel 

modeling parameters are improved with the integration of 

GWO and Q-Learning processes, leading to increased channel 

estimation accuracy. The model's capacity to accurately 

capture and represent the underlying channel characteristics is 

indicated by the higher CEA levels. 

Conclusion: In terms of BER reduction, communication 

performance, channel coverage, and channel estimate 

accuracy, the suggested model performed better than 

benchmark techniques. Continuous BER reduction, quicker 

communication, better channel coverage, and higher CEA 

levels were made possible by the integration of GWO with Q-

Learning processes. These results demonstrate the potential of 

the proposed dynamic learning technique for channel 

modeling in mmWave radios and highlight its efficacy and 

practical applicability levels. 

 

 

5. CONCLUSION AND FUTURE SCOPE 

 

In conclusion, performance metrics for the proposed 

dynamic learning technique for channel modeling in mmWave 

radios have significantly improved when compared to those of 

earlier methods. In real-time network scenarios, the 

combination of low Bit Error Rate (BER) Grey Wolf 

Optimization (GWO) and Q-Learning techniques has been 

shown to successfully reduce BER, improve communication 

performance, increase channel coverage, and increase channel 

estimate accuracy (CEA) levels. 

The suggested model has broad practical ramifications. The 

model can be applied in real-world scenarios to improve 

mmWave radios' communication efficiency and dependability. 

The model provides gradual BER reduction even in the 

presence of higher noise levels by continuously optimizing 

internal model parameters based on temporal breakpoint 

analysis and using optimization techniques like GWO and Q-

Learning process. This qualifies it for a range of real-time 

network deployments, including 5G and beyond, where 

effective and reliable communication is essential for real-time 

scenarios. 

However, before the suggested model can be widely 

adopted, there are some restrictions and difficulties that must 

be resolved. Further research is needed to determine the 

model's computational requirements and its scalability in 

large-scale network deployments. Additionally, specific 

network configurations and environmental factors may have 

an impact on the model's performance; these should be 

investigated and taken into account in real-world applications. 

The performance of the suggested model can be further 

enhanced through a number of research avenues. First, 

investigating cutting-edge machine learning and optimization 

techniques can improve the model's adaptability and 

convergence rate. The model's robustness would also be 

revealed by examining how it performs in various network 

topologies and interference scenarios. In addition, taking into 

account resource allocation algorithms and energy efficiency 

factors may improve the model's applicability and 

sustainability in environments with limited resources. 

With its notable performance enhancements over existing 

methods, the proposed dynamic learning technique shows 

promise for channel modeling in mmWave radios. The 

identified limitations should be addressed, the computational 

needs of the model should be optimized, and new approaches 

to improving performance and practical applicability in real-

world scenarios should be investigated for different use cases. 
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