
Enhancing Positron Emission Tomography Image Reconstruction: A Bayesian Approach 

Incorporating Total Variation and Median Root Prior 

Qian He* , Ke Wang

College of Information Science and Electronic Engineering, Hunan City University, Yiyang 413000, China 

Corresponding Author Email: heqian@hncu.edu.cn

https://doi.org/10.18280/ts.400436 ABSTRACT 

Received: 26 March 2023 

Revised:10 June 2023 

Accepted: 19 June 2023 

Available online: 31 August 2023 

Positron Emission Tomography (PET) holds substantial promise in biomedical research and 

clinical diagnostics. Nonetheless, PET imaging's constraints, typified by deficient sampling 

and considerable noise interference, often result in the production of inferior quality 

reconstructed images. These shortcomings can potentially undermine the clinical utility of 

the modality. To address this issue, this study introduces a novel image reconstruction 

algorithm underpinned by Bayesian theory that incorporates the total variation model and 

the median root prior (MRP) algorithm. The iterative resolution process of the algorithm 

comprises two stages. Initially, the MRP algorithm is employed for image reconstruction. 

Subsequently, the total variation model is applied to attenuate noise within the reconstructed 

image. Simulation outcomes reveal that the proposed algorithm effectively mitigates 

Poisson noise while preserving critical image details, such as edges. When contrasted with 

traditional reconstruction algorithms, the proposed approach enhances both the precision 

and reliability of PET imaging markedly. Thus, the algorithm carries significant potential 

for clinical application and could substantially improve the quality of PET imaging. 
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1. INTRODUCTION

Positron Emission Tomography (PET), a pioneering 

imaging technology, has found extensive application in 

clinical settings alongside Magnetic Resonance Imaging (MRI) 

and Computed Tomography (CT). Utilized widely for an array 

of tasks - including tumor cell detection, heart disease 

diagnosis, neurological and mental disease diagnostics, and 

the facilitation of new drug development [1] - the influence of 

PET is substantial. Nevertheless, the efficacy of PET imaging 

is often hampered by various factors, from imaging duration 

and radioisotope distribution to statistical counting errors, 

leading to issues such as reduced resolution and noise 

pollution [2]. These challenges can profoundly affect early 

disease detection and clinical diagnostics, underscoring the 

necessity of enhancing PET imaging quality and accuracy. 

Consequently, this has become a focal point of contemporary 

research. 

A traditional PET image reconstruction algorithm, the 

maximum-likelihood expectation-maximization (MLEM) 

algorithm, takes into consideration the observed data's 

statistical and physical properties for image reconstruction [3]. 

Compared to the filtered back-projection (FBP) algorithm, the 

MLEM algorithm generates images with superior resolution 

and noise characteristics. However, a significant drawback of 

the MLEM algorithm is the potential degradation of the 

reconstructed image's quality when the projection data 

presents substantial statistical noise. The image quality may 

not improve with an increased number of iterations and could 

even deteriorate after a certain number of iterations [4]. This 

problem can be counteracted by introducing a regularization 

term into the iterative updating process of the image, limiting 

the image solution to a regularization space. In PET, this 

method is often referred to as the Bayesian image 

reconstruction algorithm [5, 6]. As a widely adopted image 

reconstruction algorithm, it manages image noise and 

uncertainty by incorporating prior information, while 

preserving image details and texture information to achieve 

more realistic and accurate image reconstruction results [7-9]. 

Research on PET image reconstruction algorithms based on 

the total variation (TV) model has shown some advancements 

[10, 11]. Several studies have enhanced and expanded the total 

variation model by adding regularization terms, integrating 

scale space theory, and utilizing optimization algorithms, 

achieving promising results on various datasets [12, 13]. 

However, to accommodate clinical needs more effectively, 

further research is required to improve image resolution, noise 

suppression ability, and the reliability and applicability of the 

algorithm. 

By integrating the total variation model into the median root 

prior (MRP) algorithm, a novel image reconstruction 

algorithm based on Bayesian theory, termed the MRP-PMTV 

algorithm, has been developed. This algorithm maintains 

image details and texture while demonstrating an effective 

noise suppression ability and image resolution. At every 

iterative step, the MRP algorithm reconstructs the image, and 

the PMTV model is used to suppress noise. The ensuing 

discussion delves into the technical intricacies and application 

advantages of the algorithm, encompassing aspects such as the 

algorithm principle, implementation process, and performance 

evaluation. The feasibility and reliability of the novel 

algorithm have been corroborated through experimental data, 

providing a foundation for further enhancement of PET 

imaging quality and accuracy. 
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2. MEDIAN ROOT PRIOR ALGORITHM 

 

In the context of PET, the Bayesian formula can be 

articulated as: 

 

( | ) ( )
( | ) ,

( )

p g f p f
p f g

p g
=  (1) 

 

where, p(g|f) represents the likelihood function, p(f) signifies 

the prior image distribution density, and p(g) denotes the prior 

projection data distribution density. By substituting the Gibbs 

energy function into the maximum a posteriori probability 

objective function, the subsequent objective function can be 

derived: 
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The aforementioned objective function can be solved using 

the EM algorithm, yielding the following image iteration 

formula: 
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Given the local correlation of the energy function U(f), a 

direct solution for the above formula proves challenging. To 

simplify the solution process, Green proposed the ordered 

subsets likelihood (OSL) algorithm, which determines the 

prior image distribution based on the current pixel’s estimated 

value [14]. The specific iteration formula is as follows: 
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In an influential development, Alenius and colleagues 

proposed the Median Root Prior (MRP) algorithm [15]. This 

algorithm substitutes the energy function U(f) in the OSL 

algorithm with a median filter. The iteration formula for the 

MRP algorithm is given by: 
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where, Med(fk, j) characterises the median value in the vicinity 

of the j pixel in the image fk. The neighborhood size is typically 

a rectangular space of 3×3 or 5×5 pixels. For the purposes of 

this discussion, it is stipulated that the neighborhood size in 

the MRP algorithm is a rectangular space of 3×3 pixels. The β 

is a Bayesian parameter that sets the weight of the prior, the 

increase in the value of β corresponds to a stronger denoising 

capability, while a decrease in the value results in a weaker 

denoising capability. 

The operational mechanism of the MRP algorithm can be 

exemplified through formula (6), a simplified representation 

of formula (5): 
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Formula (6) elucidates that each iteration of the MRP 

algorithm necessitates the calculation of both MLEM 

coefficients and Bayesian coefficients. The MLEM 

coefficients are instrumental in image reconstruction, while 

the Bayesian coefficients play a crucial role in noise 

suppression within the reconstructed image and in preserving 

fine structures such as edges. In scenarios where the 

reconstructed image contains noise (locally non-monotonous), 

the values of Med(𝑓𝑀𝑅𝑃
𝑘 , 𝑖) and 𝑓𝑀𝑅𝑃

𝑘 (𝑖) differ. In this case, the 

Bayesian coefficient deviates from 0, enabling the suppression 

of noise in the reconstructed image. Conversely, when the 

reconstructed image is devoid of noise (locally smooth), the 

values of Med(𝑓𝑀𝑅𝑃
𝑘 , 𝑖)  and 𝑓𝑀𝑅𝑃

𝑘 (𝑖) are identical. Here, the 

Bayesian coefficient equals 0, and the MRP algorithm reverts 

to the MLEM algorithm. 

The MRP algorithm, in comparison to traditional 

counterparts, exhibits advantages of rapid calculation speed 

and potent noise suppression ability. However, the algorithm's 

sensitivity to small structures within the image necessitates 

manual parameter adjustment, and it is susceptible to artifacts 

[16]. Thus, the selection of the prior model for the PET image 

reconstruction algorithm should be carried out with specific 

application scenarios and requirements in mind. 

The Median Root Prior (MRP) algorithm demonstrates 

robust noise suppression abilities and rapid calculation speed, 

making it a potent tool in PET image reconstruction. However, 

it is not without its challenges: the sensitivity to small 

structures within the image necessitates careful manual 

parameter adjustment and can lead to artifacts [16]. Despite 

these challenges, the MRP algorithm's advantages make it an 

invaluable tool in the field of PET image reconstruction. It is 

essential, however, that the prior model selection for the PET 

image reconstruction algorithm be carried out with due 

consideration for specific application scenarios and 

requirements. This will ensure that the algorithm's full 

potential is harnessed, thereby enhancing the reliability and 

accuracy of PET imaging. 

 

 

3. POISSON-MODIFIED TOTAL VARIATION MODEL 

 

In 1992, an influential nonlinear full variation image 

restoration model, known as the Total Variation (TV) model, 

was proposed by Rudin, Osher, and Fatemi during their 

exploration of image denoising issues [17]. In this model, 

images are characterised within the BV space, and the TV 

model can be articulated as an optimisation problem with noise 

constraints, represented by the following equation: 

 

2 2

2

min d d ,

1
. . d d d d , ( )d d ,

x y
u

u u x y

s t u x y f x y f u x y 



  

+

= − =




  
 (7) 

 

where, f is the noisy image, while u represents the original 

image. The symbol Ω denotes an image domain, and |Ω| 

indicates an area within an image. Given the translation 

invariance of total variation, the initial constraint in formula 
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(7) is inherently satisfied. Consequently, the TV model can be 

reduced to the subsequent unconstrained optimization problem: 
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In this formula, ∫ √𝑢𝑥
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𝑑𝑥𝑑𝑦 constitutes the regular 

term of image denoising, and ∫
𝜆

2𝛺
(𝑢 − 𝑓)2𝑑𝑥𝑑𝑦 symbolises 

the fidelity term of image denoising. The λ is a regularization 

parameter that influences the model's smoothness. A larger 

value of λ for places more weight on the fidelity term in the 

model and reduces the model's capacity to smooth and denoise. 

Conversely, a smaller value pf λ for enhances the model's 

ability to smooth and denoise. Ideally, should have a larger 

value of λ at the edge of the image and a smaller value in the 

flat area, effectively enabling noise suppression while 

preserving the edge of the image.  

To solve the TV model, the corresponding Euler-Lagrange 

equation must first be determined. For 𝑤 ∈ 𝐶0
1(𝛺) , the 

following is defined: 
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Suppose g'(0)=0, then: 
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According to the arbitrariness of w, it can be known that: 
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By introducing the time variable t, the gradient descent 

method is used to solve. Formula (11) can be transformed into: 
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In order to avoid |∇u|=0 causing singularity, the parameter 

ξ>0 is introduced, which can be obtained: 
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Suppose the size of the image u is N×N pixels, let (𝛻𝑢)𝑖,𝑗 =
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Formula (13) can be transformed into: 
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where, 
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To sum up, the discrete formula of the TV model can be 

expressed as: 
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The Total Variation (TV) model is renowned for its 

effective filtration of Gaussian noise, a feature shared with 

many other image denoising models. However, the model's 

performance is less than satisfactory in cases where the noise 

is dominated by signal-related Poisson noise, a common 

occurrence in images such as radiological ones. To address 

this limitation, TRIET LE proposed an innovative image 

denoising algorithm known as the Poisson-modified Total 

Variation (PMTV) algorithm [18]. This algorithm modifies the 

data fidelity term in the TV model to filter Poisson noise in the 

image. The PMTV algorithm can be formulated as the 

following optimisation problem: 

With the introduction of the PMTV algorithm, a novel 

approach towards the problem of Poisson noise in images, 

particularly radiological ones, is provided. This represents a 

significant stride in the field of image denoising, offering a 

solution to a previously unaddressed issue in the TV model. 

The PMTV algorithm, with its adapted data fidelity term, 

shows promise for enhanced noise reduction in images 

impacted by signal-related Poisson noise. 
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The Euler lagrange equation corresponding to the above 

formula is: 
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The distinction between the Poisson-modified Total 

Variation (PMTV) model and the Total Variation (TV) model 

lies primarily in the regularization parameter λ=1/(βu). In the 

PMTV model, the regularization parameter, is adaptive and is 

related to the signal. This parameter is instrumental in enabling 

the PMTV model to effectively suppress Poisson noise. 

The comparative performance of the PMTV and TV models 

in filtering Poisson noise is illustrated in Figure 1. From this 

figure, it is observable that the image processed through the 

PMTV model exhibits superior smoothness, decreased noise, 

and enhanced quality. This demonstrates the PMTV model's 

effectiveness in addressing the limitations of the TV model, 

specifically in relation to signal-related Poisson noise 

suppression, thereby making it a potentially potent tool in the 

field of image denoising. 

 

 
 

Figure 1. The filtering effect of PMTV and TV model on 

Poisson noise: a) Noisy images; b) Noise filtering of TV 

model; c) Noise filtering of PMTV model 

 

 

4. THE PROPOSED ALGORITHM 

 

In the process of signal acquisition and image 

reconstruction of Positron Emission Tomography (PET) 

images, significant noise, primarily Poisson noise, is generated. 

This noise can directly impact the accuracy of clinical 

diagnoses. To address this challenge, a novel PET image 

reconstruction algorithm has been proposed, which integrates 

the Penalized Maximum-a-posteriori Total Variation (PMTV) 

model into the Maximum Likelihood Expectation 

Maximization (MLEM) algorithm. Based on Bayesian theory, 

this algorithm is referred to as the MRP-PMTV algorithm. The 

specific iterative equation is presented as follows: 
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In these equations, the symbol k represents the number of 

MLEM algorithm iterations, while symbolizes the number of 

PMTV model iterations. All other parameters maintain their 

previous definitions. 

The proposed methodology, which incorporates the benefits 

of the PMTV model, can effectively suppress Poisson noise. 

Lower-level noise is diffused, and higher-level noise is 

eliminated by the MRP algorithm. In essence, the PMTV 

model and MRP algorithm work in tandem, mutually 

complementing each other to gradually eliminate noise 

without blurring the image edges. 

This proposed method represents a significant advancement 

in PET image reconstruction, as it offers an effective solution 

to the challenge of noise in the diagnostic process. Through 

the integration of the PMTV model and the MRP algorithm, 

this approach ensures that the accuracy of clinical diagnoses is 

not compromised due to noise interference. As such, the MRP-

PMTV algorithm has the potential to significantly improve the 

reliability of PET imaging in clinical practice, opening new 

avenues for patient care and disease management. 

 

 

5. SIMULATION RESULTS AND ANALYSIS 

 

In the conducted simulation experiment, the initial test 

image was generated computationally, using the Shepp-Logan 

phantom [19], which has a size of 128×128 pixels. Each pixel 

within this image falls within the gray value range of 0-255, as 

demonstrated in Figure 2. The projection parameter is assumed 

to be 128×128, with 128 projection directions uniformly 

distributed between 0∼π, and 128 detector pairs aligned in 

each projection direction. Noise-free observations were 

generated using formula g=Hf, which in turn were used as the 

mean of the Poisson variables for the creation of actual noisy 

projection data. Throughout the simulation experiment, the 

total number of photon pairs collected approximated 6×105. 

 

 
 

Figure 2. Shepp-Logan phantom 

 

The effectiveness of the novel MRP-PMTV algorithm was 

compared and analyzed against that of traditional MLEM-

PMTV, MRP, and MLEM algorithms in the simulation 

experiment, with the aim of showcasing the superior 

performance of the new method. To ensure fairness, the 

iteration number for each algorithm was set to 50, and l was 

set to 15, following the parameter setting method from the 

literature [18]. The step size in the MRP-PMTV algorithm Δt 

was set to 0.1, the regularization parameter was set to 0.3, and 

the parameter β was set to 0.5. In the MLEM-PMTV algorithm, 

was set to 0.8, and the regularization parameter was set to 0.3. 

Within the MRP algorithm, was set to 0.5. Figure 3 presents 

the reconstructed image of the Shepp-Logan phantom as 

produced by the four algorithms, while Figure 4 provides a 

magnified view of a portion of Figure 3. 

This simulation experiment serves to demonstrate the 

efficacy of the proposed MRP-PMTV algorithm in 

comparison to established methods. The image reconstruction 

results clearly illustrate the performance of each algorithm, 

highlighting the advantages of the new method. The carefully 

controlled parameters and settings ensure a fair and accurate 

comparison, effectively showcasing the potential of the MRP-

PMTV algorithm in real-world applications. 
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Figure 3. The Shepp-Logan phantom reconstructed by four 

algorithms: a) MRP-PMTV; b) MLEM-PMTV c) MRP; d) 

MLEM 

 

As per the visual evidence provided by Figures 3 and 4, the 

reconstructed image quality yielded by the MLEM algorithm 

was found to be inferior. The image was not only characterized 

by considerable noise and blurred edges, but a substantial loss 

of crucial information was also observed. Although the 

MLEM-PMTV and MRP algorithms produced better 

reconstructed images compared to the MLEM algorithm, the 

presence of noticeable noise and artifacts remained. Contrarily, 

the proposed MRP-PMTV algorithm demonstrated superior 

performance, with the reconstructed image exhibiting less 

noise and sharper edges. From a subjective visual perspective, 

the MRP-PMTV algorithm's overall effect was deemed 

superior. 

The Normalized Root Mean Square Error (NRMSE) and 

Signal-to-Noise Ratio (SNR) values of the images were 

calculated to provide a quantitative measure of the algorithm's 

effectiveness [20]. Figure 5 illustrates the plot of NRMSE 

values over the course of iterations for the Shepp-Logan 

phantoms reconstructed by the four algorithms. As discerned 

from Figure 5, the lowest NRMSE value was attributed to the 

novel MRP-PMTV algorithm, indicating its reconstructed 

image was closest to the original image. Therefore, it can be 

deduced that the MRP-PMTV algorithm delivered the best 

reconstruction. Similarly, the SNR graph presented in Figure 

6 corroborated these findings. 

To further substantiate the effectiveness of the proposed 

MRP-PMTV algorithm, a thorax phantom was selected as the 

test model. The thorax phantom model was of a size pixels, 

with the gray value range for each pixel set between 0-255, as 

depicted in Figure 7. The projection data was obtained through 

a method analogous to the previous one, and the total number 

of photon pairs collected approximated 5.2×105. 

The selection of the thorax phantom provided an additional 

complex test scenario, aiming to further validate the MRP-

PMTV algorithm's effectiveness across different imaging 

challenges. This step of the simulation experiment added 

robustness to the overall study, ensuring that the proposed 

algorithm performs consistently across various test models. 

 

 
 

Figure 4. Partial enlarged image of Figure 3: a) MRP-

PMTV; b) MLEM-PMTV c) MRP; d) MLEM 

 

 
 

Figure 5. The plots of NRMSE along with iterations for Shepp-Logan phantoms reconstructed by four algorithms 
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Figure 6. The plots of SNR along with iterations for Shepp-Logan phantoms reconstructed by four algorithms 

 

 
 

Figure 7. Thorax phantom 

 

 
 

Figure 8. The thorax phantom reconstructed by four 

algorithms: a) MRP-PMTV; b) MLEM-PMTV c) MRP; d) 

MLEM 

 

A comparison was drawn between the proposed MRP-

PMTV algorithm and three other algorithms: MLEM-PMTV, 

MRP, and MLEM. In the simulation experiment, the iteration 

number was uniformly set to 50 across all algorithms, and l 

was set to 15. For the MRP-PMTV algorithm, the step size Δt 

was established at 0.1, the regularization parameter was 

defined as 0.3, and the parameter β was designated at 0.5. In 

the MLEM-PMTV algorithm, Δt was set to 0.7 and the 

regularization parameter is set to 0.3, while in the MRP 

algorithm, β was set to 0.5. The reconstructed images 

produced by these four algorithms are displayed in Figure 8, 

with Figure 9 providing a magnified view of a selected region 

from Figure 8. 

Despite the presence of discernible noise in the 

reconstructed image yielded by the new algorithm, its quality 

was noticeably superior when juxtaposed with the other three 

algorithms. The new algorithm's image exhibited the least 

noise, the most defined edges, and provided the most 

satisfactory overall visual effect. 

 

 
 

Figure 9. Partial enlarged image of Figure 8: a) MRP-

PMTV; b) MLEM-PMTV c) MRP; d) MLEM 

 

Figures 10 and 11 present the plots of the NRMSE and SNR 

values, respectively, over the course of iterations for the thorax 

phantoms reconstructed by the four algorithms. These figures 

further corroborate the superior performance of the new 

algorithm over the MLEM-TV, MRP, and MLEM algorithms. 

The comprehensive analysis of the reconstructed thorax 

phantom images, along with the accompanying NRMSE and 
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SNR values, provides a compelling case for the superior 

performance of the proposed MRP-PMTV algorithm. This 

section serves to reinforce the effectiveness of the new 

algorithm under diverse imaging conditions, further validating 

its potential for real-world applications. It is worth noting that, 

despite the presence of noise in the images produced by the 

new algorithm, the overall image quality significantly 

surpasses those generated by the other algorithms. This 

highlights the robustness of the MRP-PMTV algorithm in 

dealing with complex imaging scenarios. 

Figure 10. The plots of NRMSE along with iterations for thorax phantoms reconstructed by four algorithms 

Figure 11. The plots of SNR along with iterations for thorax phantoms reconstructed by four algorithms 

6. CONCLUSION

The introduction of the PMTV model into the MRP 

algorithm has facilitated the formulation of a novel PET image 

reconstruction algorithm, MRP-PMTV. Experimental 

outcomes have illuminated the capacity of this new algorithm 

to adeptly suppress Poisson noise present in the reconstructed 

image. Furthermore, it has been demonstrated that the 

algorithm effectively eradicates artifacts and safeguards 

critical attributes of the image, such as edges. The substantial 

enhancement in image quality, as evidenced by the 

experimental results, attests to the feasibility of employing the 

MRP-PMTV algorithm in PET image reconstruction. 

The superiority of the MRP-PMTV algorithm is further 

underscored when examined against existing algorithms such 

as MLEM-PMTV, MRP, and MLEM. This was established 

through quantitative metrics, including Normalized Root 

Mean Square Error (NRMSE) and Signal-to-Noise Ratio 

(SNR), and supplemented by visual evaluations. The MRP-

PMTV algorithm consistently delivered the lowest NRMSE 

values and the highest SNR values, signifying its reconstructed 

images were closest to the original images and exhibited least 

noise, respectively. 

In the wake of these compelling results, the MRP-PMTV 

algorithm emerges as a promising tool in the realm of PET 

image reconstruction. The successful suppression of noise, 
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elimination of artifacts, and preservation of critical image 

information mark a significant leap forward in reconstruction 

quality. Future research might focus on further optimizing the 

algorithm parameters and exploring the algorithm's 

performance in other imaging modalities. The potential impact 

of these advancements on clinical applications and patient 

outcomes is indeed exciting and warrants further investigation. 
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