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In recent years, advancements in deep learning have fostered the development of 

sophisticated object detectors, specifically in the realm of computer vision. The inherent 

complexity of images captured by unmanned aerial vehicles (UAVs) presents a multitude of 

challenges for object detection. These include, but are not limited to, the detection of small 

and densely clustered objects, scale variance, occluded objects, and intricate backgrounds, 

which are particularly prevalent in drone-captured imagery when compared to natural scenes 

with larger and more distinct objects. The current landscape of object detection research has 

seen a surge in interest surrounding advanced, anchor-free object detectors, attention 

mechanisms, and the use of transformers as an alternative to convolutional neural networks. 

In light of these developments, this study introduces a novel object detection framework that 

eschews anchor utilization and leverages a transformer backbone for feature extraction. A 

cardinal grouping-based split attention module is integrated into this network to selectively 

extract the most pertinent features. The object detection head, termed the Pyramid Vision 

Split Attention Module Network (PvSAMNet), comprises three branches: classification, 

confidence, and regression, which collaboratively facilitate the final object detection from 

drone images. Additionally, an Intersection over Union (IoU) balanced loss function is 

employed to effectively equilibrate the classification and localization steps. The 

performance of the proposed detector is evaluated using the Visdrone-DET dataset, with the 

efficacy gauged by the average precision (AP) and average recall (AR) metrics. The results 

demonstrate that the proposed model outperforms other detector models with an average 

precision of 38.74. This study contributes to the ongoing discourse in the field of object 

detection, providing a novel framework that addresses the unique complexities of UAV 

imagery and demonstrates promising results in comparative evaluations. 
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1. INTRODUCTION

The field of computer vision has been marked by significant 

leaps forward, with object detection becoming an 

indispensable method. This technique, which involves 

generating bounding boxes and assigning categories to objects 

in images, forms the bedrock for further downstream tasks 

such as segmentation, image captioning, and object tracking. 

Object detection goes beyond mere object classification; it not 

only classifies objects in images but also pinpoints their exact 

locations by generating bounding boxes around them. As a 

cornerstone of computer vision, it finds applicability in an 

array of fields, including autonomous driving, image 

categorization, and face recognition, with specific tasks 

involving weed detection, face detection, license plate 

detection, and pedestrian detection. Given its fundamental role 

in video analysis and visual comprehension, this area has seen 

a surge of research interest. 

The advancements in neural networks have played a crucial 

role in the progress of object detection. Notably, deep learning, 

an evolution of conventional neural network structures and 

methods, has significantly enhanced object detection 

capabilities. One particular area where object detection has 

found substantial application is in the analysis of images 

captured by unmanned aerial vehicles (UAVs) or drones [1]. 

These images often contain dense, small-scale object 

information, presenting a unique challenge for object detection. 

The widespread use of drones in fields like agriculture, 

security, aerial photography and videography, and hazard 

monitoring necessitates effective and automatic object 

detection for scene parsing on UAV platforms. However, 

drone images present a host of challenges, including small 

objects, dramatic scale variances, complicated backgrounds, 

occluded objects, and flexible viewpoints (Figure 1). These 

factors pose substantial challenges for convolutional neural 

networks (CNNs) used for general object detection. 

Historically, numerous object detection strategies have been 

proposed, such as R-CNN [2], Faster R-CNN [3], Mask R-

CNN [4] under two-stage detectors category, and YOLO [5], 

RetinaNet [6], SSD [7] under one-stage detectors category. 

While these have achieved remarkable performance for 

ground images, aerial images present a more formidable 

challenge. The common backbones used by various object 

detectors for image classification are VGG [8], AlexNet [9], 

ResNet [10]. Notably, dense residual networks, incorporated 

into the detectors of the YOLO series, known as Darknet, have 

proven to be highly effective in feature extraction. 
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Figure 1. Sample aerial view images from Visdrone dataset 

 

The detection of small objects has garnered considerable 

attention, considering the ever-expanding range of UAV 

applications. These small objects are inherently unstructured, 

making their detection a persistent challenge in aerial images. 

Given the fixed receptive fields of convolutional kernels, they 

adversely affect the detection of dense and small targets in 

aerial images. 

Significant efforts have been made to enhance the accuracy 

and performance of object detection. An approach to this 

problem involves using a density generation network to create 

density maps, which are then cropped to match the density 

maps. A convolutional neural network system that integrates 

SpotNet with SNIPER (Scale normalization in image 

pyramids) has been proposed to enhance the detection of small 

objects [11]. Energy consumption is another important 

consideration for networks, with solutions like ABCSA [12] 

applying clustering techniques to effectively manage energy 

consumption using a cluster-based head selection technique in 

the health domain. 

Attention mechanisms, such as SENet [13], RAN [14], 

CBAM [15], and others, have emerged to enhance detection 

performance by exploiting position information and reducing 

the channel dimensions of input tensors with large-sized 

convolutional kernels. However, these attention mechanisms 

are typically integrated into deep convolutional networks, 

which, despite their significant contribution to strengthening 

contextual information, fail to capture long-range 

dependencies. These dependencies are crucial for detecting 

dense objects in aerial photography. 

To improve semantic discriminability and eliminate 

category confusion in large and complex scenes captured by 

drones, the collection and association of scene information 

from huge neighborhoods may be beneficial for discovering 

object associations. In contrast, convolutional networks cannot 

capture contextual global information due to the locality of 

their convolution operation. As opposed to transformers, 

which can maintain sufficient spatial information to detect 

objects through multi-head self-attention, while focusing 

globally on dependencies between image feature patches. 

Furthermore, the object detector must be capable of adjusting 

to changing viewpoints in aerial images as well as possess 

dynamic receptive fields. Many advanced convolutional 

networks have been proposed for detecting these targets and 

have achieved remarkable results but due to the receptive 

fields generated by convolutional networks, they do not have 

a positive impact on small and dense targets detection 

especially for aerial view or drone images. As a result, there 

may be some uncertainty regarding detection accuracy. 

Studies have demonstrated that vision transformers [16] have 

resilience to extreme occlusions, domain shifts, ETC when 

compared to convolutional neural networks (CNNs). One of 

the most impressive structures of transformer-based models is 

the Swin Transformer [17]. Pyramid Vision Transformers 

(PvTs) [18] are pure transformer backbones that can function 

as an alternative to CNN backbones for a wide variety of 

downstream tasks including dense predictions at pixel-level as 

well as image-level predictions. Though PvT achieved 

significant performance results, due to its single pooling 

operation it seems to be less powerful for learning dominant 

contextual representations from input images. Recent studies 

have demonstrated that transformer-based approaches are 

effective at detecting objects. In natural image datasets such as 

ImageNet [19] and MSCOCO [20], these methods have 

performed exceptionally well. In addition, transformer-based 

models have been used for the detection of targets in remotely 

sensed images and aerial images. The gathering and 

association of scene data from vast neighborhoods is a 

prominent feature of transformers helping in discovering 

object associations, which in turn acquires more contextual 

information and learn noticeable feature representations from 

the complex scenes taken by drones. These formidable 

features of transformers have paved new pathways to research 

replacing convolutions that fail in detecting long range 

dependencies. In challenging conditions, however, 

transformer-driven object detection methods are still 

insufficiently accurate in learning distinguishable features. To 

tackle these problems and improve the detection accuracy of 

transformers, we introduce the split attention module into the 

proposed PvT transformer network that can learn noticeable 

feature representations and acquire more contextual 

information through cardinal grouping helping in detecting the 

small and dense objects category in aerial view images. As the 

computation of the dataset will perform poorly if the 

localization and classification functions are not connected. An 

IoU balanced classification loss function is used to improve it, 

and to adaptively change the weights of the samples using loss 

functions, IoU balanced localization loss function is adapted 

thus improving the small and dense object categories 

competently. 

Contributions of this work include the following: 

 

● Proposing an anchor-free transformer based network 

that uses Pyramid vision transformer (PvT) as its 

backbone for efficient feature extraction. 

● Incorporating a split attention module into the 

transformer network enabling the network to learn 

distinguishable features effectively and enhance 

contextual information through cardinal grouping. 

● PvSAMNet anchor-free detection head with three 

branches classification, centerness and regression. 

● Introducing IoU balanced loss functions for improving 

accuracy in classification and localization of detecting 

targets.
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2. RELATED WORKS 

 

2.1 Object detection 

 

With the advent of deep learning, the performance of object 

detection has improved substantially. Existing object detectors 

are generally classified based on generating region of interest 

proposals. Two-stage detectors mainly rely on generating 

region proposals. R-CNN [2], Fast R-CNN [3], Mask R-CNN 

[4] fall under the examples of two-stage detectors. Though 

these detectors show significant accuracy improvements in 

detection they are slow at detecting the targets. Conversely, 

detectors with one stage require only a single pass down a 

neural network for predicting bounding boxes simultaneously. 

Examples falling under one-stage category are YOLO [5] 

series, SSD [7], RetinaNet [6] to mention a few. These 

detectors show significant performance in terms of speed but 

achieve less accuracy compared to two-stage models. In recent 

years, anchor-free detectors have been introduced which have 

been advancement to one-stage detectors category. Unlike 

anchor-based models which produce a number of preset 

anchors and require huge number of hyper parameters for fine-

tuning, the anchor-free models are free from anchor generation 

and post processing step NMS(Non-maximum-suppression). 

CornerNet [21], CenterNet [22], FCOS [23], are few examples 

that come under the anchor-free category of one-stage 

detection that have received extensive attention as the need for 

setting pre-defined anchors and post-processing is eliminated 

which are crucial steps in other existing detectors. From 

conventional object detection models, the advancements in 

methodologies gave rise to these deep learning model 

algorithms using CNNs capable of extracting spatial 

information from images related to depth and edges by 

accomplishing them as matrices by applying several pooling 

and convolutional layers in the deep networks. 

 

2.2 Transformers in vision  

 

In recent years, the Transformer model that purely relies on 

attention mechanisms has developed as the standard solution 

for many natural language processing (NLP) problems, 

demonstrating remarkable accomplishments in the fields of 

text classification, machine translation, query answering, etc. 

The Transformer achieves this success as it uses self-attention 

that enables the acquisition of intricate interdependencies 

between input successions. There has been recent research into 

the application of transformers to computer vision, and 

numerous studies have demonstrated impressive performance 

when compared to convolutional neural network-based 

architectures. 

Vision transformer (ViT) [16] is the first of its kind in 

Transformer models that can be employed as a reliable 

backbone for numerous computer vision related tasks. Input 

image is initially broken into numerous well-separated 

sections to adapt it for visual tasks and entrenched via linear 

layer. By using the Transformer, features suitable for 

downstream tasks are generated based on the dependency 

between patches. Although ViT has made significant progress, 

it is limited by its inability to integrate multiscale features and 

high computational overhead on processing high-resolution 

images. Utilizing the advantages of the CNN backbone, some 

works apply hierarchical transformer network structures that 

may effectively exploit multiscale characteristics to reduce 

computing complexity while continually reducing the amount 

of patches for every layer. Another transformer model, PvT or 

Pyramid vision transformer [18] comes with a pyramid 

structure proposing a spatial-reduction attention (SRA) 

mechanism making the architecture capable of learning 

features over a wide range of scales and resolutions. DETR 

(Detection Transformer) [24] model stands as the first 

approach that successfully uses transformers in order to detect 

objects. It uses set-matching loss functions and encoder-

decoder modules layered on top of typical CNN models such 

as ResNet [25]. By limiting the calculation of self-attention to 

uncorrelated local windows, Swin Transformer [17] comes up 

with a hierarchical transformer structure that optimizes 

efficiency. To reduce computational cost and improve 

modeling capabilities, CSWin Transformer [26] cultivates a 

cruciate window with self-attention method that it computes 

simultaneously in straight and upright bands. CrossFormer [27] 

is a vision transformer that incorporates multi-scale 

embedding and distance-based attentions among layers that 

help building attentions among objects with varying scales. 

Initial traditional detection models have been replaced with 

numerous advancements and improvements that introduced 

the deep learning architectures capable of improving detection 

accuracy. The widely used categories of deep learning object 

detection models using convolutionals including two stage, 

one stage under and anchor-free models have shown 

momentous improvements in the object detection field. 

Attention mechanisms and transformers models are other 

noteworthy models giving progressive results in the detection 

of objects. 

 

 

3. METHODOLOGY 

 

3.1 Transformers in object detection 

  

There are typically three components in mainstream 

detectors: 1) a backbone that has strong capability in extracting 

relevant features that can help in detecting objects in images, 

large datasets can also be pre-trained on well-known image 

databases like ImageNet using the backbone and fine-tuned to 

many specific tasks, common examples of backbones include 

VGG, AlexNet, ResNet, ResNext when processing on GPU 

(Graphical processing unit) platform and squeezeNet, 

MobileNet, ShuffleNet when processing on a CPU(central 

processing unit) platform; 2) a neck that embeds few layers 

between the backbone and the head to exploit the features 

obtained from the backbone of the first step and strengthen the 

information by fusing and refining useful features that can be 

essential for the final detection step, some typical examples of 

networks used as a part of the neck layer include feature 

pyramid network (FPN), path aggregation network (PAN), Bi-

directional feature pyramid network (Bi-FPN); 3) the final step 

of object detection task is performed by the detection head of 

the network that classifies and localizes the predictions based 

on the refined features from the previous step. Many recent 

works have been using attention mechanisms and transformer 

based models that rely purely on attentions and achieved 

remarkable results in detection based tasks. Transformers are 

redesigned encoder-decoder models that were introduced with 

attention mechanisms to boost machine translation 

performance. The most pertinent vectors are given the highest 

weighting by the attention mechanism in order to efficiently 

decode the entire encoded input pattern. This mechanism aims 

to maximize the utility of the decoder by utilizing the sequence 
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input parts most relevant to the problem as flexible as possible. 

In order to reason more effectively, transformers rely on a 

mechanism called attention, which allows them to select and 

focus on specific parts of their input. They take the lead of 

shape bias and also use an encoding-decoding architecture to 

focus on key parts of the image. Comparatively to superfluous 

networks like long short-term memory (LSTM), transformers 

can reproduce long-term colonies between sequence elements 

and enable parallel processing of sequences. A transformer is 

naturally suited for use as a set-function, unlike CNNs that 

require substantial inductive bias. Transformers provide 

excellent scalability to networks with large capacity and large 

datasets, thanks to their simple design. This allows them to 

process data inputs such as images, videos, text, and speech. 

Transformers incorporate extensive pre-training, mutual 

feature encoding and self-attention into the networks. The use 

of attention-based transformer modules is a feasible alternative 

to convolution operations. This work proposes a network that 

incorporates split attention module into transformer network 

to generate cardinal groups that can retain essential contextual 

information for detecting small and serried objects taken from 

aerial point of view from drones. 

The schematic diagram of the proposed architecture is 

shown in Figure 2. The proposed detector is primarily made of 

three modules which are: 1) Pyramid vision transformer (PvT) 

as the backbone of the network due to its ability to make fine-

grained patches from input images; 2) Split attention module 

ResNeSt [28] that produces cardinal groups for feature maps; 

3) Detection head of PvSAMNet that is responsible for 

classification and localization in the final step. 

 

3.2 PvT backbone 

 

Pyramid vision transformer (PvT) [18] is the first 

convolutional free network that can be used as an alternate to 

convolutional backbone structures and is helpful for many 

down-stream tasks which include image-level and pixel-level 

dense predictions. PvT overcomes the limitations of 

conventional transformers. It can generate fine-grained 

patches from input images that are crucial to learn 

representations in high-resolution images for dense prediction. 

It introduces progressive shrinking pyramid structure that 

minimizes the sequence length as the transformer network 

deepens thereby reducing computational cost involved. It 

incorporates a spatial reduction attention (SRA) module that 

reduces resource consumption while learning representations 

in high-resolution images. Another important merit of PvT is 

that they generate global receptive fields that are more suitable 

for detection when compared to CNN that can produce local 

receptive field that increases with the depth of the network. 

The pyramid structure of PvT makes it more suitable to be 

embedded into many dense prediction models such as Mask 

R-CNN, RetinaNet, etc. Dense prediction tasks at pixel-level 

are well handled by PvT by combining with other task specific 

decoders for the detection step. The need for dense anchors 

and NMS (non-maximum suppression) post processing step is 

eliminated thereby increasing speed in detection. As a result 

of these astounding benefits, we have chosen PvT as the 

backbone of our proposed model. The features extracted are 

fed as input to the neck where a spatial attention module with 

ResNest block is used for cardinality grouping of the feature 

maps generated. The architecture diagram of PvT is shown in 

Figure 3. 

 

3.3 Split attention network module using ResNeSt block  

 

Figure 4 shows the split attention network architecture. The 

split-attention block consists of a computational unit that 

combines feature map grouping and splitting attention 

operations. As in the ResNext [29] networks, the features can 

be grouped into several blocks and numbering is assigned by 

a hyper-parameter with cardinality K to the feature map group 

blocks. The resulting grouped blocks are named as cardinal 

groups. A hyper-parameter denoted by R indicates number of 

splits identified in cardinal groups and is given by Eq. (1): 

 

𝐺 = 𝐾 ∗ 𝑅 (1) 
 

with the overall feature groups. 

 

 
 

Figure 2. Proposed architecture of PvSAMNet 
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Figure 3. Pyramid vision transformer (PvT) architecture 

 

 
 

Figure 4. Split attention module 

 

A sequence of amendments {F1, F2, F3, ….., FG} is applied 

on each group and the intermediate representation per group is 

given as Eq. (2): 

 

ui = fi(x) (2) 

 

where, i ∈ {1,2,3,…G}. The modules using split attention are 

assigned for fusing feature maps among split groups. By 

combining multiple splits through an element-wise summation, 

each cardinal group can be represented in a combined manner. 

Additionally, each cardinal group representation is acquired 

by fusion of various splits on the totality of all components. 

Kth cardinal group is represented by Eq. (3) as follows: 

 

kÛ  =  ∑𝑅𝑘
𝑗=𝑅(𝑘−1)+1 𝑈𝑗 (3) 

 

where, �̂�𝑘 ∈  𝑅𝐻𝑥𝑊𝑥𝐶/𝐾 for 𝑘 ∈ 1,2,3, … . 𝑘. 

The dimensions of the output feature maps are measured by 

H, W, and C. The overall average pooling of spatial 

dimensions allows the collection of contextual information 

along with embedded channel-wise stats on a global scale 

given as Eq. (4): 

 

Sk∈ 𝑅c/k (4) 

 

The component at cth location is calculated using Eq. (5) as 

shown below. 

 

𝑆𝑐
𝑘 =

1

𝐻𝑋𝑊
 ∑

𝐻

𝑖=1

∑ ),(ˆ jiU k

c

𝑊

𝑗=1

 (5) 

 

Cardinal representation of groups after fusion of weights 

represented by Eq. (6)  

 

V k ∈ 𝑅𝐻𝑥𝑊𝑥𝐶/𝐾 (6) 

 

Eq. (6) is combined with a weighted fusion that can be 

1665



 

added stream-wise using soft attention for each stream, where 

a feature map is produced by combining weights across splits. 

The Cth channel calculation is done using Eq. (7): 

 

𝑉𝑐
𝑘 =  ∑𝑅

𝑖=1 𝑎𝑖
𝑘(𝑐) ∗ 𝑢𝑅(𝑘−1)+𝑖 (7) 

 

in which, 𝑎𝑖
𝑘(c) represents a weighted position as shown in Eqs. 

(8) and (9): 

 

𝑎𝑖
𝑘 (𝑐)  =  

𝑒𝑥𝑝(𝐺𝑖
𝑐(𝑠𝑘))

∑𝑅
𝑗=1 𝑒𝑥𝑝(𝐺𝑗

𝑐 (𝑠𝑘))
 for R>1, and (8) 

 

=
1

1+𝑒𝑥𝑝(−𝐺𝑖
𝑐(𝑠𝑘))

 for R=1 (9) 

 

According to the global context representation of sk, 𝐺𝑖
𝑐 

determines the weight for each split depending on the global 

context representations of the c-th channel. 

 

3.3.1 ResNeSt unit 

Representations of the feature map groups are inserted 

together with the channel proportions, and is given in Eq. (10) 

as follows: 

 

𝑣 = 𝑐𝑜𝑛𝑐𝑎𝑡 { 𝑣1, 𝑣2, … . 𝑣𝑘} (10) 

 

By using shortcut connection, the split-attention block 

yields the final output given by y as in other residual nets and 

is represented by Eq. (11): 

 

𝑦 = 𝑣 + 𝑥 (11) 

 

with similar shapes shared both by input and output feature 

maps. Suitable shortcut connections are transformed so that 

they line up with output shapes using transformation T for 

blocks with a stride. It is represented by Eq. (12): 

 

𝑦 = 𝑣 + 𝑇 ∗ 𝑥 (12) 

 

In this case, T possibly is the result of combining 

convolution with pooling, striding convolution. 

The split attention module with the ResNeSt unit and 

cardinal grouping of feature maps generates more robust 

features under complex scenes. 

 

3.4 PvSAMNet detection head 

 

The PvSAMNet detection head detects and generates results 

taking the dominant positive features produced by split 

attention module. Most widely used detectors use anchor-

based methods for detecting objects which require generating 

many preset anchors based on the feature maps. These anchor 

based methods lack in generalization and are confined to 

specific tasks. The anchor-free methods on the other hand are 

simple in design requiring a smaller number of parameters for 

fine-tuning. We consider an anchor-free approach for our 

detection head unit which is composed of three branches for 

final step detection, a classification branch, a regression 

branch and a centerness branch parallel to regression. The 

classification branch produces heatmap at the center, given by 

Eq. (13): 

 

ŷ ∈ [0, 1]𝐶𝑥𝐻𝑥𝑊  (13) 

 

where, C represents number of categories corresponding to Eq. 

(14): 

 

y∈[0, 1]CxHxW (14) 

 

Parameters H and W representing the height and width 

respectively. Dynamic adjustment of positive samples is 

performed by the centerness branch to represent object regions. 

The centerness branch abolishes the low confidence bounding 

boxes that helps eliminate conflicts in classifying and 

localizing the targets in the final step.  Using regression branch, 

a tensor with dimension 4xHxW is produced representing each 

location with a bounding box associated with a particular 

object. Further we adopt IoU balanced classification and 

localization loss functions [30] to reduce conflicts between 

classification and localization and improve the association 

among them for an optimal detection. 

 

3.5 IoU balanced loss functions 

 

3.5.1 IoU-balanced classification 

The performance of object detection models is heavily 

reliant on loss functions. The development of object detection 

techniques has led to the proposal of numerous distinct types 

of loss functions. Cross-entropy loss, SSD and RetinaNet is 

widely used as the classification loss in most prominent object 

detectors. Regardless of the localization accuracy, it will 

motivate the models to learn as many positive samples with 

high categorization rates as they can. The gradient dominates 

the training process of the localization branch for the 

localization loss, which affects the accuracy of localization. 

Therefore, IoU-balanced classification and localization is 

performed in the proposed method. Both of these losses have 

the potential to improve the object detection accuracy for 

precise localization. 

The lack of connection among localization and 

classification function will negatively impact the performance 

while computing the dataset. This leads to a loss-balanced 

classification model that improves the correlation between 

classification and localization as in Eq. (15) below:  

 

𝐶𝑙𝑎𝑠𝑠 = ∑

𝑁

𝑖∈𝑝𝑜

𝜔𝑖(𝑖𝑜𝑢𝑖) ∗ 𝐶𝐸(𝑝𝑖 , �̂�𝑖)

+ ∑

𝑀

𝑖𝜖𝑁𝑒

𝐶𝐸(𝑝𝑖 , �̂�𝑖) 

(15) 

 

where, 𝑝𝑜 and 𝑁𝑒 is denotes the sets of+ive and-ive training 

samples, respectively. 𝑖𝑜𝑢𝑖  indicates the regressed IoU for 

each regressed+ive sample. The IoU among the regressed 

bounding boxes and its matching ground truth boxes is 

positively connected with the weights 𝜔𝑖(𝑖𝑜𝑢𝑖). The higher 

IoU will provide greater gradients during training, making it 

easier for the model to gain higher classification scores for the 

dataset. 

 

3.5.2 IoU-balanced localization loss 

Using the loss functions adaptively alters the weight of 

positive samples based on their localization accuracy. The 

localization accuracy of detectors will suffer gradients driven 

by outliers dominating the training progression. In this way, 

examples with a high IoU are given more weight, and 

examples with low IoU are given less weight and is 
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represented by Eqs. (16) and (17): 

 

𝐿𝑜𝑐 = ∑

𝑁

𝑖∈𝑃𝑜𝑠

∑

𝑚∈𝑙𝑥,𝑙𝑦,𝜔,ℎ

𝜔𝑖(𝑖𝑜𝑢𝑖) ∗ 𝐿1(𝑣𝑖
𝑚

− �̂�𝑖
𝑚) 

(16) 

  

𝜔𝑖(𝑖𝑜𝑢𝑖) = 𝜔𝑙𝑜𝑐 ∗ 𝑖𝑜𝑢𝑖
𝜆 (17) 

 

With parameters 𝑙𝑥, 𝑙𝑦, 𝜔, ℎ representing the predicted box 

parameterized coordinates and �̂�𝑖
𝑚 parameter representing the 

coordinates of the ground truth box respectively. Parameter 𝜆 

controls how much localization loss concentrates on inliers 

while suppressing outliers. For the first iteration of the training 

method, the localization loss weight 𝑤𝑙𝑜𝑐  is manually 

modified to maintain the total of localization loss constant 

relative to the original smooth L1 loss. 

 

 

4. RESULT AND DISCUSSION 

 

Aerial view dataset VisDrone-DET 2021 is used to assess 

the proposed framework used for object detection [31]. Using 

Python programming with i5 processor and 4GB-RAM system, 

testing of the proposed method’s efficacy has been done 

through experiments using anchor-free transformer-based 

object detection model, PvSAMNet. The proposed object 

detector’s performance is compared to the performance of a 

variety of existing detectors in order to assess its effectiveness. 

 

4.1 VisDrone-DET 

 

Among the datasets used under aerial images, VisDrone-

DET is one of the most widely used datasets. There are 6471 

images in the Visdrone-DET dataset, 548 images in the 

validation package, and 1580 images in the test-challenge 

package, respectively. A total of 10 categories of objects are 

assigned to all the data. The Visdrone-DET dataset presents an 

extensive challenge in the object detection task. There are ten 

classes of data included in the VisDrone-DET dataset, 

including persons, pedestrians, cars, bicycles, vans, tricycles, 

trucks, awning-tricycles, motors, buses, and others. Figure 5 

shows the category distribution of visdrone-DET dataset. 

Degrees of occlusion among different categories on training, 

validation, test-challenge, test-dev in visdrone dataset is 

shown in Figure 6 and category-wise degrees of occlusion in 

training, validation, test-challenge and test-dev on visdrone 

dataset is shown in Figure 7. 

 

4.2 Performance evaluation of VisDrone-DET dataset 

 

The effectiveness of proposed object detection approach 

with VisDrone-DET dataset is shown in Table 1. The proposed 

object detector obtains detection accuracy of 38.74 average 

precision value. Accordingly, the accuracy on the overall 

dataset is improved. The VisDrone-DET dataset performance 

is characterized by the measurement of Average Precision (AP) 

and Average Recall (AR) and Mean Average Precision (mAP) 

metrics. AP, AP50, AP75, AR1, AR10, AR100, and AR500 

indicators are used for assessment and ranking using the 

assessment of MS COCO dataset. The analysis focuses on the 

AP indicator, which is calculated by averaging the total step 

size of 0.05 for all the 10 object categories to the intersection 

over union (loU) threshold at values between 0.50 and 0.95. 

When the threshold for the IoU is 0.50 and 0.75, the accuracy 

is represented as AP50 and AP75 respectively. Furthermore, 

the sum of 1,10,100 is calculated based on the average recall. 

The proposed detector model reports AP of 38.74, AP50 of 

62.98, AP75 of 40.48 values. The overall average precision is 

enhanced eliminating false bounding boxes. The average 

recall values obtained are AR of 1.01, AR10 of 6.02, AR100 

of 43.03, AR500 of 45.14. The AP and AR values are shown 

in Table 1 below and the values are plotted in graph as shown 

in Figure 8. 

 

Table 1. Object detection results on Visdrone-DET dataset 

 

Method 
AP 

(%) 

AP50 

(%) 

AP75 

(%) 

AR1 

(%) 

AR10 

(%) 

AR100 

(%) 

AR500 

(%) 

CascadeR-

CNN 
16.08 31.92 14.98 0.27 2.76 20.98 28.41 

Droneeye2020 34.56 58.24 35.79 0.26 1.91 7.01 52.35 

DPNet-

Ensemble 
37.37 62.04 38.98 0.84 7.95 41.97 53.75 

EfficientDet 38.51 63.24 39.56 1.81 10.99 44.01 55.13 

DNEFS 38.52 62.86 39.98 1.41 9.62 43.02 55.02 

Cascade++ 38.71 62.94 41.07 1.08 7.01 42.97 43.32 

Proposed 38.74 62.98 40.48 1.01 6.02 43.03 45.14 

 

 
 

Figure 5. Category distribution in Visdrone-DET dataset 

 

 
 

Figure 6. Analysis of category-wise statistics on Visdrone-

DET training set 
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Figure 7. Occlusion categories among different classes in (a) training, (b) validation, (c) test-challenge, (d) test-dev of Visdrone-

DET dataset 

 

 
 

Figure 8. Average precision (AP) and average recall (AR) metrics for various detectors versus proposed 
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Table 2. The results of each class on Visdrone-DET 

 
Method Pedestrian (%) Person (%) Bicycle (%) Car (%) Van (%) Truck (%) Tricycle (%) Awn (%) Bus (%) Motor (%) 

CornerNet 20.43 6.55 4.56 40.94 20.23 20.54 14.03 9.25 24.39 12.10 

Light-RCNN 17.02 4.83 5.73 32.39 22.12 18.39 16.63 11.91 29.02 11.93 

FPN 15.69 5.02 4.93 38.47 20.82 18.82 15.03 10.84 26.72 12.83 

Cascade 16.28 6.16 4.18 37.29 20.38 17.11 14.48 12.37 24.31 14.85 

RRNet 27.34 20.13 21.45 32.56 29.35 25.74 20.46 18.58 35.71 26.17 

Cascade++ 36.41 34.56 29.61 45.31 39.18 35.32 31.53 25.38 46.67 36.56 

Proposed 36.79 35.31 29.15 45.37 38.98 34.97 31.25 24.98 46.69 37.13 

 

  
(a) (b) 

  
(c) (d) 

 
(e) 

 

Figure 9. Object detection on VisDrone-DET dataset for five 

images (a, b, c, d, e) 

 

Table 3. Comparison analysis of VisDrone-DET dataset 

 
Methods MAP (%) AP50 (%) 

RetinaNet 11.81 21.37 

Cascade R-CNN 16.08 31.93 

FPN 16.48 32.23 

Light R-CNN 16.51 33.01 

CornerNet 17.42 34.21 

RRNet 29.23 56.01 

DPNet Ensemble 29.61 53.98 

DPNetv3 37.37 62.04 

Cascade++ 38.71 62.94 

Proposed 38.74 62.98 

 

Figure 9 shows qualitative object detection on the 

VisDrone-DET dataset for five images (a, b, c, d, e) 

respectively. The proposed method is compared with 

CornerNet, Light-RCNN [32], FPN [33] and Cascade R-CNN 

[34], EfficientDet [35], Cascade++ [36]. Table 2 shows results 

of each class in the dataset comparing with other detector 

models results. Category-wise average precision of existing 

detectors and the proposed is plotted as shown in Figure 10. 

The overall AP of all classes is significantly improved using 

the anchor-free transformer detector helping to detect small 

and dense objects more efficiently. The proposed network 

obtains class-wise average precision values of pedestrian 

(36.79%), person (35.31%), bicycle (29.15), car (45.37), van 

(38.98%), truck (34.97%), tricycle (31.25%), awning-tricycle 

(24.98%), bus (46.69%), and motor (37.13%). 

Table 3 shows the VisDrone-DET comparison evaluation of 

mean average precision (MAP) and average precision (AP) 

metrics obtained. The proposed model is compared with other 

detectors FPN, CornerNet, DPNetv3 [36], Cascade++ on MAP 

and AP metrics. The graphical representation of these values 

is shown in Figure 11. The method proposed achieves mean 

average precision of 38.74 and shows a significant 

improvement in comparison to other state-of-the-art works 

such as DPNetv3 and Cascade++ which could achieve 37.37 

and 38.71 respectively. As the UAV images pose challenges 

with occlusion, scale variance and other factors, several works 

and methods have still achieved a percentage below 40 for the 

mean precision value. This shows the exceptional challenge 

for detection in these UAV images and the current work has 

improved the precision value to 38.74, which shows 

significant improvement in spite of the value still being below 

40. This is due to the various factors that impact the detection 

in drone images unlike other natural scene images datasets 

where the mean precision values can go up to 70 with different 

methodologies. Comparison thus shows vast differentiation in 

natural scenes images and the aerial view or drone images. The 

proposed method obtains a MAP of 38.74 showing significant 

improvement. Though the obtained value is better than the 

other detectors, because of the various challenging 

characteristics posed by drone images, the MAP value is still 

below 40 and needs to be further improved. 

Figure 12 shows an illustration of the training versus 

validation accuracy graph. The suggested network has stable 

and quick convergent training processes, according to 

observations. The training and validation datasets are used to 

compare accuracy. The accuracy analysis shows that the 

suggested network generates better outcomes and fosters a 

more stable training procedure. The training and validation 

loss graph is shown in Figure 13. The initial loss value in the 

suggested strategy is minimal and effectively lowers as the 

number of epochs rises. The loss value is remarkably little 

after 100 training epochs have been completed on the data. As 

a result, there is a higher accuracy rate and less loss for the 

proposed model. 
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Figure 10. Category-wise average precision of various 

detectors to the proposed 

 

 
 

Figure 11. Comparison of mean average precision values of 

various detectors to the proposed 

 

 
 

Figure 12. Training and validation accuracy curve 

 

 
 

Figure 13. Training and validation loss curve 

5. CONCLUSION 

 

Detecting objects in drone images or UAV images is 

challenging due to their annihilating characteristics such as 

scale variances, occlusion, small and dense objects. Detectors 

with convolutional units as backbones have limited receptive 

fields and require more hyper parameter tuning. To solve these 

limitations an anchor-free transformer based network is 

proposed to detect the objects in aerial images. Pyramid vision 

transformer is used as backbone to extract features and a split 

attention module using ResNeSt block for cardinal grouping is 

embedded into the transformer network to learn 

distinguishable feature representations and acquire adequate 

contextual information from the preprocessing step producing 

the most dominant features from the backbone. The acquired 

features are fed to an anchor-free detection head with three 

branches classification, centerness and regression. To improve 

the accuracy and connectivity between classification and 

localization, two IoU balanced loss functions are used for 

prediction. This work introduces a transformer network 

PvSAMNet helping to increase the detection accuracy by 

38.74 MAP where the other state of the art deep learning 

model Cascade++ produces 38.71 MAP. The proposed 

transformer model fares better in improving the MAP (mean 

average precision) value compared to the other state of the art 

detectors that resulted in MAP values less than 37. The 

obtained MAP is still below 40 representing that detection in 

aerial view images remains a ceaseless challenge in the 

detection field. Using other attention modules in the 

transformer networks can enhance the results capable of 

connecting even the long range dependencies to a far extent. 

Even though small and dense objects are detected with better 

accuracy, transformers are yet to be explored with other 

attention modules to handle scale variances of these special 

categories of images. Transformer based network models 

show a promising direction towards research in object 

detection. Adopting these anchor-free transformers based 

models to object detection for optimal results in videos can be 

future research. 
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