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The capacity of massive multiple-input multiple-output (MIMO) systems is significantly 

enhanced through the use of abundant antennas at the base station (BS), supporting a 

multitude of users. However, in Time Division Duplex (TDD) mode, the multiplexing of 

pilots inevitably leads to Pilot Contamination (PC). In this study, a novel approach to 

interference alignment and pilot purification in a large MIMO system was proposed, 

utilizing the principles of compressive sensing and deep learning. The primary aim of the 

Compressive Sensing-Based Location Scheduling System (CSLSS) is to mitigate PC issues 

while optimizing the pilot sequence for the user. By introducing an additional sequence, the 

pilot set is enhanced using our location-based decontamination technique. Furthermore, a 

Feed-Forward Convolutional Neural Network (FFCNN) is employed for interference 

alignment in the MIMO system. Experimental results indicate significant improvements in 

the parameters under consideration. The sum rate showed an increase of 74.6%, the Bit Error 

Rate (BER) improved by 57.8%, the Signal-to-Interference-plus-Noise Ratio (SINR) rose 

by 79.8%, and the spectral efficiency of the channel improved by 98% in terms of 

interference alignment. In addition, a compressive sensing-based parameter showed an 

enhancement of 98%. The Mean Square Error (MSE) for CSLSS was reduced by 64.5% for 

the Signal-to-Noise Ratio (SNR), and the BER for the proposed compressive sensing method 

improved by 41.2% for SNR. The throughput also improved, with an increase of 97.5% for 

SNR and 97.8% for the number of antennas used in the BS. 
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1. INTRODUCTION

The evolution from Fourth-generation (4G) to Fifth-

generation (5G) mobile networks promises a significant 

enhancement in data throughput capacity. A pivotal element 

in this transformation is the incorporation of Multiple Input 

Multiple Output (MIMO) technology. A recent study 

conducted by mobile and wireless communications enablers 

for the 21st-century data society [1] underscored the critical 

role of massive MIMO in 5G, demonstrating a twenty-fold 

increase in throughput over 4G networks. This substantial 

increment is primarily attributed to the deployment of massive 

MIMO. Nevertheless, this promising transition is not without 

challenges such as pilot contamination (PC), which must be 

addressed to reap the full financial benefits of massive MIMO 

[2]. 

Channel estimation emerges as an essential operation in 

large MIMO systems, with the accuracy of estimation 

significantly influencing system performance. The expectation 

is for the channel response within the coherence block to 

remain constant across both time and frequency domains, 

necessitating only one channel estimate per coherent block [3]. 

Time Division Duplexing (TDD) allows for the exploitation of 

reciprocity between uplink (UL) and downlink (DL), thereby 

confining pilot signal transmissions to the UL. Consequently, 

in the coherence block, UL and DL data signal transmissions 

are divided into three types. To maintain spectrum efficiency, 

pilot signals are kept short in length. However, the growth in 

the number of User Terminals (UTs) necessitates an increase 

in the length of pilot signals to preserve orthogonality between 

each UT's signal. This condition ultimately limits the 

availability of data transmission blocks. To circumvent this 

limitation, cells reuse their pilot signals, which unfortunately 

disables the Base Station's (BS) ability to use co-pilots in other 

cells for signal isolation from UTs. The resulting inter-cell 

interference from the reuse of identical pilot signals in other 

cells, termed as PC [4], significantly degrades channel 

estimation performance. 

Massive MIMO holds the potential to achieve asymptotic 

orthogonality between target and interfering users' vector 

channels, provided perfect channel estimation is assumed. 

However, the PC effect, which results in interference during 

UL channel estimation due to the reuse of the same pilot 

sequences, impairs the performance of these systems. The 

coherence time and bandwidth of the wireless channel limit 

the length of pilot sequences, and thus, pilot sequences are a 

finite resource. Consequently, the number of distinguishable 

users is restricted by the quantity of available orthogonal pilot 

sequences [5]. This limitation has been demonstrated to 

deteriorate the quality of Channel State Information (CSI) at 

the BS, leading to a reduction in realized spectral efficiency, 

cell-edge user throughput, and gains in beamforming. PC 

frequently occurs and impairs the performance of large MIMO 

systems significantly [6]. The use of pilots is defined by the 

pilot reuse factor, which subsequently influences the longevity 

of the devices adversely. 
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The performance of the MIMO system is dictated by the 

interference of users sharing the same pilot sequence. In this 

context, a substantial pilot reuse model can be employed to 

enhance the system's homogeneity and spectral efficiency. For 

instance, considering pilot factors 3, 4, and 7, one region 

adopts 7 as the pilot reuse factor while another region adopts 

3. A Soft Pilot Reuse (SPR) divides the users in a cell into 

marginal and central user groups. The former group utilizes 

the same pilot reuse, whereas the latter employs mutually 

orthogonal pilot reuse, effectively alleviating marginal users' 

pilot contamination. A hierarchical pilot reuse mode is 

proposed to apply varying pilot reuse factors to users at 

different levels. However, pilot reuse factors fall within a 

specific group of integers U = {1, 3, 4, 7, 9, 12, 13, …}, which 

is a result of the constraints imposed by the traditional cell 

structure in a honeycomb pattern as a hexagon. Pilot reuse 

factors are neither integers nor non-integers outside the range 

of the group U, significantly restricting the flexibility of pilot 

reuse. In response to this limitation, a pilot reuse mode based 

on continuous pilot reuse factors is proposed. The pilot reuse 

factors of users are determined by a certain probability; 

therefore, a pilot reuse mode based on any pilot reuse factors 

can theoretically be achieved. The optimal pilot reuse factor 

under this pilot reuse mode is elucidated. This study 

contributes to the field in the following ways: 

● To mitigate pilot contamination attacks using a 

Compressive sensing-based location scheduling system 

(CSLSS) for an optimal pilot sequence to the user. 

● Based on location, this decontamination technique 

optimizes the pilot set with an extra sequence. 

● Interference alignment in MIMO uses a feed-forward 

convolutional neural network (FFCNN). 

● The experiment results are discussed, and the 

parameters used for analysis include BER, sum rate, SINR, 

and spectral efficiency in terms of interference alignment. 

Parameters based on compressive sensing include MSE, BER, 

Throughput versus the number of antennas in BS, and 

Throughput versus SNR. 

Reliable CSI is essential to harness the promise of massive 

MIMO systems fully. However, in a real-world 

communication setting, such precise CSI is not available [7]. 

As the number of antennas grows, the receiver must evaluate 

more channel coefficients, raising pilot overhead and 

processing complexity and lowering the system’s total 

throughput. It is a difficult problem that has been addressed in 

[8]. According to the literature [9], the massive MIMO channel 

exhibits sparse properties for computationally efficient 

channel estimation. The LS algorithm, MMSE algorithm, 

LMMSE, and others are examples of traditional channel 

estimation methods. The actual radio station has a multi-

sparseness to it [10]. Many studies have employed 

compressive sensing to pilot-aided channel estimates in recent 

years, such as in study [11]. Research demonstrates that 

compressed channel estimation performs better with the same 

number of pilots in sparse channels. The techniques OMP [12], 

ROMP [13], and SP [14] are being employed in compressed 

sensing channel estimation. The channel sparsity must be 

predicted by the techniques listed above. However, channel 

sparsity is unknown in most communication environments, 

severely limiting the above technique’s applicability. The 

SAMP method can recover sparsity-unknown channels [15], 

but it is highly reliant on repetitive steps, resulting in the 

pursuit of enhanced performance while also increasing 

computing complexity. Massive MIMO systems must cope 

with enormous amounts of data, and typical compression-

aware channel estimate algorithms struggle to balance 

accuracy and computing complexity. According to the 

literature [16], sub-channels between distinct transmitting and 

receiving antenna pairs in a huge MIMO system have the same 

sparse support set. An ASSP is proposed in study [17] for 

massive MIMO channel estimation. The computational 

complexities of accomplishing sparseness adaption and the 

shortcomings have been underestimated due to the step-by-

step approach. According to study [18], utilizing a neural 

network can help enhance channel estimation performance. 

CNN [19] is described as a class of low-complexity channel 

estimators and is modeled by the MMSE channel estimator. 

The use of CNN and LSTM in fast time-changing channel 

estimation is demonstrated in study [20]. Signal identification 

and channel estimation are iteratively structured in the data-

aided stage. Because the length of data symbols is 

substantially longer than that of pilot symbols, the predicted 

channel quality improves [21]. 

The paper follows this structure, with Section 2 thoroughly 

discussing the suggested network model. Section 3 contains 

the experimental analysis and its discussion, while Section 4 

brings the work to a close. 

 

 

2. METHODOLOGY 
 

The suggested pilot decontamination method is covered in 

this part. It uses a huge MIMO system and compressive 

sensing and deep learning algorithms. Figure 1 shows the 

general design for pilot decontamination. 

 

 
 

Figure 1. Proposed architecture for compressive sensing with 

deep learning technique 

 

In DL multicell massive MIMO systems, where each cell 

contains M antennas of BS to service K, (𝑀>𝐾), and runs at 

the same frequency, BS transmits signals to UEs [22]. When 

the IID (Independent and Identically Distributed) channel 

model for correlated Rayleigh fading is used, together with the 

characteristics of MMSE for channel estimation ℎ𝑙𝑗𝑘 ∈ 𝐶𝑀×1 

assign various antenna correlations to each channel between 

users in BS 𝑙 and 𝑀 in BS 𝑗. In 𝜃𝑙𝑗𝑘 ∈ 𝐶𝑀, 𝑀 × 1 is mini scale 
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fading channel and 𝜓𝑙𝑗𝑘 ∈ 𝐶𝑀×𝑀 accounts for the 

corresponding channel correlation matrix for massive scale 

fading [23]. In [𝐷𝑙𝑗]
𝑘,𝑘

= √𝛹𝑙𝑗𝑘 , 𝐷𝑙𝑗𝑘  is a diagonal matrix 

whose diagonal elements are √𝛹𝑙𝑗 =

[√𝛹𝑙𝑗1, √𝛹𝑙𝑗2, ⋯ , √𝛹𝑙𝑗𝐾] . Channel between BS 𝑙  and 𝑘 -th 

user in cell 𝑗 is represented as Eq. (1): 

 

ℎ𝑙𝑗𝑘 = √𝛹𝑙𝑗𝑘𝜃𝑙𝑗𝑘 (1) 

 

Let us consider channel as a superposition of a large number 

of paths in Eq. (2) and Eq. (3). The ℎ𝑖𝑗𝑘 refers to the channel 

estimation, and the 𝛽𝑖𝑗𝑘 refers to the transmission length, and 

B refers to the maximum bandwidth of the nodes, which is 

counted from 1 to the maximum value, and 𝑎, 𝑑, 𝑝 refers to the 

different channels for the elements 𝜃𝑖𝑗𝑘
(𝑏)

. 

 

ℎ𝑙𝑗𝑘 = √
𝛽𝑙𝑗𝑘

𝐵
 ∑  𝐵

𝑏=1  𝑎(𝜃𝑙𝑗𝑘
(𝑏)

)𝛼𝑙𝑗𝑘
(𝑏)

  (2) 

 

𝑅𝑙𝑗𝑘 = 𝐸 [ℎ𝑙𝑗𝑘(ℎ𝑙𝑗𝑘)
𝐻

] =
𝛽𝑙𝑗𝑘

𝐵
 ∫  

2𝜋

0
 𝑝(𝜃𝑖𝑗𝑘) 𝑎(𝜃𝑖𝑗𝑘) 𝑎𝐻(𝜃𝑖𝑗𝑘) 𝑑𝜃 𝑖𝑗𝑘  

(3) 

 
M×1 vector of the received signal in DL by 𝑘-th user in cell 

𝑖 , assuming linear filters is represented by Eq. (4). The 

coherence interval length is 𝜌, and the 𝜌𝐷 represent the signal 

to noise error. The 𝐻𝑗,𝑙𝑘
, 𝑉𝑗𝑘

, 𝑠𝑗𝑘
 represent the channel lengths, 

and represent the 𝑧𝑙𝑘
 represent the overall elements. 

 

𝑦𝑖𝑘 

𝐷 = √𝜌𝐷 ∑  𝐿
𝑗=1 ∑  𝐾

𝑖=1 𝐻𝑗,𝑖𝑘
𝑉𝑗𝑖

𝑠𝑗𝑖
  
   + 𝑧𝑖𝑘

  (4) 

 
The desired signal is decoded at the user side by utilizing a 

combiner matrix. 𝑈𝑙𝑘
⊂ 𝐶𝑀×𝑑  as �̂�𝑖𝑘

𝐷 = 𝑈𝑖𝑘

𝐻𝑦𝑖𝑘

𝐷 𝛷𝐻. 

 

2.1 Uplink training 

 

Users broadcast pilot symbols in the uplink, and each BS 

then evaluates its users’ channels. Users from different cells 

transmit the same set of pilots due to the pilot reuse factor 

being one. 𝐾 users’ pilot signals were given by a 𝐾 × 𝜏 matrix 

𝛷𝐻 with the orthogonality characteristic 𝛷𝐻𝛷 = 𝐼𝐾 , (𝐾 ≤ 𝜏). 
𝐺𝑖𝑙  refers to the initial channel which is then added with the 

calculation of channel 𝑔𝑖𝑗𝑘 . An 𝑀 × 𝜏  matrices 𝑌𝑖  represents 

received pilot symbols at BS 𝑖 as in Eq. (5): 

 

𝑌𝑖 = ∑  𝐿
𝑖=1 √𝑞𝐺𝑖𝑙𝛷

𝐻 + 𝑁𝑖𝑔𝑖𝑖𝑘   (5) 

 

For calculation of channel 𝑔𝑖𝑖𝑘  at BS 𝑖, a sufficient statistic 

is given by Eq. (6) and Eq. (7): 

 

𝑧𝑖𝑘 =
1

√𝑞𝜏
 𝑌𝑖𝜙𝑘 = ∑  𝐿

𝑖=1 𝑔𝑖𝑖𝑘 + 𝐶𝑁 (0,
1

𝜏𝑞
𝐼𝑀)  (6) 

 

𝜁𝑖𝑘 ≜ ∑  𝐿
𝑖=1 𝛽𝑖𝑙𝑘   +

1

𝜏𝑞
  (7) 

 

It is well known that 𝜏 is the coherence interval, and 𝑞 is the 

threshold value for the same interval, which is added and 

calculated for the channel 𝛽 which is directly proportional to 

the 𝜁𝑖𝑘  channel [24]. 

 

2.2 Uplink pilot transmission 

 

This proposed work is based on a pilot multiplexing 

assignment since each cell uses the identical set of pilot 

sequences that are provided to each user 𝛷 =
(𝜑1,  𝜑2, ⋯ ,  𝜑𝑘 , ⋯ ,  𝜑𝐾)𝑇. T is 𝑘-dimensional pilot sequence 

matrix were assigned to entire K users in cell i. τ is pilot 

sequence length that fulfils 𝛷𝛷𝐻 = 𝐼𝐾 , orthogonality between 

pilots. A 𝐾 × 𝐾1 where K dimension unit matrix is 𝐼𝐾 . Finally, 

BS in a cell I received the pilot 𝑌𝑖
𝑝

, which can be represented 

as in Eq. (8): 

 

𝑌𝑖
𝑝

= √𝑃𝑝 ∑  𝐿
𝑗=1 ∑  𝐾

𝑘=1  ℎ𝑗𝑘𝑖 𝜑𝑘 

 
  + 𝑁𝑖

𝑝
  (8) 

 

The received signal is represented in Eq. (9): 

 

𝑟ˆ𝑛 = √𝑝𝑢𝑎ˆ𝑛
𝐻𝑔𝑛𝑥𝑛 + √𝑝𝑢 ∑  𝑁

𝑖=1,𝑖≠𝑛 𝑎ˆ𝑛
𝐻𝑔𝑖𝑥𝑖 +

𝑛 𝑎ˆ𝑛
𝐻  

(9) 

 

The signal is obtained by adding the interval length of the 

channels 𝜌𝑢 , within the channels 𝑎, 𝑔, 𝑥  upto 𝑛  number of 

elements, along with the addition of highest threshold value 

𝑎𝑛
𝐻. 

 

2.3 Compressive sensing-based location scheduling system 

(CSLSS) 

 

This part shows a position scheduling method based on 

compressed sensing to increase the massive MIMO network’s 

uplink sum rate. We presume that the BS has access to location 

information for all network users. Now, look at UL rate 

expression in (10). The derivation continues for the channels 

with maximum threshold 𝑎𝑛
𝐻 to 𝑔𝑖, with LOS representing the 

loss of signal in that channel, and the NLOS to the net signal 

loss in the channel. When using ZF detection, BS represents 

the interference term in the denominator of (11) as follows: 

 

𝑎ˆ𝑛
𝐻𝑔𝑖 = [

𝑔ˆ𝑛

𝑔ˆ𝑛
𝐻𝑔ˆ𝑛

]
𝐻

,  𝑔𝑖 =
𝑔ˆ𝑛

𝐻𝑔𝑖

𝑔ˆ𝑛
𝐻𝑔ˆ𝑛

  (10) 

 

𝑔ˆ𝑛
𝐻𝑔𝑖 = (𝑔𝑛

𝐿𝑂𝑆)𝐻𝑔𝑖
𝐿𝑂𝑆 + (𝑔𝑛

𝐿𝑂𝑆)𝐻𝑔𝑖
𝑁𝐿𝑂𝑆 +

∑   
𝑗∈𝑚,𝑗≠𝑛 (𝑔𝑗

𝑁𝐿𝑂𝑆)
𝐻

(𝑔𝑖
𝐿𝑂𝑆 + 𝑔𝑖

𝑁𝐿𝑂𝑆) +

(
1

√𝑝𝑝𝑁𝑛
)

𝐻

𝑔𝑖
𝐿𝑂𝑆 +

1

√𝑝𝑝(𝑁𝑛)𝐻𝑔𝑖
𝑁𝐿𝑂𝑆  

(11) 

 

LOS interference 𝐼𝑛𝑖 ≜ (𝑔𝑛
𝐿𝑂𝑆)𝐻𝑔𝑖

𝐿𝑂𝑆/𝑔ˆ𝑛
𝐻𝑔ˆ𝑛 is defined as 

Eq. (12): 

 

(𝑔𝑛
𝐿𝑂𝑆)𝐻𝑔𝑖

𝐿𝑂𝑆 = 𝛺𝑛𝑖  [1 + ⋯ + 𝑒𝑗(𝑀−1)𝑑𝜃𝑛𝑖] (12) 

 

It is depicted using the property of the sum of exponentials 

in Eq. (13) and Eq. (14): 

 

(𝑔𝑛
𝐿𝑂𝑆)𝐻𝑔𝑖

𝐿𝑂𝑆 = 𝛺𝑛𝑖
𝑒𝑀𝑗𝑑𝜃𝑛𝑖−1

𝑒𝑗𝑑𝜃𝑛𝑖−1
=

𝛺𝑛𝑖

−𝑒
𝑗

�̸�
2𝑑𝜃𝑛𝑖(−𝑒

−𝑗
𝜇
2𝑑𝜃𝑛𝑖−𝑒

𝑗
𝜇
2𝑑𝜃𝑛𝑖)

−𝑒
𝑗

𝑗
2𝑑𝜃𝑛𝑖(−𝑒

−𝑗
1
2𝑑𝜃𝑛𝑖−𝑒

𝑗
𝑗
2𝑑𝜃𝑛𝑖)

=

𝛺𝑛𝑖 [
𝑠𝑖𝑛𝑠𝑖𝑛 (

𝑀𝑑𝜃𝑛𝑖
2

)

𝑠𝑖𝑛𝑠𝑖𝑛 (
𝑑𝜃𝑛𝑖

2
)

] 𝑒𝑗𝑑𝜃𝑛𝑖(
𝑀−1

2
)
  

(13) 
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1

𝑀
𝑔ˆ𝑛

𝐻𝑔ˆ𝑛 =
1

𝑀
(𝑔𝑛

𝐿𝑂𝑆 + 𝑔𝑛
𝑁𝐿𝑂𝑆 + ∑   

𝑗∈𝜓𝑚,
𝑗≠𝑛

 𝑔𝑗
𝑁𝐿𝑂𝑆 +

1

√𝑝𝑝
𝑁𝑛)

𝐻

× (𝑔𝑛
𝐿𝑂𝑆 + 𝑔𝑛

𝑁𝐿𝑂𝑆 + ∑   
𝑗∈𝑁𝑚

𝑗≠𝑛
,

 𝑔𝑗
𝑁𝐿𝑂𝑆 +

1

√𝑝𝑝
𝑁𝑛)  

(14) 

 

The channels grow progressively orthogonal in the M-

MIMO regime, as represented by Eq. (15). 

 
1

𝑀
ℎ𝑖

𝐻ℎ𝑗 = {1, ∀ 𝑖 = 𝑗 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. (15) 

 

Using this property, Eq. (16) and Eq. (17) shows: 

 
1

𝑀
𝑔ˆ𝑛

𝐻𝑔ˆ𝑛 ⟶𝑎.𝑠 𝛽𝑛 + ∑   
𝑗∈𝑚,𝑗≠𝑛

𝛽𝑗

1+𝐾𝑗
  +

1

𝑝𝑝
  (16) 

 

|𝐼𝑛𝑖|2 =
𝛺𝑛𝑖

2

𝑀2(𝛽𝑛+∑   
𝑗∈𝑖,
𝑗≠𝑛

𝛽𝑗

1+𝐾𝑗
+

1

𝑝𝑝
  )

2 [
sin(

𝑀𝑑𝜃𝑛𝑖
2

)

sin(
𝑑𝜃𝑚𝑖

2
)

]

2

  
(17) 

 
The proposed channel estimator is represented by Eq. (18): 

 

𝑔ˆ𝑖𝑖𝑘
𝑝𝑟𝑜𝑝

= 𝑀𝛽𝑖𝑖𝑘  
𝑧𝑖𝑘

∥𝑧𝑖𝑘∥2  (18) 

 

About M, it approaches the ideal MMSE estimator 

asymptotically. It is represented by 𝜂𝑖𝑘
𝑝𝑟𝑜𝑝

≜
1

𝑀
𝐸{∥ 𝑔ˆ𝑖𝑖𝑘

𝑝𝑟𝑜𝑝
−

𝑔𝑖𝑖𝑘 ∥2} which is given in Eq. (19): 

 

𝜂𝑖𝑘
𝑝𝑟𝑜𝑝

=
𝑀

𝑀−1

𝛽𝑖𝑖𝑘
2

𝜁𝑖𝑘
+ 𝛽𝑖𝑖𝑘 − 2𝛽𝑖𝑖𝑘𝜃𝑖𝑘  (19) 

 

where, the reward matrix is 𝑘, and the shape of the matrix is 

𝑖𝑥𝑘, 𝑡 is the time taken for the transmission of the signal.  

 
𝜃𝑖𝑘

= ∫0

1
  ∫−1

1
  

𝜅𝑖𝑘
2 (1 − 𝑡) + 𝜅𝑖𝑘𝑤√𝑡(1 − 𝑡)

𝜅𝑖𝑘
2 (1 − 𝑡) + 2𝜅𝑖𝑘𝑤√𝑡(1 − 𝑡) + 𝑡

 𝑓𝑇  (𝑡) 𝑓𝑊 (𝑤) 𝑑𝑤 𝑑𝑡 

 

with 𝜅𝑖𝑘 ≜ √
𝛽𝑖𝑖𝑘

𝜁𝑖𝑘−𝛽𝑖𝑖𝑘
, and 𝑓𝑇(𝑡) and 𝑓𝑊(𝑤) are given by Eq. 

(20): 

 

𝑓𝑇(𝑡) =
𝛤(2𝑀)

(𝛤(𝑀))2  (𝑡(1 − 𝑡))𝑀−1, 0 < 𝑡 < 1 𝑓𝑊(𝑤) =

𝑀

𝜋
𝐵 (

1

2
, 𝑀) (1 − 𝑤2)𝑀−

1

2, |𝑤| < 1  
(20) 

 

Algorithm for Pilot scheduling: 

 

1. Start by randomly allocating users to pilots, one pilot for 

each user in each cell. 

2. The uplink SINR is used to order all users. 

3. Take into account the user with the lowest overall uplink 

SINR. 

a) After selecting a new user in cell k with the best SINR to 

switch to, say I. 

b) After switching. 

I. Try looking for a different user in cell k if the least SINR 

is not improved; then, move on to step (b). STOP when there 

are no longer any users in cell k. 

II. Once the least SINR has been improved, move on to step 

2. 

 

Algorithm for Location scheduling system: 

 

1. PILOT ASSIGNMENT Procedure (𝜃, d, 𝜏) 

2. 𝑑′ ← 𝑠𝑜𝑟𝑡(𝑑, 𝑎𝑠𝑐𝑒𝑛𝑑) 

3. 𝑁 = 𝑙𝑒𝑛  (𝑑′), padlen= 𝑟𝑒𝑚 (𝑁, 𝜏) 

4. if padlen> 0 then 

5. 𝑑′ ← [𝑑′ zeros (1, padlen )] 
6. end if 

7. 𝐷 ← 𝑣𝑒 𝑐 2𝑚𝑎𝑡  (𝑑′, 𝜏); 
8. 𝑡1 ←determine (𝑑′ == 𝐷(1, : )), 𝜃𝑡1

←s 

9. 𝑥 ←rowlen (𝐷) 

10. for 𝑖 ← 2, 𝑥𝑑𝑜 

11. 𝑡′ ← find (𝑑′ == 𝐷(𝑖, : )) 

12. 𝜃𝑡′ ← 𝑠𝑖𝑛 (𝜃(𝑡′)) 

13. for 𝑚 ← 1, len (𝜃𝑡1
) do 

14. for 𝑛 ← 1, len (𝜃𝑡′)𝑑𝑜 

15. 𝑑𝜃𝑚𝑛 ← 𝜋(𝜃𝑡1
(𝑚) − 𝜃𝑡′ 

16. 𝐼(𝑚, 𝑛) = |𝐼𝑚𝑛|2 

17. end for 

18. 𝛹𝑖(𝑛) ← 𝑚𝑖𝑛(𝐼(𝑚, : )) 

19. End for 

20. 𝑇 = [𝛹1 , 𝛹2, … . 𝛹𝑇]𝑇 An index of the users who 

receive the same pilot sequence is contained in each 

column of T. 

21. End process 

 

Algorithm for compressive sensing-based location 

scheduling system: 

 

Matrix of observations B, M antennas, and z input receives 

the pilot signal  

channel ℎ′𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡  
Block support set location index Initialized 𝑆1 = ∅ , 

Support set location index 𝑆2 = ∅ , ℎ′ = 0 , Threshold 𝑓 =
𝐸{[𝑇𝑠(𝑖)]2, 𝑖 = 𝐾 + 1, 𝐾 + 2, … , 𝐿}, 𝑟 = 𝑧. 

Iteration procedure 

1) Evaluating vector T and placing its components in 

decreasing order will produce a vector T s and its 

associated index set S1.  

2) Set the element number to m if an item in T s exceeds 

threshold f; if m=0, stop; otherwise, proceed to step 

3. 

3) The vector s (1:m+1) denotes the largest backward 

difference between consecutive items as t in the vector 

𝑠 (1: 𝑚 + 1). 

4) In the vector 𝑠(1: 𝑡) , regularise the entries =
𝑇𝑠 (1: 𝑡), 𝐽 = 𝑆1 (1: 𝑡) , |𝑢(𝑖)| ≤ 2|𝑢(𝑗)|, 𝐼, 𝑗 ∈ 𝐽 , 

select the energy of the largest group of a chosen 

support set after it has been divided into several 

groups. If the length of vector 𝑉  is 𝑈 , 𝑠2 = 𝑆2 ∪
[(𝑉(𝑘) − 1)𝑀 + 1: 𝑉(𝑘)𝑀], 𝑘 = 1, 2, 𝐿, 𝑈. 

5) Determine matrix of relevant columns in the 

observation matrix 𝐵𝑆2
 based on the location index 

𝑆2. 

6) Use the least square approach to solve the estimated 

channel ℎ′ = (𝐵𝑆2

𝐻𝐵𝑆2
)

−1
𝐵𝑆2

𝐻𝑧. 

7) Update residual 𝑟 = 𝑧 − 𝐵𝑆2
ℎ′, make 𝑆1 = ∅, 𝑉 = ∅ 

8) Repeat Step1. 
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2.4 Feed-forward convolutional neural network (FFCNN) 

based interference alignment 

 

The deep learning technology is used to locate the pilots in 

an effective manner and, thus, reduce the traffic between them. 

The main objective of this paper is to optimize the pilot 

sequence for the user. The Feed Forward Convolution Neural 

Network model does interference alignment in MIMO. The 

internal weight parameters of NN compute input-output 

correspondence and underlying loss function are described as 

follows (21). 

 

𝐿 = 𝐸[∥ ℎ𝑙𝑙𝑘 − 𝑓(ℎˆ𝑙𝑙𝑘
𝐿𝑆 ) ∥2

2] (21) 

 

NN-based IA: There are 4 million nodes in the first layer, 

64 million in the second layer, and 2 million in the final layer 

of the NN-based IA model. ReLU is the activation function, 

and r(x)=max (x, 0). The weight parameters for the i-th layer 

of the NN-based estimate FFCNN model are given as Wi and 

bi (22). 

 

𝑓𝐹𝐹𝐶𝑁𝑁(𝑥) = 𝑊3 ⋅ 𝑟(𝑊2 ⋅ 𝑟(𝑊1𝑥 + 𝑏1) + 𝑏2) + 𝑏3 (22) 

 

Here, 𝑥 ∈ 𝑅2𝑀 is input for FFCNN, and is converted from 

the complex into real, 𝑥 = [(ℎˆ𝑙𝑙𝑘
𝐿𝑆 )𝑇 , 𝐼𝑚  (ℎˆ𝑙𝑙𝑘

𝐿𝑆 )𝑇]𝑇. Thus, the 

desired channel is attained from ℎˆ𝑙𝑙𝑘 
𝑝𝑟𝑜𝑝𝑝 =𝑢𝑛 𝑓′ (ℎˆ𝑙𝑙𝑘

𝐿𝑆 ) =

𝑓𝐹𝐹𝐶𝑁𝑁  (𝑥). Numerous batches of datasets are handled at the 

same time in practice. 

Consider a fully-connected ReLU FFCNN with a DL 

estimator D. D’s input and outputs are indicated by the letters 

xRd and hRd, respectively. We’ll use the term “denote” in the 

discussion that follows by Eq. (23). 

 

𝑍 = {(𝑥𝑚 , ℎ𝑚)|𝑥𝑚,  ℎ𝑚 ∈ 𝑅𝑑 , 𝑚 = 1, … , |𝑍 ∣} (23) 

 

The ReLU activation function, the hidden layers, and the 

neuron assignment  𝑑 = (𝑑0,  𝑑1, … ,  𝑑𝑙 , 𝑑𝑙+1) ∈ 𝑁𝑙+2  with 

𝑑0 = 𝑑𝑙+1 = 𝑑 . The depth of D is equal to the number of 

hidden layers l. 𝑚𝑎𝑥 (𝑑1, … , 𝑑𝑙)  and ∑𝑖=1
𝑙  𝑑𝑙  denotes the 

width and size of D, respectively by Eq. (24). 

 

𝛩 = {𝜃 = (𝑣𝑒𝑐 (𝑊0), 𝑏0, … , 𝑣𝑒𝑐 (𝑊𝑙), 𝑏𝑙) ∈ 𝑅𝑑𝑢} (24) 

 

𝑏 represent the bias of the weights. Set of all D parameters, 

where 𝑑𝑢 = ∑𝑖=0
𝑙  𝑑𝑖+1 × (𝑑𝑖 + 1),  𝑊𝑖 ∈ 𝑅𝑑𝑖+1×𝑑𝑖  𝑎𝑛𝑑 𝑏𝑖 ∈

𝑅𝑑𝑖+1  are weight matrix and bias vector of 𝑖-th layer for 𝑖 ∈
{0, 1 … , 𝑙}. The underlying function that D represents for a 

constant network structure d can be written as Eq. (25): 

 

𝑓𝜃(𝑥) = 𝐴𝑙 ∘ 𝜑𝑑𝑙
∘ 𝐴𝑙−1 ∘ 𝜑𝑑𝑙−1

∘ ⋯ ∘ 𝜑𝑑1
∘ 𝐴0(𝑥) (25) 

 

where, 𝐴𝑖:  𝑅𝑑𝑖 → 𝑅𝑑𝑖+1. 

The affine transformation depends on the weight. 𝑊𝑖  and 

bias 𝑏𝑖 , 𝜑𝑑𝑖
:  𝑅𝑑𝑖 → 𝑅𝑑𝑖 . The purpose of DL estimator is to 

enhance to approximate MMSE estimator. The neurons in D 

have only two possible states since the ReLU function is 

piecewise linear: replicating input or zero output. Whenever 

the θ is fixed, a set 𝐾 ⊆ {0,1}𝑑 presents all potential activation 

patterns of neurons in D, where 𝑑‾ = ∑𝑖=1
𝑙  𝑑𝑖  is the whole 

neurons in D. The fact that |𝐾| is upper bounded by 2𝑑 is self-

evident by Eq. (26). 

 

𝑋𝑘 ⊆ 𝑋, 𝑘 = 1, … , 𝐾 = |𝐾| (26) 

Let 𝑥˜𝑖 = [𝑥𝑖,1, … , 𝑥𝑖,𝑑𝑖
]

𝑇
be 𝑖-th layer output with 𝑥˜0 = 𝑥. 

Next, for all input 𝑥 ∈ 𝑋𝑘, 𝐴𝑖(𝑥˜𝑖) computed by using Eq. (27): 

 

𝐴𝑖(𝑥˜𝑖) = {𝑊0𝑥 + 𝑏0, 𝑖 = 0 𝑊𝑖𝐴𝑖−1 (𝑥˜𝑖−1) + 𝑏𝑖 , 𝑖
≥ 1 

(27) 

 

Further express 𝐴𝑖(𝑥˜𝑖)  as by recursively increasing 

𝐴𝑖(𝑥˜𝑖) layer by Eq. (28): 

 

𝐴𝑖(𝑥˜𝑖) = ∏𝑗=0
𝑖  𝑊 �̃�𝑥

+ ∑𝑗=0
𝑖−1   (∏𝑝=0

𝑗
 𝑊 �̃�+1−𝑝) 𝑏𝑖−1−𝑗

+ 𝑏𝑖 = 𝑊ˆ𝑖𝑥 + 𝑏ˆ𝑖 , 𝑏ˆ𝑖

= ∑𝑗=0
𝑖−1   (∏𝑝=0

𝑗
 𝑊 �̃�+1−𝑝) 𝑏𝑖−1−𝑗

+ 𝑏𝑖 , 𝑥 ∈ 𝑋𝑘  

(28) 

 

As a result, 𝑓𝜃(𝑥) becomes an affine function for 𝑥 ∈ 𝑋𝑘  is 

expressed as in Eq. (29): 

 

fθ(x) = fXk
(x) = WXk

x + bXk
 (29) 

 

where,  𝑊𝑋𝑘
= 𝑊ˆ𝑙  and 𝑏𝑋𝑘

= 𝑏ˆ𝑙 by using Eq. (30). 

 

∥ 𝑓(𝑥) ∥2= [∑  𝑑
𝑖=1   𝐸{∥ 𝑓𝑖(𝑥) ∥2

2}]
1/2

< +∞  (30) 

 

Define in Eq. (31): 

 

𝐽(𝑓) = 𝐸{∥ 𝑓(𝑥) − ℎ ∥2
2} (31) 

 

MSE is estimation of f(x). From the orthogonal principle 

given in Eq. (32): 

 

𝐽(𝑓) = 𝐸{∥ 𝑓(𝑥) − ℎ𝑀𝑀𝑆𝐸 + ℎ𝑀𝑀𝑆𝐸 − ℎ ∥2
2} =

𝐸{∥ 𝑓(𝑥) − ℎ𝑀𝑀𝑆𝐸 ∥2
2} + 𝐸{∥ ℎ𝑀𝑀𝑆𝐸 − ℎ ∥2

2} +
2𝐸{(𝑓(𝑥) − ℎ𝑀𝑀𝑆𝐸)𝑇 (ℎ𝑀𝑀𝑆𝐸 − ℎ)} = 𝐸{∥ 𝑓(𝑥) −

𝑓𝑜(𝑥) ∥2
2} + 𝐽𝑀𝑀𝑆𝐸   

(32) 

 

The DL estimator’s input-output relationship is expressed 

as a function, 𝑓𝜃(𝑥), given a ReLU DNN with parameter. 

Then, (𝐽(𝑓𝜃) = 𝐸 {∥ 𝑓𝜃(𝑥) − ℎ ∥2
2} by Eq. (33). 

Denote, 

 

𝜃𝑜 = 𝑎𝑟 𝑔 𝑚𝑖𝑛
𝜃∈𝛩𝑅

 𝐽 (𝑓𝜃), 𝐽(𝑓𝜃𝑜
) = 𝑚𝑖𝑛

𝜃∈𝛩𝑅

 𝐽 (𝑓𝜃) (33) 

 

Similarly, denoted by Eq. (34): 

 

𝜃𝑍 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝜃∈𝛩𝑅

 𝐽𝑍(𝑓𝜃), 𝐽𝑍(𝑓𝜃𝑍
) = 𝑚𝑖𝑛

𝜃∈𝛩𝑅

 𝐽𝑍(𝑓𝜃) (34) 

 

where, Eq. (35) as follows: 

 

𝐽𝑍(𝑓𝜃) =
1

|𝑍|
∑(𝑥𝑚,ℎ𝑚)∈𝑍   ∥ 𝑓𝜃(𝑥𝑚) − ℎ𝑚 ∥2

2  (35) 

 

Therefore, Eq. (36) and Eq. (37) are: 

 

ℎ𝐷𝐿 = 𝑓𝜃𝑍
(𝑥) (36) 

 

𝑥 = 𝑓𝑢(𝜏ℎ + 𝑛) (37) 

 

The first term 𝐽(𝑓𝜃𝑜
)  in (33) is again decomposed into, 

shown by Eq (38): 
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𝐽(𝑓𝜃𝑜
) = 𝐸{∥ 𝑓𝜃𝑜

(𝑥) − 𝑓𝑜(𝑥) ∥2
2} + 𝐽(𝑓𝑜) (38) 

 

Since, 𝐽(𝑓𝑜)  has lowest MSE, 𝐽(𝑓𝜃𝑜
)  identified by 𝐸{∥

𝑓𝜃𝑜
(𝑥) − 𝑓𝑜(𝑥) ∥2

2}, also known as approximation error. 

 

2.5 Architecture of the FFCNN model 

 

The following is the architecture of the given FFCNN 

algorithm consisting of 3 fully connected layers, that point 

towards 17 parameters for optimizing the network. The final 

value obtained refers to the position of the placement of the 

pilot in the network. 

 
Layer Output Shape Parameters 

Dense1 (None, 16) 144 

Dense2 (None, 16) 272 

Dense3 (None, 1) 17 

Total Params: 433 

Trainable Params: 433 

Non-trainable Params:0 

 

 

3. RESULTS AND DISCUSSION 

 

Consider a situation where K=30 MSs are uniformly 

dispersed within an 11km2 square and M=50 APs are. The 

results of the experiment are reviewed, and the parameters 

used for analysis include BER, sum rate, SINR, and spectral 

efficiency in terms of interference alignment. Compressive 

sensing parameters include MSE, BER, throughput versus the 

number of antennas in BS, and throughput versus SNR. Since, 

the interference alignment using deep learning and 

compressive sensing, comparative analysis has been 

conducted. Since, the interference alignment using deep 

learning and compressive sensing, comparative analysis has 

been conducted. 

 

 
 

Figure 2. Response pattern of DL pilot decontamination 

 

 
 

Figure 3. Equalized constellation per stream 

The response pattern of the proposed system shows that 

each of the signaling pattern has the highest magnitude spread 

of waves shown through Figure 2 and the constellation steam 

of uplink and downstream in Figure 3. 

 

𝑆𝐼𝑁𝑅 =
𝑠𝑖𝑔𝑛𝑎𝑙𝑝𝑜𝑤𝑒𝑟

𝑛𝑜𝑖𝑠𝑒+𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑝𝑜𝑤𝑒𝑟
  (39) 

 

Table 1 shows comparative analysis based on the error 

occurrence for the number of bits transferred with the specified 

model. 

 

Table 1. Comparative analysis based on error vector 

magnitude with no. of bits transferred 

 
Parameters Error Vector Magnitude No. of Bits 

ROMP 1.0311 3114 

SAMP 1.0024 6234 

Pro_CSLSS 0.38361 9354 

 

 
 

Figure 4. Comparison of transmit vs receive diversity 

with all strategies 

 

The comparison of various strategies representing their 

diversity with the receival value divergence. Figure 4 indicates 

the least divergence for the novel pilot contamination strategy 

having higher processing of lesser diversity between the 

transmitted and received signals. 

 

Table 2. Comparative analysis based on compressive sensing 

between existing and proposed technique 

 

Parameters 
ROMP 

[13] 

SAMP 

[15] 
Pro_CSLSS 

MSE versus SNR 74.6 72.2 64.5 

BER versus SNR 54.9 52.8 41.2 

Throughput versus the number 

of antennas in BS 
93.2 94 97.8 

throughput versus SNR 92.5 96 97.5 

 

Table 3. Comparative analysis based on interference 

alignment using deep learning between existing  

and proposed technique 

 

Parameters 
CNN 

[19] 

LSTM 

[20] 
Pro_FFCNN 

Sum rate versus number of users 67.6 69.5 74.6 

BER versus number of users 53.8 54.5 57.8 

SINR versus number of users 75 76.8 79.8 

Spectral efficiency versus the 

number of users 
93.5 96 98 
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A comparison of the parameters between the existing and 

new compressive sensing approaches is shown in Table 2. 

MSE in terms of SNR, BER in terms of SNR, throughput in 

terms of the number of antennas in BS, and throughput in 

terms of SNR are the metrics taken into consideration in 

compressive sensing. 

The comparison between the existing and proposed 

techniques is shown in Table 3 utilizing interference alignment 

and deep learning. The metrics taken into account for 

compressive sensing are BER, sum rate, SINR, and spectral 

efficiency in terms of user count. 

Figure 5 comparison of parameter analysis between the 

proposed and existing compressive sensing techniques with 

respect to MSE, BER, throughput for the number of antennas, 

and throughput for SNR. 

Figure 6 below illustrates a comparison of the existing and 

suggested solutions employing interference alignment and 

deep learning. 

Sum rate, BER, SINR, and spectral efficiency in terms of 

user count are the variables up for comparison when it comes 

to interference alignment. From above comparative analysis, 

the proposed FFCNN based interference alignment system 

obtained optimal results when compared with the existing 

deep learning techniques. Interference has been aligned and 

improved sum rate by 74.6%, BER is improved by 57.8%, 

SINR by 79.8% and spectral efficiency of the channel has been 

improved by 98% for number of users. Therefore, proposed 

FFCNN based interference alignment system mitigates the 

interference of the network by enhancing the above-discussed 

parameters. 

 

  
(a) MSE versus SNR (b) BER versus SNR 

  
(c) Throughput versus the number of antennas in 

BS 
(d) Throughput versus SNR 

 

Figure 5. Comparison of parameter analysis between the proposed and existing compressive sensing techniques; (a)MSE; (b) 

BER; (c) throughput for no. of antennas; (d) throughput for SNR 

 

  
(a) Sum rate vs the number of users (b) BER vs the number of users 
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(c) SINR vs the number of users (d) spectral efficiency vs the number of users 

 

Figure 6. Comparative analysis based on interference alignment using deep learning (a) sum rate, (b) BER, (c) SINR, (d) 

Spectral efficiency 

 

 

4. CONCLUSION 

 

In a large MIMO method, this research provided a novel 

technique for pilot decontamination and interference 

alignment-based channel estimation. Here, the goal is to lessen 

PC attacks by adopting a Compressive Sensing-Based 

Location Scheduling System (CSLSS) for a user-friendly pilot 

sequence. The pilot set will be optimised with an additional 

sequence thanks to our location-based decontamination 

technique. A feed-forward convolutional neural network is 

used to do interference alignment in MIMO (FFCNN). The 

results of the experiment are reviewed, and the parameters 

used for analysis include BER, sum rate, SINR, and spectral 

efficiency in terms of interference alignment. Compressive 

sensing parameters include MSE, BER, throughput versus the 

number of antennas in BS, and throughput versus SNR. The 

suggested technique has eliminated pilot contamination based 

on compressive sensing and interference alignment has been 

achieved by deep learning technique in channel modelling, 

according to experimental analysis based on both compressive 

sensing and deep learning techniques. 
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